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CC chemokine ligand 5 (CCL5) that attracts CD8 T cells 
to infiltrate infected tissues. Comparing infection of MC-
sufficient C57BL/6 mice and congenic MC-deficient KitW-

sh/W-sh “sash” mutants revealed an inverse relation between 
the number of lung-infiltrating CD8 T cells and viral burden 
in the lungs. Specifically, reduced lung infiltration by CD8 
T cells in “sash” mutants was associated with an impaired 
infection control. The causal, though indirect, involvement 
of MC in antiviral control was confirmed by reversion of the 
deficiency phenotype in “sash” mutants reconstituted with 
MC. These recent findings predict that efficient MC reconsti-
tution facilitates the control of CMV infection also in immu-
nocompromised HCT recipients.
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Introduction

 Mast cells (MC) are long-lived, tissue resident cells of the 
immune system that are derived from committed MC pro-
genitors in the bone marrow and mature in essentially all 
vascularized tissues. MC are “inbetweeners” in a dual mean-
ing. First, being  located beneath endothelial and epithelial 
surfaces at the boundary between inside and outside the 
organism, they act as first-line sentinels for environmental 
antigens, including a wide array of invading pathogens such 
as viruses, bacteria, protozoa, and even metazoan parasites 
[1, 2]. Second, MC share properties attributed to cells of the 
adaptive and the innate arms of the immune system. Their 
antigen-specific activation and degranulation are medi-
ated through membrane-bound IgE antibody. Aside from 
the notorious role in allergic inflammatory reactions [3], a 

Abstract  Reactivation of latent cytomegalovirus (CMV) 
in the transient immunocompromised state after hematoa-
blative treatment is a major concern in patients undergoing 
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hematopoietic malignancies. Timely reconstitution of antivi-
ral CD8 T cells and their efficient recruitment to the lungs 
is crucial for preventing interstitial pneumonia, the most 
severe disease manifestation of CMV in HCT recipients. 
Here, we review recent work in a murine model, implicat-
ing mast cells (MC) in the control of pulmonary infection. 
Murine CMV (mCMV) productively infects MC in vivo and 
triggers their degranulation, resulting in the release of the 
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noted protective immune function triggered through MC-IgE 
is the defense against gastrointestinal helminths [4]. Innate 
MC effector responses are initiated by ligation of a number 
of pattern recognition receptors (PRR), including Toll-like 
receptors (TLR) [5]. Receptor ligation in both the IgE-medi-
ated classical and the alternative innate pathways of MC acti-
vation [6] can induce the synthesis of MC cytokines but can 
also trigger instant effector functions by the release of effec-
tor molecules already stored in granules [7].

Besides exerting direct effector functions, MC contrib-
ute to immune surveillance by a regulatory cross talk with 
other cells of the immune system [8]. Of specific interest, 
sensitized MC release the CC chemokine ligand 5 (CCL5, 
also known as RANTES), which binds to CC chemokine 
receptor 5 (CCR5) [9] that is upregulated on sensitized 
memory CD8 T cells [10], resulting in their recruit-
ment from lymphoid and intravascular compartments to 
extravascular sites such as peritoneal cavity [11] and lung 
interstitium [12]. In the primary immune response, naїve 
CD8 T cells also upregulate CCR5, permitting these cells 
to be attracted by CCR5 ligands to sites of antigen-specific 
dendritic cell CD4 T cell interaction, providing CD4 T cell 
help for promoting CD8 T cell priming [13].

A notable regulatory function of MC in the context of 
allogeneic HCT is the suppression of graft-versus-host dis-
ease (GvHD) by a mechanism independent of CD4+CD25+ 
regulatory T cells but involving IL-10 [14]. CMV infection 
is another most relevant complication in HCT recipients, 
both clinically (reviewed in [15]) and in the experimental 
mouse model (reviewed in [16]), and can be controlled by 
CD8 T cells reconstituted endogenously following HCT or 
interventionally by adoptive cell transfer immunotherapy 
[17–24] (reviewed in [16, 25, 26]). It was therefore intrigu-
ing to investigate if MC play any role in combating CMV 
infection.

