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of CMV strategies to modulate and evade the antiviral activity 
of myeloid cells in cis and in trans.
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Introduction

Numerous paradigms of viral immune evasion have been 
identified by studying cytomegalovirus (CMV). This is 
not surprising because a major fraction of CMV genes is 
devoted to the evasion of the immune system (evasins), and 
CMVs possess the largest known genomes among mam-
malian viruses. CMVs come in many flavors, from human 
CMV (HCMV) and other CMVs infecting primate species 
(rhesus CMV, chimpanzee CMV or gorilla CMV) to CMVs 
infecting rodents (e.g., rat CMV or mouse CMV–MCMV). 
All of these are characterized by strict species specificity, 
because they have coevolved with their host species. Since 
the immune system exerts a strong selection pressure, only 
the viruses that withstand this selection have a chance to 
replicate and disseminate their progeny. Therefore, through 
millions of years of coevolution, CMVs have familiarized 
themselves with the immune system of their respective host 
and developed exquisite immune evasion mechanisms that 
target and disable the most efficient immune mechanisms, 
those that typically control the replication and spread of 
less clever viruses.

A wealth of studies on the numerous mechanisms of 
CMV immune evasion of T cells and NK cells highlighted 
their relevance in the control of viral infections. More 
recently, mounting evidence for a critical role of dendritic 
cells (DC) and macrophages in immune responses to viral 
infections [1–3] was substantiated by data that multiple 
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targets of CMV evasins are cytokines or receptors in mye-
loid immune cells [4, 5]. This notion is particularly excit-
ing if one considers that myeloid DC and macrophages are, 
besides mast cells ([6, 7], reviewed by [8] in this issue of 
MMI), permissive for CMV infection [1, 9–11] and play 
key roles in virus dissemination to distant sites [12, 13] and 
in virus latency [14, 15]. This review will cover the current 
knowledge on CMV evasion of antiviral defense mecha-
nisms of several classes of myeloid cells including mono-
cytes, macrophages and DC.

Monocytes, macrophages and DC

Monocytes, macrophages and DC are diverse lineages of 
cells that are specialized in sensing pathogens and mount-
ing cytokine responses. Additionally, DC can present anti-
gens to cells of the adaptive immune system. Upon path-
ogen encounter, these cells may get infected, and/or they 
take up the pathogen or pathogen components and then ini-
tiate and orchestrate immune responses.

DC, which are particularly rare and widely distributed, 
are of hematopoietic origin (Fig.  1). During steady state, 
they arise from common myeloid precursors (CMP) that 
give rise to monocyte/DC precursors (MDP), which fur-
ther differentiate either to common monocyte precursors 
(cMOP) or to common DC progenitors (CDP) [16–18]. 
CDP differentiate into plasmacytoid DC (pDC) [19] or pre-
DC. The pre-DC differentiate further into conventional DC 
(cDC), either the lymphoid-resident CD11b+CD4+/− DC 
and CD8α+DC or the nonresident CD11b+ and CD103+ 
DC subsets [20]. Depending on their location, DC exhibit 
particular functions. Specialized DC subtypes mostly 
have a short lifespan and are constantly renewed [21]. 
CD8α+Clec9A+ DC are particularly efficient in cross-
presenting antigen and priming naïve CD8+ T cells in lym-
phoid organs of mice [22], and the CD141+(BDCA3+) DC 
subset displays similar functions in human tonsils [23]. In 
recent efforts to harmonize the DC nomenclature for mouse 
and man, the chemokine receptor XCR1 has been identified 
as a cross-species marker for cross-presenting DC subsets 
[24]. In contrast, the subset of inflammatory DC does not 

Fig. 1   Ontogenesis of monocytes, dendritic cells and macrophages. 
In the bone marrow, common myeloid precursors (CMP) develop 
to monocyte/dendritic cell precursors (MDP) from which common 
monocyte precursors (cMOP) or common DC progenitors (CDP) 
emerge. The majority of the different DC subsets originate from the 
CDP, which develop into the interferon type I producing plasma-
cytoid DC (pDC) or pre-DC, which mainly circulate in the blood. 
Conventional DC (cDC) develop from the pre-DC and are found in 
different tissues, where also pDCs can be present. The cDC can be 
found in lymphoid tissues expressing CD8a and/or CD4 in addition 
to CD11b, whereas the nonresident cDCs express CD11b and CD103. 

On the other hand, cMOP give rise to monocytes, which can be 
divided into the M1 and M2 subtype depending on the abundance of 
the marker Ly6C. Monocytes are mainly found in the blood and fur-
ther develop into different cell types once they enter the tissue where 
they encounter pathogens. Depending on the environment, the mono-
cytes can develop into highly divergent subtypes, namely inflamma-
tory monocytes, inflammatory DCs, macrophages and tissue-resident 
macrophages. Moreover, tissue macrophages can originate from 
embryonic precursor cells that are seeded in specific tissues, such as 
Kupffer cells in the liver and microglia in the brain
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develop out of the CDP lineage and is normally not pre-
sent during steady state. They develop from monocytes 
that infiltrate tissues as a consequence of inflammation or 
microbial stimulation [25] (Fig. 1).

