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Abstract
Purpose To investigate the xenobiotic profiles of patients with neovascular age-related macular degeneration (nAMD) 
undergoing anti-vascular endothelial growth factor (anti-VEGF) intravitreal therapy (IVT) to identify biomarkers indicative 
of clinical phenotypes through advanced AI methodologies.
Methods In this cross-sectional observational study, we analyzed 156 peripheral blood xenobiotic features in a cohort of 
46 nAMD patients stratified by choroidal neovascularization (CNV) control under anti-VEGF IVT. We employed Liquid 
Chromatography—Tandem Mass Spectrometry (LC–MS/MS) for measurement and leveraged an AI-driven iterative Ran-
dom Forests (iRF) approach for robust pattern recognition and feature selection, aligning molecular profiles with clinical 
phenotypes.
Results AI-augmented iRF models effectively refined the metabolite spectrum by discarding non-predictive elements. Per-
fluorooctanesulfonate (PFOS) and Ethyl β-glucopyranoside were identified as significant biomarkers through this process, 
associated with various clinically relevant phenotypes. Unlike single metabolite classes, drug metabolites were distinctly 
correlated with subretinal fluid presence.
Conclusions This study underscores the enhanced capability of AI, particularly iRF, in dissecting complex metabolomic 
data to elucidate the xenobiotic landscape of nAMD and environmental impact on the disease. The preliminary biomarkers 
discovered offer promising directions for personalized treatment strategies, although further validation in broader cohorts 
is essential for clinical application.
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Abbreviations and Acronyms
AUROC  Area Under the Receiver Operating 

Characteristics
anti-VEGF  Anti-vascular endothelial growth factor
BCVA  Best-corrected visual acuity
CAC   Chronically active CNV
CNV  Choroidal neovascularization
Coeff.  Coefficient
ECC  Effectively controlled CNV
ETDRS  The Early Treatment Diabetic Retinopathy 

Study Group
FAF  Fundus autofluorescence
FA  Fluorescein angiography
FDR  False Discovery Rate
IRC  Intraretinal cysts
iRF  Iterative Random Forests
IVT  Intravitreal treatment
LC–MS/MS  Liquid chromatography with tandem mass 

spectrometry
nAMD  Neovascular age-related macular 

degeneration
OCT  Optical coherence tomography
SHRM  Subretinal hyperreflective material
SRF  Subretinal fluid
sulf.  Sulfate

Introduction

Age-related macular degeneration (AMD) stands as a prin-
cipal cause of irreversible visual impairment and blindness 
among the elderly across the globe [1]. It is marked by the 
gradual degradation of the macula, the central portion of the 
retina, leading to a profound reduction in central vision [2]. 
While the management of AMD, particularly its neovascular 
form (nAMD) characterized by choroidal neovasculariza-
tion (CNV), has been significantly advanced by regular anti-
vascular endothelial growth factor (anti-VEGF) intravitreal 
treatment (IVT), patient responses to these treatments vary 
considerably [1, 2]. While some experience chronic activ-
ity, others attain effective CNV control after a small number 
of treatments, and maintain this retinal state under low-fre-
quency anti-VEGF IVT [1–3].

The etiology of AMD is multifactorial, with major risk 
factors identified as advancing age, genetic predispositions, 
and environmental factors (like smoking or nutrition) [1, 
2]. Despite a growing understanding of these risk factors, 
the precise molecular mechanisms influencing the variabil-
ity in treatment response and disease progression remain 
elusive. Metabolomics offers a comprehensive approach to 
study the small molecules within biological systems and 
has emerged as a pivotal tool to unearth new biomarkers 
and gain deeper insight into disease mechanisms [4]. In the 

Key messages

What is known:

Neovascular age-related macular degeneration (nAMD) is a leading cause of vision loss, with variable patient
responses to anti-VEGF intravitreal therapies, indicating a complex interplay of genetic, environmental, and 
metabolic factors.

Metabolomics, particularly the study of xenobiotics (external compounds like diet, pollutants, and drugs), provides
insights into environmental in�uences on nAMD, though the molecular mechanisms in�uencing treatment response
remain largely unde�ned.

What is new:

This study pioneers the application of AI-driven iterative Random Forests (iRF) for analyzing blood xenobiotic
pro�les in nAMD, introducing a novel approach to biomarker discovery.

Advanced AI methodologies identi�ed Per�uorooctanesulfonate and Ethyl β-glucopyranoside as signi�cant 
biomarkers linked to clinical phenotypes of nAMD.

