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Abstract
Keratoconus is a blinding eye disease that affects activities of daily living; therefore, early diagnosis is crucial. Great 
efforts have been made toward an early diagnosis of keratoconus. Recent studies have shown that corneal biomechanics 
is associated with the occurrence and progression of keratoconus. Hence, detecting changes in corneal biomechanics 
may provide a novel strategy for early diagnosis. However, an early keratoconus diagnosis remains challenging due to 
the subtle and localized nature of its lesions. Artificial intelligence has been used to help address this problem. Herein, 
we reviewed the literature regarding three aspects of keratoconus (keratoconus, early keratoconus, and keratoconus 
grading) based on corneal biomechanical properties using artificial intelligence. Furthermore, we summarized the 
current research progress, limitations, and possible prospects.
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Introduction

Corneal biomechanical properties participate in the mainte-
nance of corneal morphology and are closely related to the 
occurrence and progression of keratoconus [1–3]. Keratoco-
nus is an irreversible ectatic eye disease that predominantly 
occurs in adolescents and influences their quality of life [4]. 
The biomechanical properties of keratoconus are weaker 
than those of normal eyes [5, 6]. An increase in proteolytic 
enzyme levels and proteolytic enzyme activity enhancement 
lead to a loss of keratocytes, dissolution of collagen fibrils, 
and disruption of the orthogonal arrangement of collagen 
fibrils, which explain the pathological weakening of the bio-
mechanical properties of keratoconus [7–9]. Typical kerato-
conus demonstrates Munson’s sign, Vogt’s striae, Fleischer’s 
ring, and other clinical signs, and their morphologies change 
considerably; therefore, keratoconus could accurately be 
diagnosed via slit lamp examination of clinical manifesta-
tions and corneal topographical findings [10].

However, early keratoconus diagnosis is challenging due 
to the subtle and localized nature of the lesions, and thus 
early keratoconus is difficult to detect based only on corneal 
imaging [11–14]. Recent studies have shown that proteo-
glycans denaturation around collagen fibrils in keratoconus 
leads to fragmentation and degeneration of collagen fibrils, 
which attenuate local corneal biomechanics, thereby leading 
to morphological changes such as corneal stroma thinning 
and increased keratometry [15–19]. Therefore, the detection 
of changes in corneal biomechanical properties will likely 
solve the challenge of early diagnosis [20], although this has 
not been clinically confirmed [21, 22].

Artificial intelligence (AI) has been recently applied to 
solve the problem of early keratoconus diagnosis since an in-
depth analysis of several relevant parameters can be achieved 
with known links when the logical associations between 
influencing factors and outcomes are unknown or complex. 
The application of machine learning (ML), a subfield of AI, 
in keratoconus management has recently become widespread 
[23–25]. ML can be divided into supervised and unsuper-
vised learning. Supervised learning uses labeled data to 
train the model to predict the output results of unlabeled 
data. Unsupervised learning can solve problems in pattern 
recognition and discover previously unknown disease fea-
tures or subtypes without using labeled data for training. 
Presently, the common ML methods used in studies include 
random forest (RF), neural networks, logistic regression, 
support vector machine (SVM), and discriminant analysis 
[26]. Combining corneal biomechanical properties with ML 
is expected to improve the accuracy of early keratoconus 
diagnosis. Therefore, we review the progress of keratoco-
nus diagnosis and research based on corneal biomechanical 
properties using AI.

Materials and methods

We searched PubMed, Embase, and Web of Science 
databases. The search keywords used included “machine 
learning,” “deep learning,” “artificial intelligence,” “cor-
neal biomechanics,” “corneal biomechanical,” “corneal 
mechanical,” “corneal ectasia,” “keratoconus,” “early 
keratoconus,” “subclinical keratoconus,” “forme fruste 
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keratoconus,” “keratoconus suspect,” “keratectasia,” 
and “asymmetric ectasia.” Before citation, articles were 
screened for relevance and significance (Fig. 1). A total of 
19 articles published from June 2013 to September 2022 
were included in this review. Finally, the current applica-
tion of AI in the field of keratoconus from the perspective 
of corneal biomechanics was summarized and reviewed 
from three aspects: diagnosis of keratoconus, diagnostic 
attempts for early keratoconus, and grading keratoconus; 
the details regarding each related study are presented in 
Table 1.