Monocytes represent approximately 4 and 10  % of 
the nucleated cells in the blood of mice and humans, 
respectively. Currently, two major monocyte subsets are 
distinguished in mice: Ly6Chi (classical) and Ly6Clow 
(nonclassical) cells. Their human counterparts are 
CD14+CD16− (classical) and CD14lowCD16+ (nonclassi-
cal) [26]. The identity of subsets expressing intermediate or 
low levels of Ly6C in mice or CD14 in humans is poorly 
understood. It was speculated that mouse Ly6Clow cells 
and their human CD14lowCD16+ counterparts may even be 
terminally differentiated into blood-resident macrophages 
rather than bona fide monocytes [27]. Classical Ly6Chi or 
nonclassical Ly6Clo monocytes differ in their migratory 
abilities and their secretion of pro-inflammatory cytokines 
and are also referred to as inflammatory monocytes (IM) 
or patrolling monocytes (PM), respectively (reviewed in 
[28]). Interestingly, the CMV chemokine MCK-2 appears 
to switch their behavior: It promotes the recruitment of PM 
to infection sites, upon which the virus infects and hijacks 
them to facilitate its dissemination to distal organs [29]. 
On the other hand, the classical Ly6Chi IM are recruited to 
sites of infection, but do not serve as vehicles for further 
dissemination. Instead, they appear to regulate and dampen 
CD8 T cell responses against the virus in a process depend-
ent on iNOS activity [30]. Classical monocytes have long 
been believed to be the precursors of basically all tissue 
macrophages [31], but recent evidence indicates that cer-
tain tissue macrophage populations develop from embry-
onic precursors under steady-state conditions (reviewed in 
[32], also see below).

Upon inflammation, monocytes are massively recruited 
into the inflamed tissue by chemoattractants and differen-
tiate not only to inflammatory DC but also to monocyte-
derived macrophages [33]. The type of immune response 
that such monocyte-derived cells induce is highly depend-
ent on the local inflammatory environment that they 
encounter. Monocyte-derived macrophages can either pro-
mote inflammation (pro-inflammatory M1 macrophages) 
or contribute to its resolution (anti-inflammatory M2 mac-
rophages) [34]. The latest evidence suggests that monocyte-
derived macrophage subsets represent a spectrum of acti-
vated phenotypes rather than stable subpopulations [35]. 
One such example of inflammatory monocyte-derived cells 
are TNF and iNOS-producing DC (TIP-DC), which appear 
upon Listeria infection [36] and presently are regarded as 
inflammatory monocytes rather than macrophages [37].

Macrophage subsets show a high degree of surface 
marker expression overlap [38]. Therefore, they are best 
classified on the basis of specific gene expression profiles, 

morphology, proliferation, phagocytosis, and antigen pres-
entation [39, 40]. Generally, macrophages regulate inflam-
mation; however, they also can cause pathology [34]. More 
recently, it has become evident that most macrophage pop-
ulations are derived from yolk sac or other embryonic pre-
cursor cells that seed the different developing tissues before 
birth. These tissue-resident macrophages are maintained 
in adulthood by self-renewal [41]. This group of tissue-
resident macrophages is highly divergent, and representa-
tives are found in nearly all tissues and are referred to as 
microglia (brain), alveolar macrophage (lung), Kupffer cell 
(liver), and others [42].

During the last decades, the functional analysis of pro-
totype DC, monocytes and macrophages in the human sys-
tem was primarily based on in vitro studies of monocyte-
derived DC and macrophages. Nowadays, it is clear that 
such cells represent the inflammatory variants of these cells 
and not the organ-resident DC and macrophages found in 
steady state. Similar caveats apply to bone marrow-derived 
DC and macrophages that have extensively been studied in 
the mouse system [43, 44].

Pathogen recognition by myeloid cells

Monocytes, macrophages and DC express various combi-
nations of pattern recognition receptors (PRR) that sense 
pathogen-associated molecular patterns (PAMP). Two main 
classes of PRR that play a role in antiviral defenses have 
been described in mammalian cells: membrane receptors 
such as Toll-like receptors (TLR) and cytoplasmic sensors 
including (but not limited to) retinoic acid-inducible gene I 
(RIG-I)-like receptors (RLR), NOD-like receptors [45] and 
a growing family of cytosolic DNA sensors [46]. PRR that 
are known to sense CMV are shown in Fig. 2 and detailed 
in the text below.

Toll‑like receptors

Toll-like receptors (TLR) are type I transmembrane pro-
teins localized at the cell surface or within endosomes [47]. 
So far, 10 TLR have been identified in humans and 12 in 
mice. TLR mediate innate signaling in response to a range 
of PAMPs. Viruses do not have unique structural compo-
nents enclosing them, such as the bacterial cell wall; thus, 
sensing of viral infection is mainly dependent on recogni-
tion of aberrant nucleic acids or cellular alterations induced 
by viral infection.