Findings demonstrate the potential of iRF in re�ning complex metabolomic data, revealing the interplay of 
environmental factors and xenobiotic metabolism in nAMD, paving the way for personalized treatment strategies.
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pursuit of understanding the environmental contributions 
to AMD, the study of xenobiotics – external compounds 
to which the body is exposed, such as dietary components, 
pollutants, and drugs – is particularly revealing [5]. These 
compounds can offer a window into the environmental influ-
ences that may exacerbate or mitigate the disease process.

Traditional univariate statistical methods, such as the 
Mann–Whitney U-test, have been the mainstay for iden-
tifying candidate molecules in disease association studies 
[6]. However, their ability to decode the complexities of 
multifaceted diseases like AMD is limited. Here, we pro-
pose the use of a multivariate machine learning technique, 
specifically iterative Random Forests (iRF), to navigate the 
intricate metabolic interplay. iRF can handle multiple vari-
ables in tandem, capturing the complex interactions between 
metabolites and clinical phenotypes that might otherwise be 
missed [7].

In short, this study utilizes iRF to analyze blood xenobi-
otic measurements from a stratified cohort of nAMD patients 
receiving anti-VEGF therapy, aiming to identify metabo-
lites indicative of treatment response and to explore the 
influence of environmental factors on the disease. It further 
examines the clinical correlations of metabolites, grouped 
by compound class, to understand broad metabolic varia-
tions. This approach underscores the complexity of AMD’s 
metabolomic profile and the potential of machine learning 
in biomedical research, highlighting promising molecules 
and acknowledging the challenges in data analysis for future 
exploration.

Materials and methods

Study design

This investigation is a segment of a wider cross-sectional 
observational analysis aimed at identifying biomarkers for 
nAMD at the Charité University Hospital in Berlin, Ger-
many. The execution of the research adhered strictly to the 
current versions of the study's protocol, Good Clinical Prac-
tice (ICH-GCP) Guidelines, and the principles set forth in 
the Declaration of Helsinki. Ethical clearance was granted 
by the appropriate ethics committee of the Charité Univer-
sity Hospital. All participants were required to give their 
written consent, having been prospectively enrolled for the 
study.

Study protocol and subject recruitment

Between November 2018 and June 2020, at Charité Uni-
versity Hospital's Campus Benjamin Franklin, individuals 
who met the necessary criteria for inclusion without any of 
the exclusion factors were registered during their routine 

ophthalmology check-ups. A retrospective analysis of the 
medical records and imaging data was conducted for patients 
who had received anti-VEGF IVT within the six months 
prior to the study. To be included in the study, participants 
of either gender had to be over 51 years old, exhibit active 
subfoveal CNV due to nAMD in the eye under investigation, 
with a BCVA LogMAR between + 0.1 and + 1.3. In cases 
where both eyes qualified, the one with poorer visual acu-
ity, or if equal, with clearer lens, less subfoveal scarring, or 
less geographic atrophy was chosen, following provision of 
informed consent. Exclusion criteria encompassed any form 
of CNV not associated with nAMD, subretinal hemorrhage 
necessitating surgical intervention besides anti-VEGF IVT, 
any counterindications for ongoing intravitreal therapy, or 
any potential conflicts of interest related to the study staff. 
During recruitment, participants were sorted into two strat-
ification arms based on multiple functional and morpho-
logical parameters: The chronically active CNV (CAC) arm 
consists of 25 patients whose CNV did not reach a quiescent 
state under therapy. Specifically, this refers to signs of CNV 
activity in multimodal imaging under anti-VEGF IVT within 
intervals of 6 weeks or less. In contrast, there are 21 patients 
who exhibit a quiescent CNV status (effectively controlled 
CNV = ECC) during extended therapy intervals of 10 weeks 
or more.

Clinical examination and meta‑feature logging

The ETDRS protocol was utilized to assess the visual func-
tion in both the study and fellow eyes. Comprehensive oph-
thalmologic evaluations were conducted on all subjects, 
which included dilated fundus examinations. Imaging, 
encompassing Fundus Autofluorescence (FAF), Optical 
Coherence Tomography (OCT), Fluorescein Angiogra-
phy (FA, all with Spectralis equipment), and OCT Angi-
ography (ZEISS Angioplex), was performed by seasoned 
technicians adhering to standardized methods to maintain 
uniformity and superior image quality. For the annotation 
of meta-features including demographic (age, gender) and 
general health details (incl. medication regimens), data were 
meticulously collected from electronic health records and by 
anamnestic enquiry. The research team promptly entered all 
study data into the clinical software system.