Here, we review recent work in a murine model [27, 
28] implicating infected MC in the recruitment of protec-
tive CD8 T cells to the lungs, a predilection site of CMV 
pathogenesis and disease manifestation in the immuno-
compromised host [17, 29] as well as of CMV latency and 
reactivation [30–35] and of CD8 T cell memory inflation 
[36, 37]. These studies propose a dually beneficial role for 
MC by moderating two major complications of allogeneic 
HCT: GvHD and CMV infection.

Mast cells inversely impact on CD8 T cell infiltration 
and viral burden in the lungs

First evidence for a contribution of MC to the control of 
a CMV infection [27] was provided in a murine model by 
comparing murine CMV (mCMV) infection of immuno-
competent and MC-sufficient “wild type” C57BL/6 mice 

(B6-WT) with the infection of B6 congenic and MC defi-
cient but otherwise immunocompetent KitW-sh/W-sh “sash” 
mutants (B6-KitW-sh) [38, 39]. As illustrated in Fig.  1 
(groups A vs. B; based on data from Ref. [27]), CD8 T cell 
infiltration into lung tissue was reduced in the MC-defi-
cient mutants (Fig.  1a) on day 6 after intravenous infec-
tion with mCMV, and this corresponded to a subsequently 
increased virus burden (Fig. 1b). As infection of the lungs 
is controlled by CD8 T cells localizing to infected lung tis-
sue cells, such as alveolar epithelial cells and interstitial 
fibrocytes, in nodular inflammatory foci (NIF) [27], it was 
concluded that MC do not directly control the infection 
by own effector functions but rather recruit antiviral CD8 
T cells to the tissue site of infection. Specifically, deple-
tion of CD8 T cells in B6-WT mice abrogated the control 
of infection despite the continued presence of MC. In a 
formal sense, however, this experimental setting did not 
exclude a “sash” mutation phenotype unrelated to MC. 
Any doubts about a causal role of MC were solved by 
restoring lung infiltration of CD8 T cells as well as con-
trol of pulmonary infection by reconstituting B6-KitW-sh 
mice with bone marrow-derived, cell culture-selected and 
thereby purified MC (Fig. 1, group C; based on data from 
Ref. [27]). The contribution by MC was most prominent 
in the lungs and not significant in spleen and liver, sites 
at which residual CD8 T cell recruitment in the absence 
of MC was already sufficient for controlling infection 
(authors’ unpublished data). It is thus proposed that MC-
mediated enhancement of recruitment is required in par-
ticular at organ sites where CD8 T cell control is less effi-
cient, such as in the lungs. One may speculate that this 
relates to the fact that lungs are a known main site of CMV 
disease manifestation, in particular after HCT.

Infected mast cells degranulate and release  
the chemokine CCL5

The search for the mechanism by which host infection acti-
vates MC for degranulation led to the identification of two 
kinetically and mechanistically distinct waves [28].

The first wave of degranulation of CD117+FcεRI+ MC 
among intraperitoneal exudate cells was observed as soon 
as 4 h after intraperitoneal mCMV infection and was found 
to require TLR3–TRIF signaling, as it was absent in both 
TLR−/− mice and adapter protein TRIF−/− mice [28]. Sur-
prisingly, however, infection of MC-deficient B6-KitW-sh 
mice reconstituted with MC derived from TLR3−/− mice 
still triggered degranulation of MC [28], indicating that 
TLR3–TRIF signaling is not required within the MC. 
Rather, it must be proposed that TLR3–TRIF signaling in 
another first-line cell type of infection leads to the release 
of a signal involved in triggering the degranulation of MC. 
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While suspected candidates, namely macrophages and nat-
ural killer (NK) cells, were excluded by their depletion fail-
ing to abrogate MC degranulation [28], a positive identifi-
cation of the cell type involved as well as of the molecular 
nature of the TLR3–TRIF signaling-dependent paracrine 
trigger of MC degranulation, awaits further studies.