It is well established that MyD88-dependent signaling 
is crucial to control MCMV infection [3, 48, 49]. In sev-
eral studies, the endosomally located DNA sensor TLR9 
[50] was shown to be the key TLR sensor of MCMV 
infection [3, 48, 49]. Deficiency in TLR9 in mice leads to 
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poor control of MCMV and reduced survival, as well as 
decreased levels of type I interferon (IFN) and IL12p40 in 
the serum, which negatively impacts NK cell activation [3, 
48]. Additionally, DC derived from TLR9-deficient mice 
respond poorly to MCMV infection by secreting lower lev-
els of type I IFN and pro-inflammatory cytokines. In line 
with these effects, deficiency in UNC93B, a membrane 
protein which is required for proper trafficking and func-
tioning of endosomal TLR [51, 52], leads to increased sus-
ceptibility to MCMV infection, as well as reduced serum 
cytokine levels [48]. These effects show parallels to human 
experimental models, because IFNα secretion following 
pDC stimulation with HCMV was abolished in the pres-
ence of a TLR7/TLR9 inhibitor [53].

The evidence on the role of other TLR in CMV infec-
tion is more controversial. TLR3 and TLR7 appear to 
play only a supportive role for TLR9 in MCMV infec-
tion [54, 55], while the HCMV glycoproteins gB and 
gH were shown to be TLR2 agonists [56]. On the other 
hand, the latter effect contrasts with in vivo studies that 
observed no defects in MCMV control in TLR2 KO mice 
[49]. Furthermore, recent studies in TLR2/TLR4 KO 

fibroblasts show wild-type levels of NF-κB activation fol-
lowing MCMV infection [57]. It remains unclear whether 
TLR beyond TLR9 are poorly engaged because they do 
not encounter PAMPs in CMV infection or rather because 
CMV actively evades their sensing and/or downstream 
signaling.

Retinoic acid‑inducible gene I‑like receptors

The retinoic acid-inducible gene I (RIG-I)-like recep-
tors (RLR) RIG-I (DDX58), MDA5 (IFIH1) and LGP2 
(DHX58) sense cytosolic single- and double-stranded RNA 
and induce the production of proinflammatory cytokines 
and type I IFN via the adapter protein mitochondrial anti-
viral signaling (MAVS/Cardif/VISA). So far, there is no 
direct evidence that RLR play a prominent role for the type 
I IFN response upon MCMV [58] or HCMV infection [59]. 
On the other hand, two reports have described counter-
measures of HCMV targeting the RLR signaling pathway 
[60, 61], which suggests that RLR may contribute to the 
recognition of CMV. This aspect will be detailed in the sec-
tion on CMV evasion of PRR (see below).

Fig. 2   Pattern recognition receptors sensing CMV in different cel-
lular compartments. Upon ligand recognition, PRR induce distinct 
signaling pathways leading to activation of the transcription factors 
interferon regulatory factor (IRF) and NF-kB, which drive expression 
of proinflammatory cytokines and type I interferons. TLR9 detects 
CMV DNA within endosomes and is solely responsible for the type I 
IFN response mounted by pDCs upon infection. TLR2 seems to sense 

CMV at the cell surface. The ER-resident protein stimulator of inter-
feron genes (STING) plays a crucial role for the antiviral response to 
CMV infection in cDCs and macrophages, but the role of DNA sen-
sors such as cGAS and IFI16 upstream of STING still needs to be 
defined. The role of the RLR pathway in the context of CMV infec-
tion is not well understood so far
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Cytosolic DNA sensors

Sensing and initiation of immune signaling in response 
to viral infections may also occur independently of TLR 
or RLR [62] in case that dsDNA is detected by cytosolic 
DNA sensors. DAI (ZBP1) was the first identified cyto-
solic DNA sensor [63] and has been shown to recognize 
HCMV dsDNA leading to phosphorylation of IRF3 and 
IFNβ production in fibroblasts [59, 64]. Interestingly, DAI 
is not required in mice to mount adequate inflammatory 
responses to MCMV, although its absence leads to slightly 
poorer control of MCMV replication during acute infection 
[65]. The cyclic GMP-AMP synthase (cGAS) is the major 
cytosolic DNA sensor in all cell types assayed [66]. cGAS 
recognizes dsDNA and produces a secondary messenger 
molecule, cGAMP, which binds and activates the adaptor 
protein stimulator of interferon genes (STING) to initiate 
downstream signaling [66, 67]. While STING plays a key 
role in the induction of type I IFN response against HCMV 
[68], CMV sensing by cGAS has not been described as 
of yet. This might be due to the fact that the DNA sensor 
gamma-interferon-inducible protein 16 (IFI16) [69] was 
shown to bind HCMV DNA and trigger STING-dependent 
type I IFN signaling [70]. The evidence on the role of IFI16 
in CMV replication is controversial, because some reports 
have shown that it restricts HCMV expression and replica-
tion by interacting with the SP-1 transcription factor and 
the IR-1 binding element [71, 72], while others have shown 
that IFI16 enhances CMV replication [73–75]. Either way, 
cytosolic DNA sensors appear to play an important role in 
CMV sensing by cDC, because type I IFN induction upon 
MCMV infection is entirely independent of TLR and RLR 
in this cell type [58]. On the other hand, cytosolic DNA 
sensors seem to be irrelevant in pDC, where the induction 
of type I IFN upon MCMV infection is entirely dependent 
upon TLR [3, 49, 58].