Sample collection and mass spectrometry analysis

Due to the detailed nature of this method, we included Sup-
plemental Material 1.

Statistical approach and data analysis

Due to the detailed nature of this method, we included Sup-
plemental Material 1.
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Results

Study population and clinical phenotypes

In our study, we stratified 46 nAMD patients into two 
cohorts based on the level of choroidal neovasculariza-
tion (CNV) activity while they were receiving anti-VEGF 

intravitreal therapy (IVT, Methods, Fig. 1a). As previ-
ously reported, this stratification resulted in two groups: 
one characterized by chronically active CNV (CAC, 25 
patients) and the other by effectively controlled CNV 
(ECC, 21 patients) [8, 9]. In addition to blood sam-
pling, patients underwent thorough clinical and anam-
nestic examinations. As expected and also recently 
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Fig. 1  Iterative Random Forests uncovering interactions between 
peripheral blood xenobiotics and distinct clinical phenotypes in 
nAMD. a. Scientific Approach Overview: Peripheral blood samples 
were collected from a stratified group of 46 nAMD patients under-
going anti-VEGF IVT, and underwent LC–MS/MS mass spectrom-
etry. Xenobiotic molecular features were selected for further analysis. 
iRF Classifier models, with 20 iterations and 500 trees each, utilized 
molecular features as inputs against defined clinical phenotypes as 
the output. Feature-weights (mean decrease of Gini coefficient) were 
used for molecular candidate selection. b. Feature-Weight Dynamics 
Across Iterations: The graph displays the count of non-zero feature-
weights as a function of the number of iterations for four selected 
clinical phenotypes. A plateau in numbers is evident after 15–20 
iterations, indicating stability in feature-weight counts. c. Model Per-
formance Over Iterations: This component compares the model accu-
racy, measured by AUROC, across iterations relative to the baseline 

AUROC at the first iteration. The accuracy for identifying the pres-
ence of subretinal fluid shows no significant enhancement with addi-
tional iterations. d. Intersection of Influential Molecules: a Venn dia-
gram presents the number of molecules with non-zero feature weights 
in the classification model after 20 iterations, with color-coding cor-
responding to the clinical phenotypes detailed in parts b and c. e. 
Phenotype-Specific Feature Weights Visualization: This segment 
graphically represents feature weights for the three phenotypes where 
iterative modeling marked a considerable improvement. Each pheno-
type is normalized to the highest value per model, such as Saccharin 
for CNV activity. Key molecules are annotated within the figure. f. 
Comprehensive Feature Analysis for Best-Performing Model: The 
figure illustrates all non-zero feature weights for the top-performing 
model concerning CNV activity. It quantifies variable importance 
using the mean decrease in the Gini coefficient, with all molecules 
labeled for reference
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reported, the CAC and ECC patient groups significantly 
differed in multiple clinical features, e.g. in central 
retinal thickness (CRT, CAC: 328.9 µm ± 74.3 µm vs. 
ECC: 274.8 µm ± 45.7 µm, mean ± standard deviation, 
p = 0.0025), the frequency of anti-VEGF IVT (CAC: 
4.32 weeks, w. ± 0.61 w. vs. 12.24 w. ± 3.1 w.; stratification 
criterion; p < 0.0001), and presence of subretinal hyper-
reflective material (SHRM, CAC: presence in 21/25 = 84% 
vs ECC: 5/21 = 23.8%, p < 0.0001). Presence of subretinal 
fluid (SRF, CAC: 17/25 = 68% vs ECC: 12/21 = 57.1%, 
p = 0.056) and intraretinal cysts (IRC; CAC: 13/25 = 52% 
vs ECC: 9/21 = 42.9%, p = 0.29) showed a tendency, albeit 
not being statistically significant. Furthermore, and as 
expected, presence of SHRM and IRC (18 patients posi-
tive for both, 14 negative for both, and only 5 patients with 
IRC but without SHRM, and 9 with SHRM but no IRC, 
p = 0.004) were not statistically independent.