A second wave of MC degranulation was observed at 
24  h [27] and proved to be independent of TLR3–TRIF 
signaling, as it occurred also upon infection of TLR3−/− 
or TRIF−/− mice [28]. To test if MC become infected by 
mCMV in vivo, a conditional reporter virus system was 
used (Fig. 2), based on Cre recombinase-mediated excision 
of a stop cassette in the genome of virus mCMV-flox-egfp 
[40, 41] selectively in MC of B6 congenic, Mcpt5-cre-
transgenic mice that express Cre recombinase under con-
trol of the MC-specific MC protease 5 promoter [42]. Thus, 
upon intraperitoneal infection of Mcpt5-cre mice with 
mCMV-flox-egfp, recombination resulting in the expres-
sion of enhanced green fluorescent protein (eGFP) labels 
infected MC (for the principle, see Fig. 2a reproduced from 
Ref. [28]). A significant proportion of CD117+FcεRI+ 
MC was indeed found to express eGFP, and, most tell-
ingly, degranulation indicated by cell surface exposure of 
CD107a (also known as lysosomal-associated membrane 
protein-1, LAMP-1) was restricted to infected, eGFP+ MC 
(Fig.  2b, reproduced from Ref. [28]). These findings not 

only identified MC as a target cell of mCMV infection, but 
also indicated that the infection triggers MC degranulation.

Of functional relevance, MC infection was followed by 
release of the chemokine CCL5 into the serum of infected 
mice, which strongly peaked around day 2. Notably, 
besides the high MC-dependent CCL5 levels in infected 
MC-sufficient B6-WT mice, infection led also to some-
what elevated MC-independent CCL5 levels in the serum 
of MC-deficient B6-KitW-sh mice (Fig. 2c, based on data in 
Ref. [27]). As CCL5 levels in MC-sufficient mice do not 
significantly increase until day 1, it is proposed that the 
second wave of MC degranulation, that is the 24-h wave, is 
functionally more important. The MC-independent fraction 
of the CCL5 serum level can explain the basal lung infil-
tration by protective CD8 T cells observed also in infected 
B6-KitW-sh mice (Fig. 1a; Ref. [27]).

Infection of mast cells is productive, and viral progeny 
disseminates to other cell types

Expression of eGFP in peritoneal exudate MC of Mcpt5-
cre mice infected intraperitoneally with mCMV-flox-egfp 
has verified viral entry into MC as well as subsequent Cre-
mediated recombination of the viral genomes. Completion 
of the viral productive cycle with release of recombined 

A

C

B

MC-sufficient

MC-deficient

B6-WT

B6-Kitw-sh

B6-KitW-sh

MC-reconstituted

d6 d14

Lungs

Lungs

10

20

30

40

50

A B C

CD8 T-cell infiltration

%
 C

D
8+

ce
lls

of
le

uc
oc

yt
es

2

4

5

6

7

A B C

Viral burden

V
iru

s 
tit

er
[lo

g 1
0

P
FU

] p
er

 lu
ng

3

a

b

MC

CMV

Fig. 1   MC facilitate the recruitment of CD8 T cells to the control of 
pulmonary CMV infection. Group A, MC-sufficient B6-WT mice. 
Group B, MC-deficient B6-KitW-sh mice. Group C, MC-reconstituted 
B6-KitW-sh mice. a Proportion of CD8 T cells among all leukocytes in 

lung infiltrates on day 6 after intravenous mCMV infection. b Virus 
titers in the lungs on day 14 after intravenous mCMV infection. Bar 
diagrams represent median values and ranges based on data published 
in Ref. [27] with permission by PloS Pathogens
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mCMV-rec-egfp progeny virions (sketched in Fig. 3a) was 
previously demonstrated by detection of green fluorescent 
plaques in mouse embryo fibroblast cell cultures inoculated 

with tissue homogenates from liver and lungs of Mcpt5-cre 
mice, which were immunocompromised 2 days after infec-
tion with mCMV-flox-egfp to facilitate dissemination of 
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Fig. 2   Infection of MC leads to MC degranulation and release 
of the chemokine CCL5. a Gene map and genetic principle of Cre 
recombination-based conditional expression of the reporter protein 
eGFP in cre-transgenic Mcpt5-cre mice expressing Cre recombi-
nase selectively in MC. Virion pictograms represent stop (red) and 
go (green) for eGFP reporter protein expression upon infection. b 
Selective degranulation of infected (eGFP+) CD117+FcεRI+ MC as 