Results

Keratoconus diagnosis with ML

The ocular response analyzer (ORA; Reichert Ophthal-
mic Instruments Inc. Buffalo, NY, USA) and the corneal 
visualization Scheimpflug technology (Corvis ST; Oculus, 
Wetzlar, Germany) are currently used to measure the clini-
cal in vivo corneal biomechanical properties. The applica-
tion of the ORA and Corvis ST has promoted the current 
understanding of in vivo corneal biomechanics [27].

Keratoconus diagnosis with ML using ORA

The ORA uses symmetrically reduced airflow to compress 
the corneal center region by 3–6 mm. When the first appla-
nation is achieved during the corneal applanation process, 
the air pump of the air pulse closes, and the pressure applied 
to the cornea decreases inversely and symmetrically. As the 
pressure reduces, the cornea undergoes the highest depres-
sion, and the second applanation returns the cornea to its 
natural state. The corneal hysteresis (CH), corneal resistance 
factor (CRF), and 41 waveform parameters are obtained to 
characterize corneal biomechanics [28, 29].

The CH and CRF are two widely used clinical param-
eters. The CH indicates the pressure difference between the 
two corneal applanation processes; it represents the cornea’s 
viscoelastic properties and the corneal tissue’s ability to 
absorb and consume energy. The CRF is calculated using 
the ORA software and describes the corneal resistance to 
external forces. The CH and CRF of keratoconus are lower 
than those of normal eyes [30], but the distribution of CH 
and CRF values in keratoconus and normal eyes overlap; 
therefore, the accuracy of a single parameter in diagnosing 
keratoconus is unsatisfactory [31, 32]. Labiris et al. [33] 
found that the keratoconus match index calculated using 

Fig. 1  Filtering steps for study 
inclusion in this review
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seven ORA waveform parameters via the neural network 
had a high keratoconus diagnostic accuracy in 223 eyes 
(accuracy = 97.7%, sensitivity = 91.18%, and specificity 
= 94.34%), indicating that ML can effectively improve the 
detection of keratoconus.

Keratoconus diagnosis with ML using Corvis ST

Corvis ST utilizes an ultra-high-speed Scheimpflug camera 
to record corneal deformation along the horizontal meridian 
at 8 mm. After the air-puff, the camera device automatically 
identifies the corneal deformation and captures 140 images 
within 31 ms [34]. The cornea undergoes three states (first 
applanation, highest concavity, and second applanation) dur-
ing deformation to produce a corneal waveform, a dynamic 
deformation video, and dynamic response parameters to 
characterize corneal biomechanics [35].

Vinciguerra et al. [21] used stepwise logistic regression 
to combine dynamic response parameters with Ambrósio 
Relational Thickness to the horizontal profile of 329 eyes to 
introduce the Corvis Biomechanical Index, which accurately 
distinguished between normal eyes and keratoconus in the 
external validation set (329 eyes); the accuracy, sensitivity, 
and specificity were 98.8%, 100%, and 98.4%, respectively. 
Stepwise logistic regression is suitable in cases with many 
independent variables that do not greatly affect the depend-
ent variable and in interactions between the independent 
variables. In the regression process, independent variables 
are screened, and a multiple regression model with a better 
prediction effect is established.

Ambrósio et al. [36] analyzed corneal morphological 
parameters from Pentacam (Oculus, Wetzlar, Germany) and 
biomechanical parameters from Corvis ST in 850 eyes using 
three ML methods, including logistic regression, RF, and 
SVM. Moreover, they combined the Corvis Biomechani-
cal Index with the Belin/Ambrósio Deviation Index. They 
used the RF method to train the model, which discriminated 
keratoconus from normal eyes with the highest accuracy. 
Validation was performed using the leave-one-out cross-
validation method, and the Tomographic and Biomechani-
cal Index (TBI) was subsequently obtained. When the TBI 
cut-off value was 0.45, the area under the receiver-operating 
characteristic curve (AUROC) reached 0.996, resulting in an 
excellent diagnostic accuracy for keratoconus (accuracy = 
97.5%, sensitivity = 96.2%, and specificity = 98.8%).