Iterative random forest classifier as a multivariate 
alternative approach for candidate molecule 
detection

The patients' blood was subjected to LC–MS/MS mass 
spectrometry for metabolomic analysis, which resulted 
in the detection of 899 distinct metabolites. From these, 
we selected 156 molecules identified as xenobiotics. For 
statistical analysis, we utilized the multivariate iterative 
Random Forests (iRF) approach with the molecular data 
as input and selected clinical phenotypes (CNV activ-
ity, SHRM, SRF, and IRC, one model for each of these 
phenotype dimensions) as binary response variables (see 
Methods section for details). In brief: We employed iRF 
similarly as previously described [7], with 500 trees per 
Random Forest (RF) and 20 iterations, and a 50:50 data 
split for training and testing (Fig. 1a). The importance of 
individual metabolites (weights) for decision-making was 
measured by the mean decrease in the Gini coefficient. 
This parameter starts with equal importance for all metab-
olites (before iteration 1) and is then iteratively adjusted. It 
is noteworthy that after just a few iterations, many metab-
olites drop to zero weights across all four models. Fur-
thermore, the number of non-zero feature weights for all 
models stabilizes at a constant after approximately 15–20 
iterations: 21 metabolite features for IVT frequency, 28 for 
IRC, 22 for SHRM, and 19 for SRF (Fig. 1b, d). Addition-
ally, the accuracy of the models (measured by the Area 
Under the Receiver Operating Characteristic, AUROC of 
the classifiers) remains at a level that is not very stable 
(due to the small dataset) but does not improve further 
(Fig. 1c). Based on these results from Fig. 1b and c, we 
opted for 20 iterations but trained the algorithm for up to 
200 iterations to exclude possible improvements with more 
iterations (not shown). Moreover, the classification model 

for SRF never showed improvement through the exclusion 
of individual molecular features, leading us to exclude the 
SRF model from further analyses in this iRF setting.

An overview of all non-null features for all three rel-
evant models is shown as Suppl. Table 2. As we aim to 
capture various dimensions of the disease, we decided to 
focus particularly on candidate molecules that are crucial 
for different dimensions of the condition. In total, we iden-
tified 2 molecules that are decisive for all three dimensions 
(CNV activity, IRC, and SHRM): Perfluorooctanesulfonate 
(PFOS) and Ethyl β-glucopyranoside (Fig. 1d, e). Four 
molecules are important for the classifier for IRC and CNV 
activity, six are important for SHRM and CNV activity, 
and six for IRC and SHRM (Fig. 1e). The best classifier 
model is for CNV activity (Fig. 1c). For this, we have 
displayed all crucial molecules in order of importance 
(Fig. 1f).

Stratification of metabolites by compound class 
and their clinical correlations

We also categorized the 156 molecules based on their struc-
ture and occurrence into six compound classes. As antici-
pated, the majority of molecules were attributable to food 
metabolism (49 distinct molecules, 31.4%). Also expected in 
an elderly population was a frequent presence of molecules 
associated with drug metabolism (38, 24.4%). Following 
these were molecules linked to benzoate metabolism (29, 
18.6%), chemical molecules (23, 14.7%), xanthine metab-
olism (15, 9.6%), and tobacco use (2, 1.3%). Molecules 
associated with drugs can be further divided into eight sub-
groups, with analgesics/anesthetics being the most common 
(17/38, 44.7%, Fig. 2a).

Upon closer examination of how frequently each mole-
cule occurs among patients, it is noticeable, with few excep-
tions, that metabolites of drugs are found in the blood of 
only a few rather than many patients—this is in significant 
contrast to all other compound classes, except for tobacco, 
which was also found in fewer than 10 patients (Fig. 2b). 
Similarly, normalized measurement values for drug-associ-
ated metabolites are significantly lower compared to those 
of other compound classes (Fig. 2c).

We then addressed the question of whether individual 
compound classes are generally associated with certain phe-
notypes. The only statistically significant correlation was 
found for drug-associated metabolites, which, on average, 
were statistically higher in patients with SRF (Fig. 2d, e). 
Interestingly, this correlation pertains only to the level of 
measurement values (Fig. 2d, e), not to the number of dif-
ferent drug-associated metabolites (Fig. 2f) or the number 
of prescribed oral drugs (Fig. 2g). A further breakdown of 
these metabolites reveals that topical agents are associated 
with increased SRF in AMD. For anti-VEGF, SHRM, and 
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IRC, we were unable to demonstrate any significant correla-
tions in this analysis (not shown).

Discussion

To the best of our knowledge, this is the first study to explore 
xenobiotics in the context of AMD. We report three core 
findings: 1. We demonstrate that AI driven, multivariate 
methods like iRF can be valuable in analyzing especially 
data-sparse datasets. 2. We identify new molecules that may 
be associated with the disease. 3. We show that a general 
predominance of a compound metabolite class is not associ-
ated with a generally better or worse phenotype (except for 
drug metabolites and SRF).