CMV immune evasion of pattern recognition receptors

The absence of evidence should not be interpreted as the 
evidence of absence. Therefore, the lack of responses of a 
defined PRR to CMV infection may mean that the PRR in 
question does not recognize the virus, but it may also be 
caused by active viral inhibition of the PRR in question. 
For instance, there is no evidence that RLR induce type I 
IFN responses upon HCMV infection [59], but two studies 
have reported HCMV-induced degradation of RIG-I pro-
tein during productive infection in human foreskin fibro-
blasts [60, 61], and the HCMV-encoded protein pUL37x1 
impedes signaling downstream of MAVS when stably 
expressed in HeLa cells [76]. Therefore, it is tempting to 
speculate that the lack of RIG-I responses may be a result 
of active CMV inhibition, yet more evidence is required to 

understand whether RLR inhibition by CMV genes plays a 
biologically relevant role in the context of viral infection.

Likewise, the HCMV-encoded UL83 protein has been 
shown to bind and block oligomerization of the DNA sen-
sor IFI16 in the nucleus, thereby reducing IFN signaling 
following HCMV infection of fibroblasts [70]. Somewhat 
in contradiction with this observation, it was reported that 
UL83 recruits IFI16 to enhance expression from the major 
IE promoter (MIEP) [73], whereas IFN suppresses MIEP 
gene expression [77, 78]. Therefore, the effects of UL83 on 
IFI16 signaling remain controversial.

Weekes et al. [60] have reported progressive downregu-
lation of protein levels of IFI16, IRF3 and NF-kB by quan-
titative temporal proteomics during HCMV infection, argu-
ing that CMV may encode several genes that interfere with 
pathogen sensing and signaling downstream of such recep-
tors, yet M45 is the only known MCMV protein which has 
been identified to modulate signaling downstream of PRR 
sensing (Fig. 3). M45 is well established as an anti-apop-
totic protein [79], but has also been shown to affect NF-κB 
activation via its interaction with RIP1 and RIP3 [65, 80]. 
More recently, tegument M45 was shown to activate NF-κB 
in fibroblasts within the first hours of MCMV infection, a 
phenotype dependent on its interaction partners NEMO and 
RIP1 [57]. M45 expressed during the early phase of infec-
tion sequesters NEMO and directs it for degradation, lead-
ing to inhibition of NF-κB activation and a reduction in the 
production of proinflammatory cytokines upon TLR stimu-
lation [81].

Inhibition of interferons

One of the earliest responses to CMV infection is the acti-
vation of the type I IFN genes IFNα and IFNβ [82]. Type 
I IFNs make several indispensable contributions to herpes-
virus immune control, most notably the induction of cellu-
lar resistance to viral replication by inducing gene expres-
sion of interferon-stimulated genes (ISGs), which exert 
broad antiviral effects [83, 84]. Mice defective in type I 
IFN signaling are highly susceptible to MCMV infection 
[85, 86]. Similarly, treatment with type I IFN or inhibi-
tion of the type I IFN response alters HCMV replication 
in human fibroblasts [87–89]. Type I IFN gene transcrip-
tion is initiated in many cell types, which become infected 
or get in contact with CMV, e.g., fibroblasts, endothelial 
cells or epithelial cells (reviewed in [90]). However, dis-
tinct DC lineages such as pDC and cDC represent the most 
prominent sources for type I IFN secretion upon MCMV 
exposure [58]. We will describe the mechanisms by which 
CMV inhibits the signaling downstream of the IFN recep-
tor in any cell type and those where the virus inhibits IFN 
responses in the infected myeloid cells.
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CMV inhibition of interferon signaling

Released IFNα and IFNβ molecules bind to a common 
receptor on the plasma membrane expressed by all cells, the 
IFNα/β receptor (IFNAR). Like many other cytokine recep-
tors, IFNAR is pre-associated with Janus family tyrosine 
kinases (JAK) Jak1 and Tyk2 through which it signals by 
inducing inter- and intramolecular phosphorylation. Phos-
phorylation of cytoplasmic sites of IFNAR results in dock-
ing sites for signal transducer and activator of transcription 
(STAT) 1 and 2 molecules. Phosphorylated STAT dimers 
rapidly enter the nucleus and bind to their target DNA 
sequences within enhancer elements of ISGs to recruit the 
molecular machinery of gene transcription. IFNAR trigger-
ing results in the formation of STAT1/STAT2 heterodimers 
and STAT1 homodimers, the former recruit IRF9 which 
leads to the heterotrimeric ISGF3 transcription factor that 
translocates into the nucleus and induces the expression of 
ISGs.