Tan et al. [37] segmented 276 corneal dynamic deforma-
tion videos and calculated four new biomechanical param-
eters, namely the time of the first applanation, deformation 
amplitude at the highest concavity, central corneal thick-
ness, and radius at the highest concavity. Further, they used 
a neural network to train the model, which achieved an accu-
racy, sensitivity, and specificity of 98.7%, 97.4%, and 100%, 

respectively, in discriminating keratoconus from normal 
eyes in the external validation set (78 eyes).

These studies showed significant outcomes regarding the 
application of ML incorporated with corneal biomechanics 
to improve the accuracy of keratoconus diagnosis.

Early keratoconus diagnosis with ML

Keratoconus diagnosis is clinically feasible, and the develop-
ment of corneal tomography and topography has improved 
the screening ability for keratoconus [38]. However, kera-
toconus is a progressive disease. Most cases are clinically 
diagnosed at moderate or advanced stages, leading to irre-
versible vision loss; therefore, it is crucial to diagnose kera-
toconus as early as possible to allow for early intervention 
and enhance patient quality of life.

There are no uniform criteria for the definition of early 
keratoconus, which is generally termed as subclinical kerato-
conus (SKC), forme fruste keratoconus (FFKC), preclinical 
keratoconus, and keratoconus suspect [10, 39]. Thus, in this 
review, the abovementioned terms are collectively referred 
to as early keratoconus to ensure terminology consistency. 
Table 2 presents the grouping criteria of early keratoconus 
used in previous studies. So far, research has focused on 
the contralateral eye with unilateral keratoconus as an early 
keratoconus model. The contralateral eye has a higher risk 
for occult keratoconus, as the global consensus states that 
keratoconus is a bilateral asymmetric disease [40]. Hence, 
closely following changes in the contralateral eye may have 
significant implications for the diagnosis of early kerato-
conus. Corneal biomechanical properties may change in 
keratoconus when morphological changes are not evident 
[41]. Therefore, an ML-assisted evaluation of corneal bio-
mechanical properties can potentially address the challenges 
of early keratoconus diagnosis.

Early keratoconus diagnosis with ML using ORA

Ventura et al. [42] used a radial basis function neural net-
work to analyze 41 waveform parameters that were measured 
using the ORA in 204 eyes, which greatly improved the pre-
dictive value of mild keratoconus (Amsler–Krumeich grade 
I [43] and AUROC = 0.964). A radial basis function neural 
network is a feedforward neural network with excellent per-
formance, strong nonlinear fitting ability, and convenient-to-
implement learning rules. These are applicable in situations 
where many parameters with inter-parameter interactions 
need to be analyzed.

Luz et al. [44] used a stepwise logistic regression that 
combined the waveform parameters of the ORA and the 
tomographic parameters of Pentacam in 97 eyes; the model 
diagnosed FFKC with a high diagnostic performance 
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(AUROC = 0.953, sensitivity = 85.71%, and specificity = 
98.68%).

Zhang et al. [45] used stepwise logistic regression to train 
a model using parameters measured by ORA, Corvis ST, and 
Pentacam in 110 eyes, achieving 100% sensitivity and 84% 
specificity for FFKC diagnosis. Logistic regression models 
are suitable for binary classification as they are highly effi-
cient, do not require great computational efforts, are easily 
understood, and do not require scaling input features.

Atalay et al. [46] used discriminant function analysis 
to learn the waveform parameters from ORA and tomo-
graphic parameters from Pentacam in 248 eyes; the model 
demonstrated a considerable SKC diagnostic performance 

(AUROC = 0.948, sensitivity = 87.1%, and specificity = 
91.4%).

Early keratoconus diagnosis with ML using Corvis ST

Pena–Garcia et al. [47] analyzed the Corvis ST parameters 
of 212 eyes with the aid of discriminant analysis to generate 
ML model, which has a sensitivity and specificity of 85.7% 
and 82.07% for detecting SKC.