We utilize the approach of iRF, which confers several 
notable advantages in our context. iRFs adeptly handle mul-
tivariate data and mitigate the risk of overfitting, a criti-
cal consideration in datasets with high feature-to-sample 
ratios. They excel in feature selection even within sparse 
data landscapes, through an iterative process that progres-
sively refines the significance of each variable according 
to its contribution to model accuracy. Thereby, iRFs con-
struct numerous decision trees during training and output 
the mode of the classes for classification of the individual 
trees. Diverging from standard random forests, iRFs apply 
iterations to progressively concentrate on the most informa-
tive features, eliminate those that add noise or are redundant 
and prevent from wrong conclusions from outliers [7]. In our 
scenario, this iterative feature refinement enables a focus on 
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Fig. 2  Grouped Analysis of Xenobiotic Molecules Elucidates Their 
Association with Subretinal Fluid in Neovascular AMD a. Categori-
zation of Xenobiotic Molecules: We classified 156 xenobiotic mol-
ecules into six distinct compound classes. Of these, 38 molecules 
were related to drug metabolism and were further subdivided into 
eight specific drug families. The color-coding in part (a) corresponds 
to the entire figure. b. Detection Spread Across Compound Classes: 
This section illustrates the variance in detection frequencies of the 
six compound classes across the cohort. Statistical significance 
was assessed between the ‘Drug’ class and all other classes, except 
'Tobacco' due to its small sample size (only two samples). c. Normal-
ized Detection Levels and Patient Counts: The graph plots the nor-
malized levels of detected metabolites against the number of patients 
in whom each feature was detected. d. Volcano Plot for Compound 

Class Association with subretinal fluid (SRF) presence: A volcano 
plot showcases whether the mean detection levels of xenobiotic com-
pound classes feature on SRF detection. e.-g. Comparative Analysis 
between patients with and without presence of SRF: Mean detection 
levels of drug metabolites (e), count of distinct drug metabolites (f), 
number of prescribed oral drugs (g) were compared between the two 
patient groups. h. Volcano Plot for Drug Subclass Association with 
SRF Presence: A second volcano plot, similar in design to (d), evalu-
ates the association of drug sub-classes on the presence of SRF in 
patients. For parts (d) to (h), the Mann–Whitney U-test was applied 
to determine statistical significance, with a p-value threshold of less 
than 0.05. The analysis also included the Benjamini–Hochberg proce-
dure for FDR correction
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metabolites that exhibit consistent importance across itera-
tions, thereby identifying potential biomarkers or therapeutic 
targets with higher fidelity. Adding to this, such an iterative 
approach aligns more closely with biological understanding, 
particularly in the context of angiogenesis in AMD, where 
numerous molecules interact [1, 2]. iRFs can detect these 
complex interactions, unlike univariate canonical analyses, 
which often overlook the interplay between multiple fac-
tors. This makes iRFs not only statistically robust but also 
biologically more intuitive, as they consider the multifacto-
rial nature of biological processes like the growth of blood 
vessels, thereby offering insights that are both scientifically 
relevant and biologically plausible.

The most significant result highlights two molecules 
of importance across all three models: PFOS and Ethyl 
β-glucopyranoside (Fig. 1d, e). PFOS and similar metabo-
lites have already been associated with the occurrence of ret-
inal diseases and specifically with AMD in the past [10–13]. 
Studies indicate that PFOS not only induces oxidative stress 
but also triggers inflammatory reactions — both processes 
significantly involved in AMD [1]. PFOS was primarily used 
to impregnate materials such as textiles, carpets, and paper 
to make them resistant to grease, oil, and water. Addition-
ally, it has been used in chrome plating, analog photography, 
older fire-fighting foams, and hydraulic fluids for the aero-
space industry. Despite being banned and added as a pollut-
ant to Annex B of the Stockholm Convention in 2009, PFOS 
continues to be emitted into the environment, mainly from 
metal processing (chrome plating) and fire-fighting foams 
[14, 15]. It is surprising and concerning that we have identi-
fied PFOS as significant for various phenotypes.