indicated by expression of CD107a (a and b reproduced from Ref. 
[28] with permission by Molecular and Cellular Immunology). c MC-
dependent (blue bars) and MC-independent (open bars) serum levels 
of chemokine CCL5 in intravenously infected MC-sufficient B6-WT 
and MC-deficient B6-KitW-sh mice, respectively. Bar diagrams repre-
sent median values and ranges based on data published in Ref. [27] 
with permission by PloS Pathogens
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mCMV-rec-egfp for a period of 6 further days [28]. Dis-
semination from the peritoneal cavity to other cell types in 
distant organs, however, was not formally proven, because 
mCMV-flox-egfp might have infected MC resident in liver 
and lungs [43, 44]. Here, we provide new data as firm evi-
dence for dissemination of MC-derived mCMV-rec-egfp 
to cell types other than MC. Immunohistochemical (IHC) 
images (Fig. 3b) demonstrate infected eGFP+ hepatocytes 
(Fig. 3b, image a) and an infected eGFP+ vascular endothe-
lial cell (Fig. 3b, image b) in liver tissue sections taken on 
day 8 after intraperitoneal infection of Mcpt5-cre mice with 
mCMV-flox-egfp.

Synopsis and outlook

The current view on how MC are involved in the immune 
control of CMV infection in the mouse model is sketched 
in Fig. 4. MC are cellular targets of mCMV infection and 
degranulate in the course of the productive viral replication 
cycle. The chemokine CCL5 is released upon degranulation 

of MC and binds to CCR5 upregulated on CD8 T cells. The 
CCL5 chemokine gradient attracts the CD8 T cells in an 
initially antigen-independent manner to infected tissues, 
where viral epitope-specific CD8 T cells form nodular 
inflammatory foci (NIF) around infected tissue cells [45] 
of various cell types, depending on the type of tissue. In 
the NIF, CD8 T cells control the infection by their effec-
tor functions exerted upon recognition of cognate peptide–
MHC class I complexes (pMHC) presented at the cell sur-
face of infected cells. An immediate question may be why 
infection of MC in the net effect leads to reduction in viral 
burden although, as shown by the conditional reporter virus 
studies, MC are a source of infectious virus. The answer is 
that many different cell types are permissive for productive 
mCMV infection, which applies also to clinical isolates of 
human CMV [46, 47], and account for most of the virus 
production in infected tissues with little contribution com-
ing from infected MC.

Regarding a mechanistic understanding, future work 
will focus on the question if MC degranulation relates to 
cytopathogenic infection of MC associated with cell death 
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Fig. 3   Infection of MC is productive, and recombined reporter virus 
disseminates to other cell types. a Principle of the generation of MC-
derived recombined reporter virus in Mcpt5-cre mice expressing Cre 
selectively in MC. After allowing 48 h for initiation of host infection 
and genetic recombination in MC, mice were immunocompromised 
by 7 Gy of γ-irradiation to facilitate virus dissemination for another 
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taken on day 8 after the initial infection. To identify cells infected 

by originally MC-derived recombined virus mCMV-rec-egfp, the 
reporter protein eGFP was stained in turquoise color (method essen-
tially as described in Ref. [27], except that eGFP was labeled with 
polyclonal rabbit antibodies directed against all variants of GFP, and 
with peroxidase-conjugated anti-rabbit Ig as the second antibody). 
iHc, infected hepatocyte; iEC, infected vascular endothelial cell. Bar 
markers represent 50 µm
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or if degranulation of MC can more specifically be attrib-
uted to a particular viral gene product. Regarding clinical 
relevance to be studied in a preclinical model, we are fas-
cinated by the emerging evidence that MC functions con-
verge in moderating GvHD in an allo-HCT mouse model 
[14] and improve the control of CMV infection (this report 
and [27, 28]), the two major complications in clinical allo-
HCT. We will therefore extend our previous studies in the 
immunocompetent host mouse models to investigate the 
role of MC in the control of CMV infection in experimen-
tal HCT [16] using MC-sufficient and MC-deficient mice 
mutually as hematopoietic cell donors and recipients to 
define the roles of recipient-resident MC and transplanted 
donor MC progenitors in the control of CMV infection fol-
lowing HCT.
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