Francis et al. [48, 49] established a composite viscoe-
lastic model by analyzing the waveform deformation and 
deflection amplitude in 155 eyes of Corvis ST. They fitted 
the model’s parameters of 458 eyes with multiple logistic 

Table 2  Definition of early keratoconus in each study

MKC, mild keratoconus; FFKC, forme fruste keratoconus; SKC, subclinical keratoconus; KCS, keratoconus suspect; EKC, early keratoconus; 
CDVA, corrected distance visual acuity; KISA%, keratoconus percentage index; KC, keratoconus; MCT, minimum corneal thickness; TKC, topo-
graphic keratoconus classification; BED, back elevation difference

First author Year Group label Definition of early keratoconus

Ventura et al. [42] 2013 MKC Krumeich severity classification I
Luz et al. [44] 2016 FFKC Normal Placido-disk corneal topographies (KISA<60%) with keratoconus in the contralateral eye.
Pena–Garcia et al. [47] 2016 SKC No clinical signs of keratoconus (Vogt's striae, Fleischer rings, or corneal scarring). Topography 

was normal with no asymmetric bowtie and no focal or inferior steepening pattern; however, they 
were contralateral eyes of clinically evident keratoconus in the fellow eye.

Francis et al. [48, 49] 2017 KCS One eye was affected with keratoconus, and the contralateral eye was tomographically normal on 
slit lamp evaluation and Scheimpflug tomography.

Karimi et al. [56] 2018 KCS Following a thorough eye examination using different devices by ophthalmologists, it was not 
determined whether the eye was normal or had keratoconus.

Atalay et al. [46] 2020 SKC 1) Normal topography, Pentacam topometric indices, and slit lamp examination findings; 2) normal 
or borderline Belin/Ambrósio Deviation index (< 3.0 SD), back (≤16 mm), and front (≤7 mm) 
elevation difference; and 3) keratoconus in the contralateral eye.

Shiga et al. [54] 2021 FFKC FFKC was determined when no corneal abnormalities were observed in the slit-lamp microscopy 
examination, corneal topography, and corneal tomography in the fellow eye of a patient with 
keratoconus.

Zhang et al. [45] 2021 FFKC The contralateral eye of a patient with keratoconus showed the following features: (1) a normal-
appearing cornea on slit lamp examination, retinoscopy, and ophthalmoscopy, (2) normal topog-
raphy with no asymmetric bowtie and no focal or inferior steepening pattern, (3) the level of TKC 
provided by Pentacam was normal, that is, it was ‘-’, and (4) the patient had no history of contact 
lens use, ocular surgery, or trauma.

Perez-Rueda et al. [53] 2021 SKC (1) Minor topographic keratoconus signs and suspicious topographic findings (mild asymmetric 
bowtie with or without a skewed axis); (2) mean K (mean curvature of keratometry) < 46.5 D; 
(3) MCT > 490 μm; (4) no slit lamp findings (no central thinning with Fleischer’s ring or Vogt’s 
striae); and (5) clinical keratoconus in the contralateral eye.

Tian et al. [50] 2021 FFKC An eye was diagnosed with FFKC if it was the contralateral eye of a patient with KC and showed 
the following features (1) a normal-appearing cornea on slit lamp examination, retinoscopy, and 
ophthalmoscopy; (2) normal topography with no asymmetric bowtie and no focal or inferior 
steepening pattern; (3) patient had no history of contact lens use, ocular surgery, or trauma.

Song et al. [52] 2022 SKC Clinical keratoconus in one eye and the contralateral eye: (1) normal slit lamp findings; (2) CDVA 
of 20/20 or better; (3) normal topographic aspect, a TKC index of 0, the central mean keratometry 
value < 47.2 D and I-S value < 1.40 D; and (4) BED < 12 μm.

Lu et al. [55] 2022 FFKC (1) the contralateral eye was diagnosed as having keratoconus (2) CDVA of 20/20 or better, (3) no 
keratoconus signs on slit lamp examination, (4) maximum keratometry (Kmax) less than 47.40 
D, (5) thinnest pachymetry of ≥480 μm obtained by Pentacam HR, and (6) “normal” topogra-
phy with the difference between the Kmax values in the inferior and superior areas at 3 mm (I-S 
value) < 1.40 D, no skewed asymmetric bowtie/inferior steep, and KISA% < 60.
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regression analysis. The accuracy, sensitivity, and specific-
ity of distinguishing keratoconus (including FFKC) from 
normal eyes in the validation set (264 eyes) reached approxi-
mately 100%.