Ethyl β-glucopyranoside, as the name implies, belongs to 
the group of glucosides, or more broadly, glycosides. This 
is highly intriguing, as glycosides also have strong asso-
ciations with AMD and retinal health as shown in numer-
ous studies [16–21], with cardiac glycosides (e.g. Digoxin) 
being a prominent example known for retinotoxicity [22]. 
On the contrary, glucosides could also have a protective 
character in retinal disease, as suggested by other studies 
[20]. Potential mechanisms include: attenuation of oxidative 
stress, disruption of cellular signaling pathways essential for 
retinal health, leading to cellular dysfunction and degen-
eration, as well as interference with the normal metabolic 
processes in the retina, contributing to an accumulation of 
toxic byproducts that exacerbate retinal damage [23–25]. 
The specific implications for these two molecules remain 
unclear, but we consider the finding of them confirmatory 
for our model, together with the identification of additional 
molecules that have also already been associated with cer-
tain AMD and retina phenotypes (incl. Saccharin [26–28], 
Quinate [29, 30], Paraxanthine [31], 3-Acetylphenol Sulfate 
[21], Ferulic Acid 4-Sulfate [32], Ethyl α-glucopyranoside, 
and Erythritol [26–28], Fig. 1f). Moreover, it is important 

not to be misled by smaller weights in our iRF classifier, as 
they can tip the scales in determining the ultimate classifier 
outcome (Fig. 1f).

In our second analytical approach (Fig. 2), we catego-
rized the individual xenobiotic molecules into various com-
pound classes and examined their correlation with clinical 
phenotypes. An initial interesting finding is that only two 
molecules associated with tobacco consumption appear 
here—while smoking is generally understood as an inde-
pendent risk factor for AMD [1] (Fig. 2a-b). Additionally, 
the heterogeneous occurrence of drug-associated molecules 
(both in number and generally lower measurement values) 
is noteworthy (Fig. 2b-c). We consider such investigations 
to be very important, especially in an old and aging cohort 
with polymorbidity and polypharmacy like in AMD patients. 
Interpreting the result where higher measurement values of 
drug-associated metabolites are found in patients with SRF, 
but not a greater variety of such metabolites, and also con-
sidering that these patients do not report a higher number of 
prescribed oral medications, is currently challenging for us 
(Fig. 2e-g). This is particularly perplexing given that the role 
of SRF in nAMD has not yet been conclusively established 
[1, 2, 33]. We speculate that the elevated levels of certain 
drug-associated metabolites (e.g. topical agent metabolites) 
in patients with SRF could be indicative of a localized tissue 
response to therapy or a specific metabolic pathway altera-
tion associated with the disease's progression. However, this 
remains a research avenue that requires further exploration.

Nevertheless, it should be noted that the data presented 
here are preliminary. We caution against drawing clinical 
conclusions or changing lifestyle behaviors based on these 
early findings due to several limitations: our dataset has 
very low data density with a small sample size compared 
to a larger number of metabolomic dimensions. Given this 
context, it is questionable whether our statistical approach 
is exceptionally robust in this setting, which is why we are 
pursuing external validation (discussed below). Further-
more, iRF, like many machine learning models, are 'black 
boxes' which means we do not fully understand how the 
molecules influence the classifier’s decisions. What we also 
do not know is how well the algorithm performs compared 
to other algorithms, especially in a real-world setting. At 
this point, the study lacks external validation or molecular 
biological investigation in animal models – which we think 
will be critical for clinical use in the future. As an additional 
limitation, particularly regarding reproducibility, it must be 
mentioned that although we made every effort to ensure 
consistent measurements (such as blood collection at the 
same time of day and employing robust statistical methods), 
we cannot entirely prevent variation between participants 
and timings. Given that the metabolites in question have 
been scarcely or not at all studied in humans, we cannot find 
data on their half-lives or similar parameters. This makes it 



 Graefe's Archive for Clinical and Experimental Ophthalmology

difficult for us to confidently state whether the results can be 
reliably reproduced. Other limitations include the potential 
selection bias, and unanalyzed confounding factors, which 
could misrepresent the true effects of the molecules, and 
the absence of longitudinal analysis further constrains the 
implications of our study.

In summary, our study leverages the power of AI through 
multivariate iRF models to uncover key xenobiotic mole-
cules potentially associated with nAMD. The application 
of iRF models has allowed us to navigate a complex multi-
dimensional dataset to a degree unattainable with conven-
tional statistical methods. This advanced AI analysis has 
illuminated molecular candidates that are potentially asso-
ciated with AMD. Investigation of compound classes has 
shown that no single class exerts a solely positive or negative 
impact, although drug metabolites appear to influence the 
presence of SRF. These insights, while still in the prelimi-
nary stages, significantly enhance our understanding of the 
intricate metabolomic interactions present in AMD and set 
a foundation for future studies to validate and further clarify 
these associations.
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