The M27 protein of MCMV is the best-characterized 
CMV-encoded modulator of the signaling cascade down-
stream of the IFNAR [4, 82, 91–93]. The 79  kDa  M27 
protein was shown to disrupt IFNAR signaling (Fig. 3). 
This effect is achieved by recruiting DNA-damage 
DNA-binding protein 1 (DDB1), an adaptor of the 
Cul4A-RocA ubiquitin ligase, to STAT2, which targets 
the latter for proteasomal degradation [92]. While M27 
is not required for MCMV replication in unstimulated 

fibroblasts, it becomes essential in IFN-treated cells, in 
which DDB1 represents a conditional essential factor for 
MCMV replication. Accordingly, M27-deficient MCMV 
exhibited a dramatically attenuated replication pheno-
type in vivo [4, 94]. In clear contrast to cDC and mac-
rophages, M27 efficiently controls IFNAR signaling in 
fibroblasts but does not influence type I IFN induction in 
this cell type [82].

We recently showed that IFNβ is sufficient to repress 
MCMV transcription at the immediate-early level in 
endothelial cells and in vivo and that this repression is 
entirely reversible once IFN is removed [78]. Therefore, 
IFNAR signaling induces a state that is consistent with the 
formal definition of viral latency. The suppression of viral 
replication depended on IFN-mediated induction of ND10-
resident proteins, including DAXX, Sp100 and PML [78]. 
The MCMV gene ie1 and the HCMV-encoded pp71 disrupt 
ND10 bodies, arguing that these functions are critical for 
CMV evasion of IFN-induced effector genes [95]. In light 
of this, it is not surprising that viral gene expression is sup-
pressed only if the cells are pretreated with IFNβ prior to 
infection, before viral genes are expressed. Interestingly, 
we observed that longer exposure to IFNβ improves the 
repression of viral gene expression [96] (Fig.  4). Finally, 
the reversible inhibition of CMV transcription in the pres-
ence of IFN prompts us to propose that CMV latency may 
be understood as a viral evasion mechanism of strong IFN 
responses.

Fig. 3   Cytomegalovirus evasion strategies affecting the function of 
myeloid cells. Cytomegalovirus proteins expressed in myeloid cells 
or in somatic target cells are shown as dark ovals, and their target 
genes are indicated in light gray boxes. Please note that M45 acts on 
NFκB signaling both as an agonist or an antagonist, depending on 

its presence in the viral tegument or upon expression within the cell. 
Also, please note that M27 acts both in the infected myeloid cell or in 
their targets, suppressing IFN secretion and its downstream signaling, 
respectively
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CMV inhibition of interferon response

We have addressed pathogen sensing in the various cell 
types that are triggered by CMV to produce antiviral type I 
IFN responses. We generated pDC, cDC and macrophages 
from mouse bone marrow, stimulated them with MCMV 
and (in line with previous reports) observed that a high per-
centage of cDC and macrophages were infected, whereas 
pDC were largely resistant [1, 3]. On the other hand, pDC 
mounted the highest IFN responses followed by cDC and 
macrophages. UV inactivation of the virus did not affect 
the magnitude of IFN responses mounted by pDC, whereas 
the IFN responses of cDC and macrophages were sig-
nificantly enhanced. These results implied that CMV may 
actively block the induction of IFN responses in cDC and 
macrophages, but not in pDC [58]. Since previous studies 
indicated that the CMV-encoded STAT2 antagonist M27 
inhibits IFNAR signaling [4] and that positive feedback 
reinforces IFN secretion in cDC and macrophages [97], 
we argued that M27 might inhibit the IFNAR feedback in 
these cells. To test this hypothesis, we infected these cells 
with CMV deficient for M27 (CMVΔM27). Interestingly, 
CMVΔM27 induced similar IFN responses as WT virus 

in pDC, whereas IFN responses were strongly enhanced 
in cDC and moderately in macrophages infected with the 
same virus.

These results indicated that M27 inhibits the IFN induc-
tion in cDC very efficiently, whereas additional factors 
were needed in macrophages. Thus, available data argue 
that CMV has developed cell type-specific evasion strate-
gies that do not affect IFN responses of pDC and that sig-
nificantly down-modulate IFN responses of cDC and mac-
rophages [58]. The resistance of pDC to M27 is explained 
by the fact that pDC are not permissive for MCMV, which 
means that viral immune evasins are not expressed and can-
not dampen the immune response. pDC responding with 
type I IFN production to CMV might be triggered by apop-
totic bodies and exosomes derived from infected cells or 
by incoming virions that are unable to initiate viral gene 
expression, but evidence distinguishing between these 
scenarios is currently lacking. The fact that M27-deficient 
MCMV as well as inactivated virions induced a much 
stronger IFNα and IFNβ response in cDC and to a lesser 
extent in macrophages indicates that MCMV-encoded 
factors must actively suppress type I IFN synthesis in 
those cells [58], substantiating earlier observations in 