Tian et al. [50] included 153 eyes of patients with FFKC, 
mild keratoconus (patients with topographical keratoconus 
classification system [TKC; Pentacam, Oculus] grades 1, 
1-2, and 2) [51], and normal thin corneas (thinnest corneal 
thickness < 500 μm) in their study. Corneal biomechanical 
parameters from Corvis ST and topographical parameters 
from Pentacam were used to build a model via a back propa-
gation neural network, and the overall accuracy of the ML 
model reached 91%. The back propagation neural network 
has the advantages of simplicity, rapidity, ease of program-
ming, and flexibility. Only the input parameters need adjust-
ment, and clinicians do not require skills in AI application; 
thus, it is suitable for clinical workers.

Song et al. [52] analyzed the tomographic parameters 
(Pentacam) and corneal biomechanical parameters (Corvis 
ST) of 194 eyes with SKC and normal eyes using Chi-square 
automatic interaction detection and classification and regres-
sion tree (CART) algorithms to generate models. These 
were internally validated using the ten-fold cross-validation 
method and externally validated in 66 eyes. In the valida-
tion set, the CART model discriminated SKC with 92.4%, 
90.3%, and 94.3% accuracy, sensitivity, and specificity, 
respectively. The CART analysis is a form of decision tree 
analysis that is commonly used in supervised learning and 
has the advantage of being easy to implement and compre-
hend. The CART algorithm is suitable for data classification 
in the clinic, and the applicable model has high accuracy.

Perez–Rueda et al. [53] trained the Pentacam and Cor-
vis ST parameters of 81 eyes using logistic regression. 
Their model calculated an SKC index with a sensitivity, 
specificity, and accuracy of 89.5%, 96.7%, and 94.9% for 
SKC diagnosis, respectively.

Shiga et al. [54] used logistic regression to train ante-
rior segment optical coherence tomography and Corvis 
ST parameters of 75 eyes. The sensitivity and specificity 
of the ML model to diagnose FFKC reached 91.3% and 
90.38%, respectively.

Lu et al. [55] used RF and neural networks to train the 
spectral domain optical coherence tomography and Cor-
vis ST parameters of 622 eyes. The accuracy, sensitivity, 
and specificity of RF models for FFKC diagnosis reached 
88.89%, 75%, and 94.74%, respectively.

Karimi et al. [56] used corneal biomechanical param-
eters from the Corvis ST of 80 eyes to build a finite element 
model to calculate the stress value. They trained the neu-
ral network model with stress values and corneal biome-
chanical parameters and achieved an accuracy of 91.20%, 
83.33%, and 80.35% in the validation set (155 eyes) for 

predicting keratoconus, keratoconus suspect, and normal 
eyes, respectively.

Although studies of early keratoconus from the per-
spective of corneal biomechanics using ML are rare, they 
improve the sensitivity, specificity, and accuracy of early 
keratoconus. Research has proven that ML has a certain 
degree of accuracy and development potential in early kera-
toconus diagnosis, although further research is required to 
strengthen these findings.

Grading keratoconus using ML

There are many staging criteria for keratoconus; neverthe-
less, none is uniform. Most of these criteria are based on 
corneal morphology, such as corneal thickness, anterior and 
posterior corneal surface curvatures, and cone location [10]. 
However, the management of keratoconus depends on dis-
ease severity and progression. Typically, patients with mild, 
moderate, and severe keratoconus are treated using frame 
glasses, contact lenses, and surgery (corneal collagen cross-
linking, keratoplasty, etc.), respectively [10, 57]. Patients can 
greatly benefit from an accurate diagnosis of keratoconus 
severity and a timely, corresponding intervention. From the 
perspective of corneal biomechanics, ML might be able to 
carry out keratoconus grading or auxiliary grading.

Herber et al. [58] classified 434 eyes into four groups 
(normal eyes as well as eyes with mild [TKC grade 1], mod-
erate [TKC grade 2], and severe keratoconus [TKC grade 3]) 
according to the TKC classification and developed a clas-
sification model based on corneal biomechanical parameters 
(Corvis ST) using linear discriminant analysis and RF algo-
rithms. The RF model was used to predict normal eyes as 
well as eyes with mild, moderate, and severe keratoconus 
with sensitivities and specificities of 91% and 94%, 80% and 
90%, 63% and 87%, and 72% and 95%, respectively, with 
an overall accuracy of 78%. RF, a classifier composed of 
multiple decision trees, has the advantages of fast training 
speed and strong randomness; moreover, it is not easy to 
overfit and is, therefore, suitable for analyzing large datasets.

Langenbucher et al. [59] classified 439 eyes into grades 
1–4 based on the TKC classification and incorporated 
corneal biomechanical parameters (Corvis ST) into 24 
supervised machine models for training; the SVM model 
exhibited the best performance with 65.1% overall correct 
classification. SVM, a kind of classifier with good robust-
ness and advantages such as a good classification effect, can 
reject many redundant samples and perform classification.

Recently, Flockerzi et al. [60, 61] combined the Corvis 
Biomechanical Index (Corvis ST) with the anterior radius of 
curvature, the posterior radius of curvature, and the thinnest 
corneal thickness in ABCD grading. Then, they used linear 
regression to derive CBiF, which corresponds to the ABCD 
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grading divided into five grades of severity ranging from E0 
to E4 [62], to perform auxiliary keratoconus grading from a 
biomechanical perspective.

Therefore, ML-assisted grading of keratoconus severity 
based on corneal biomechanics is still in the initial explora-
tory stage, whereas it is important and urgent to standardize 
the classification of keratoconus; hence, in-depth studies are 
required to enhance ML-assisted keratoconus classification.

Discussion: current limitations and future 
prospects

This article, which is the first to comprehensively review 
AI-based diagnosis and research progress for keratoconus 
in terms of corneal biomechanical properties, demonstrates 
the high accuracy of AI in keratoconus diagnosis and pro-
vides directions for early diagnosis and timely intervention. 
Overall, there is no optimal ML method, and ML should be 
used in suitable scenarios, such as logistic regression mod-
els are suitable for binary classification. Meanwhile, due 
to vast differences among datasets, ML methods, and early 
definitions of keratoconus in each study, individual studies 

are usually incomparable in nature, making the comparison 
of performances between individuals difficult and impre-
cise. Nevertheless, our review outlines that AI’s research 
potential using biomechanical properties in keratoconus is 
remarkable; hence, we summarized the current limitations 
and possible future research prospects.

Multi‑perspective combination

Current research in in vivo corneal biomechanics combined 
with ML is without a dynamic observation of keratoconus-
related changes from a histological perspective of kerato-
cytes or corneal collagen fibers. The corneal stroma and 
collagen fibers are the primary carriers of corneal biome-
chanics [63]. Therefore, the correlation between keratocyte 
density, keratocyte morphology, and collagen fiber-related 
corneal biomechanical properties should be investigated. 
For example, measuring keratocyte density and collagen 
fibers in the contralateral eye of unilateral KC with in vivo 
confocal microscopy [64] and making a longitudinal com-
parison with the in vivo biomechanical parameters. When 
corneal biomechanical parameters were found to change 
with alterations in keratocyte density or collagen fibers, 

Fig. 2  Oculus Pentacam topography of a patient with subclinical keratoconus, which is defined as early keratoconus in some literatures
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the biomechanical parameters may reflect actual corneal 
biomechanics. Meanwhile, demonstrating that corneal bio-
mechanics in keratoconus precede morphological changes, 
providing strong support for early screening for keratoconus 
and early bilateral diagnosis. We believe that a combination 
of multiple perspectives with the aid of ML could produce 
more remarkable results.

Detection of local biomechanical properties

Corneal biomechanical properties are relatively complex, 
including viscoelasticity, nonlinear elasticity, and anisotropy 
[3, 18, 65–67]. The in vivo biomechanical parameters pro-
vided by the current measurement devices are calculated 
from horizontal cross-sections of the cornea. Therefore, it 
remains controversial whether the device-measured param-
eters can accurately reflect corneal biomechanical proper-
ties [31, 68, 69]. Biomechanical parameters are measured 
at the center of the cornea, while the thinnest point of a 
keratoconus is often paracentral. These parameters may not 
reflect the biomechanical properties of the thinnest point of 
the keratoconus [70]. Future research should focus on an 
ML-assisted evaluation of detailed changes in biomechanical 

properties, which can capture local lesions [71]. Recently 
our team investigated the corneal deformation contours from 
a pixel-level data point of view and calculated the biome-
chanical parameters of corneal deformation according to 
the pixel points of corneal contours. The model trained by 
a feedforward neural network can effectively distinguish 
between normal eyes and keratoconus [37]. We consider that 
conducting multiple views on keratoconus from a detailed 
and subtle perspective could obtain more remarkable results.