Fig. 4   Sufficient pretreatment 
time blocks MCMV replication. 
Liver sinusoidal endothelial 
cells (LSECs) stimulated with 
IFNβ (100 U/mL) for 2 or 8 h, 
or left unstimulated (-IFNβ), 
were infected (MOI = 0.1) 
with a reporter MCMV that 
expresses the enhanced yellow 
fluorescent protein (EYFP) gene 
under the control of the ie1/3 
promoter [155]. a 6 Days post-
infection, EYFP expression was 
evaluated and representative 
fluorescent images from two 
independent experiments are 
shown. b Infectious virus titers 
in supernatants of infected cells 
at 6 days post-infection. Shown 
are means + SD from biologi-
cal triplicates
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macrophages [82]. Two hypotheses could explain this M27 
phenotype: First, M27 could have an additional STAT2-
independent function emerging in macrophages and cDC 
but unapparent in fibroblasts, perhaps related to signal-
ing downstream of the PRR present in the myeloid cells. 
Alternatively, STAT2 is required for an autocrine IFNAR-
dependent feedback loop that potentiates type I IFN pro-
duction in myeloid cells other than pDC (Fig. 3). Further 
experiments analyzing cDC and macrophages derived from 
STAT2-deficient mice will resolve this issue.

Interference of CMV with co‑stimulation, cytokine 
production and adherence of myeloid cells

Conventional DC do not only participate in immediate 
responses to infection, but also play a central role in con-
necting innate and adaptive immunity by priming antigen-
specific T cells. DC provide three types of signals that 
activate antiviral T cells. The signal 1 relies on the pres-
entation of antigenic viral peptides by MHC molecules to 
T cell receptors (TCR) found on CD4 or CD8 T cells. Sig-
nal 2 engages the TCR-associated co-receptors by proteins 
upregulated on the DC surface upon sensing of PAMPs, 
whereas signal 3 is mediated by secreted cytokines pro-
moting T cell differentiation and proliferation. Besides the 
well-known inhibition of antigen presentation by MHC 
molecules, CMVs also block the other two signals, result-
ing in severe functional impairment of infected DC [10, 
98–101]. We observed that MCMV-infected DC are ini-
tially activated, but subsequently the co-stimulatory mol-
ecules CD80 and CD86 are strongly downregulated [10]. 
While early in infection DC could stimulate autologous T 
cells, this capacity was completely lost 2 days post-infec-
tion (dpi).

Screening a library of deletion mutants led us to identify 
an MCMV gene, m147.5, responsible for diminished sur-
face expression of CD86 [5]. Another viral protein, m138, 
targets the co-stimulatory molecule CD80 [102] (Fig.  3). 
Co-stimulation via the CD80/CD86-CD28 axis turned out 
to be important as significantly lower numbers of T cells 
were detected early after infection in B7-(CD80−CD86−) 
and CD28-negative mice, and this was associated with 
increased virus titers [103, 104]. Moreover, infection of 
mice with an MCMV mutant lacking the genes m138 and 
m147.5 induced a stronger CD4 T cell response with lower 
viral titers in liver and salivary glands [105], suggesting 
physiologic relevance of these immunomodulatory genes. 
However, as pointed out in a recent review [106], the inter-
play between different immune cells in vivo is highly com-
plex, potentially compensating for viral immune modula-
tion. In fact, a strong cellular immune response is mounted 
in MCMV-infected mice, perfectly able to terminate acute 

infection, although it cannot prevent latency. We and oth-
ers investigated therefore how priming of T cells can 
occur in the presence of functional CMV immune evasins 
[11, 107–111]. Early after intraperitoneal infection with 
MCMV, we found no infected CD8α+ DC and only a small 
number of infected CD8α− DC in the spleen [11]. The 
majority of the infected splenocytes were probably stromal 
cells [112]. Dalod et al. [1] estimated that less than 5 % of 
CD8α+ DC and less than 1 % of CD11b+ DC in the spleen 
are infected. In view of these data, it was surprising that 
CD8α+ DC turned out to be the DC subset, which stimu-
lated T cell proliferation [11]. In addition, we observed 
that T cells were preferentially generated against antigens 
that can be cross-presented but not to antigens that are only 
directly presented. We concluded that cross-presentation is 
the dominant mechanism that drives priming of MCMV-
specific T cells in acute infection. Consistent results were 
obtained by colleagues who used different approaches to 
address this question, e.g., replication-deficient mutants 
[108] or Batf3 knockout mice which lack cross-presenting 
CD8α+ and CD107+ DC [110].

Altogether, there is little doubt that cross-priming does 
occur in MCMV infection, particularly when abundant 
viral antigen is present. The question is, however, whether 
the viral immune evasins prevent direct priming. Nopora 
et  al. [111] confirmed the requirement for CD8α+ DC, 
yet, in CD11c-Rac mice—severely deficient in cross-pres-
entation—the T cell response was not affected, arguing 
for direct priming. Similar results were recently obtained 
when T cell immunity to MCMV was studied in mice in 
which cross-presentation was abrogated by treatment 
with the TLR9 agonist CpG [113]. Remarkably, the loss 
of MHC I surface expression by CMV-encoded evasins 
(reviewed in [114]) is considerably less efficient in mac-
rophages [115, 116] and cDC [99, 117] than in other cell 
types. Taken together, the evidence argues that direct pep-
tide presentation is largely intact, resulting in efficient T 
cell effector responses [107, 115, 116] and that interfer-
ence with T cell priming provides CMV only with a minor 
advantage during primary infection. Most likely, this 
allows the virus to establish latent infection at increased 
levels and thus to improve the chance for subsequent reac-
tivation and transmission, as suggested by the results of 
Böhm et al. [118].

IL10 is a key anti-inflammatory cytokine that influ-
ences the function of various immune cells, including DC 
[119]. IL10 suppresses the surface expression of MHC II 
and co-stimulatory molecules on the cell surface of DC 
and represses inflammatory cytokine responses, thus regu-
lating their immune response [120]. Numerous viruses 
express IL10 homologs to exploit this effect and repress the 
immune response [121], and the UL111A gene encodes the 
viral IL10 homolog (vIL10) of HCMV.
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UL111A is expressed during natural and experimental 
latency [122, 123], and it has a strong modulatory effect 
on different immune cells, including DC, monocytes and 
macrophages [124–130]. It inhibits in vitro maturation of 
monocytes into cDC [131] by reducing the secretion of 
pro-inflammatory cytokines [125] and influences the mat-
uration of monocytes into macrophages by favoring the 
development of M2, rather than M1 macrophages [130]. 
Exposure of mature cDC to vIL10 induces apoptosis due to 
the suppression of anti-apoptotic genes such as bcl-2 [132] 
or c-FLIPL [126]. In pDC, the vIL10 suppresses the expres-
sion of IFNα [133].

Interestingly, vIL10 stimulates the antigen uptake in 
cDC [126], although it represses antigen presentation. 
vIL10 consists of two splice variants, cmvIL10 and LAc-
mvIL10 [134, 135], which exert different functions. While 
cmvIL10 reduces the expression of co-stimulatory mole-
cules CD80 and CD86 [126, 127] and of pro-inflammatory 
cytokines [127], the LAcmvIL10 splice variant suppresses 
MHC II expression. Taken together, these effects decrease 
the ability of DC to stimulate T cell responses [126].

Recently, we observed that the HCMV protein UL11 
interacts with the cellular protein tyrosine phosphatase 
CD45 [136]. In view of the well-known function of CD45 
in T cells [137], we hypothesized that surface-expressed 
UL11 may protect CMV-infected cells against cytotoxic T 
lymphocytes (CTL) by trans-inhibition of CD45 signaling 
in T cells. However, more extensive studies showed that 

UL11 is weakly expressed on the surface of infected cells 
and we did not find evidence for UL11-mediated inhibition 
of T cell responses [138].

Currently, we are analyzing which other CD45 func-
tions may be influenced by UL11 in cis, that is, within 
the infected cell. In macrophages, CD45 limits the activ-
ity of Src kinases, which are induced upon integrin clus-
tering. CD45-negative macrophages initially adhere more 
strongly to surfaces than normal macrophages, but are not 
able to sustain adhesion [139, 140]. Such macrophages are 
less mobile. Dissemination of CMV requires the release of 
phagocytic cells from infected tissues and later re-attach-
ment in other organs. Therefore, the regulation of the phos-
phatase activity of CD45 or altering of its spatial distribu-
tion could be a mechanism by which UL11 influences this 
process.

On the other hand, integrin-mediated adhesion of mye-
loid cells is required for immunologic activation, and CD45 
is involved in regulating the cytokine response. Interest-
ingly, strong CD45 activity inhibits the secretion of TNF 
and IL6 [141], whereas synthesis of type I IFN is pro-
moted [142]. This dichotomy appears to be regulated by 
CD45, and its differential impact on cytokine production 
is determined by MyD88-dependent or MyD88-independ-
ent signaling downstream of TLR (Fig. 5) [143]. Further-
more, CD45 dampens Jak-STAT signaling downstream 
of cytokine receptors by dephosphorylating Jak kinases 
(Fig.  5) [144]. Taken together, by interacting with CD45, 

Fig. 5   Putative functions of 
the HCMV protein UL11 in 
myeloid cells. Modification 
of adapter proteins involved 
in Toll-like receptor signaling 
by UL11-recruited CD45 can 
modulate cytokine production. 
Similarly, CD45 dampens Jak-
STAT signaling by dephospho-
rylating Jak kinases
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the CMV protein UL11 targets a key protein in several 
signaling pathways and thus may influence the complex 
networks involved in pathogen sensing and in the initiation 
of cytokine responses.