Multi‑information sharing

The current studies on ML models lacked external vali-
dation or reported parameters with low accuracies after 
external validation. For instance, the TBI showed an 
approximately 28% decrease in sensitivity after external 
validation [72], which may be related to overfitting of the 
model and differences in participant baseline data (age, 
gender, corneal thickness, intraocular pressure, and eth-
nicity) [73–75]. Due to the difference in basic informa-
tion between studies, the ML models in each study are 
not comparable. Future studies should improve the perfor-
mance of the ML model and reduce the error caused by the 

Fig. 3  Oculus Pentacam topography of a patient with forme fruste keratoconus, which is defined as early keratoconus in some literatures
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abovementioned limitations. It is appealed to upload data 
to public databases for external validation while giving a 
comprehensive interpretation of the construction of the 
ML model in the study, verifying each other to improve 
the efficiency of ML. Recently, the new parameter TBIv2, 
trained using data from 25 international centers via the 
ML method, has a higher diagnostic ability for ectasia than 
TBI [76]. Furthermore, high-risk factors of keratoconus, 
such as rubbing the eyes, a history of allergy, and genetic 
predisposition [77], should be fully considered when train-
ing the model to improve its accuracy. Meanwhile, corneal 
morphology, biomechanics, and histopathology should be 
combined with ML, and a multi-platform universal model 
should be created to enhance diagnostic efficacy for early 
keratoconus.

Unified or standardized definition

The current clinical definitions of early keratoconus are quite 
confusing (Table 2) [78]. In some literature, SKC is defined as 
the presence of keratoconus in one eye and a certain degree of 
corneal topographical alterations or a high suspicion of kera-
toconus in the contralateral eye (Fig. 2). In contrast, FFKC is 
defined as the presence of keratoconus in one eye with nor-
mal corneal topography and slit lamp manifestations in the 
contralateral eye (Fig. 3). There is a discrepancy between the 
corneal biomechanical properties of FFKC and SKC [79]. If 
both definitions are classified as early keratoconus, then each 
ML model would produce different results with biases. Future 
studies should harmonize the classification of early keratoco-
nus and standardize keratoconus grading criteria to improve 
the ML model performance.

Long‑term follow‑up and longitudinal analysis

Most current studies are cross-sectional studies, and none of the 
ML models has a long-term follow-up of patients to demonstrate 
the accuracy of the unilateral KC contralateral eye as a model 
to research early keratoconus (Table 1). Although the current 
consensus considers that keratoconus is a bilateral asymmetric 
ectatic disease [40, 80, 81], no clinical evidence demonstrates 
that the contralateral eye of patients with unilateral keratoconus 
will eventually develop keratoconus [82]. Long-term regular 
follow-up with longitudinal analysis should be performed to 
validate the ability of ML models to predict disease progression.

Multi‑algorithm evaluation

ML is a “black box” that makes good predictions without 
providing the logic; therefore, multiple ML algorithms should 

be evaluated on the same dataset. The optimal algorithm was 
selected to minimize the algorithmic bias of ML. An effec-
tive and reasonable application of ML in clinical practice will 
eventually guide clinicians in the diagnosis, severity assess-
ment, and observation of treatment effects to create a com-
plete diagnostic and management system for keratoconus.

Conclusion

We conduct a comprehensive review of intelligent diag-
nosis and grading based on corneal biomechanical prop-
erties in the field of keratoconus. The recent advances in 
AI-based diagnosis, early detection, and grading of kera-
toconus are significant from the perspective of corneal 
biomechanics. Despite the challenges, the future is bright 
regarding keratoconus-related research, owing to in-depth 
studies of corneal biomechanics, increased integration of 
AI in clinical practice, the availability of improved experi-
mental equipment, and the global exchange and harmoni-
zation of databases.
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