Apoptosis inhibition as viral defense 
against macrophages in cis and in trans

CMVs have evolved numerous strategies of apoptosis inhi-
bition, targeting both the cell-intrinsic apoptosis and the 
extrinsic apoptosis pathway, initiated by ligands binding 
to death receptors on the cell surface, such as the tumor 
necrosis factor (TNF) receptor 1, FAS and TNF-associated 
apoptosis-inducing ligand (TRAIL) receptors 1 and 2. 
Since these strategies have been well covered by previous 
reviews, we will focus our attention on the effects of death 
receptor inhibition as a strategy to protect the virus from 
the antiviral activity of macrophages.

The HCMV gene UL36 and its MCMV counterpart 
M36 both encode proteins that bind to caspase-8 and thus 
block death receptor apoptosis at a step where death recep-
tor pathways have converged [145, 146]. Initial reports 
described this effect as a determinant of viral tropism for 
macrophages, because the replication of mutants lack-
ing the M36/UL36 gene was not affected in fibroblasts 
[146, 147], but was severely impaired in macrophages 
[146, 148]. The growth of M36-deficient mutants (ΔM36 
MCMV) could be restored by the pan-caspase inhibitor 
ZVAD-fmk [148, 149], demonstrating that viral fitness in 
macrophages depends on the inhibition of caspase signal-
ing by M36/UL36 and not on some unrelated function of 
these genes. MCMV recombinants expressing a dominant 
negative variant of the FADD gene (FADDDN) instead of 
M36 (ΔM36 FADDDN MCMV) grow well in macrophage 
cultures, arguing that the block of death receptor apoptosis 
in cis, within the virus-infected macrophage, is crucial for 
viral growth [149].

M36 is highly biologically relevant for MCMV, 
because ΔM36 MCMV grows poorly in vivo [149, 150] 
and immunodeficient mice withstand ΔM36 MCMV 
infection [151]. Viral growth and virulence were restored 
in ΔM36 FADDDN MCMV infection, showing that the 
inhibition of death receptor apoptosis is critical for in vivo 
fitness [149, 151]. This implied that viral replication in 
macrophages may be a critical bottleneck for MCMV in 
vivo or that M36 is important for viral replication in cells 
beyond macrophages, although it was dispensable dur-
ing in vitro replication in fibroblasts or endothelial cells 
[146]. This conundrum was resolved by depleting mac-
rophages in vivo, which increased ΔM36 MCMV titers, 
rather than decreasing the titers of wild-type MCMV 
[151]. This curious effect was finally explained by 

coculture of fibroblasts and macrophages, which showed 
that M36 is important for viral replication in the presence 
of macrophages, because it protects the virus-infected 
cells from antiviral cytokines secreted by activated mac-
rophages and in particular from TNF [151]. Therefore, 
M36 protects the virus-infected cells from macrophages 
in trans, rather than in cis (Fig. 3), because it inhibits the 
signaling downstream of the receptors triggered by mac-
rophage-released cytokines [151].

It is important to note, however, that this does not 
exclude that M36 may also protect the virus-infected 
cells from other immune cells that induce apopto-
sis in their target cells, like T cells or NK cells, yet 
such ideas remain speculative in absence of direct 
evidence.

IE1 is another viral gene that displays a similar dichot-
omy in cis and trans protection from myeloid cells. Besides 
its ability to disrupt the intranuclear defense complex ND10 
and thus protect infected cells from myeloid cell-secreted 
interferon in trans, IE1 was shown to act in the myeloid 
cells in cis, by reducing the secretion of pro-inflamma-
tory cytokines and in particular TNF [152]. Interestingly, 
MCMV ΔIE1 has in vitro growth defects in macrophages 
and not in fibroblasts [152], which fits to the observed in 
vivo phenotype of this mutant [153]. The IE1-dependent 
reduction in the pro-inflammatory cytokine TNF has been 
observed in the in vitro-infected macrophages and in vivo 
[152]. Since TNF reduces viral titers in vitro [154], but the 
ablation of TNF or the TNF receptor does not rescue the 
growth of MCMV ΔIE1, it is feasible that redundant host 
factors may complement the deficiency in TNF signaling 
[152].

Synopsis and outlook

In conclusion, cytomegaloviruses have developed numer-
ous strategies of viral immune evasion, blocking the anti-
viral activity of monocytes, DC and macrophages at multi-
ple checkpoints. The evasion occurs both in cis, within the 
infected myeloid cell, and in trans, by affecting other cells 
which are the target of antiviral actions exerted by myeloid 
cells. The multitude of these evasion strategies is a testa-
ment to the relevance of myeloid cells in antiviral control, 
yet we may have just scratched the surface of viral immune 
evasion strategies within these cells. Therefore, the study 
of interactions between CMV and myeloid cells is a highly 
dynamic research field that is likely to reveal numerous 
novel and unexpected mechanisms of antiviral activity.
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