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Abstract

Given the high incidence and prevalence of myopia, the current healthcare system is struggling to handle the task of myopia man-
agement, which is worsened by home quarantine during the ongoing COVID-19 pandemic. The utilization of artificial intelligence
(AI) in ophthalmology is thriving, yet not enough in myopia. Al can serve as a solution for the myopia pandemic, with application
potential in early identification, risk stratification, progression prediction, and timely intervention. The datasets used for developing
Al models are the foundation and determine the upper limit of performance. Data generated from clinical practice in managing
myopia can be categorized into clinical data and imaging data, and different AI methods can be used for analysis. In this review,
we comprehensively review the current application status of Al in myopia with an emphasis on data modalities used for develop-
ing Al models. We propose that establishing large public datasets with high quality, enhancing the model’s capability of handling
multimodal input, and exploring novel data modalities could be of great significance for the further application of Al for myopia.
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Key messages
What is known:

® Al is increasingly used in myopia management and a few reviews have summarized its application scenarios.

® No study has focused on the data modalities available in myopia and the appropriate AI methods for each type of
data

What is new:

® Al has been applied to most parts of the clinical practice of myopia management and is mainly built on three types
of data: clinical data, FP and UWF FP, OCT.

® Establishing large public datasets with high quality, improving the capability of handling multimodal input, and
exploring novel data modalities are potential future directions.
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Shanghai Jiao Tong University School of Medicine, (SE)< —0.5 diopters (D), is a substantial global health issue.
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The global prevalence of myopia is estimated to be 49.8%
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myopic [2-8], and a greater proportion of young individu-
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diopters) [9], which further results in a higher risk of devel-
oping visually impairing and blinding complications [10,
11]. Although the causes of this pandemic remain unknown,
strategies for coping with the myopia pandemic such as early
identification, regular follow-up, and timely intervention of
high-risk groups of myopia, are essential and are gaining
more social attention [12].

In recent years, artificial intelligence has been advancing
at an unprecedented rate, showing great potential for the
automated analysis of medical information and images. In
the field of ophthalmology, due to the wide application of
various imaging technologies in eye diseases, many studies
have applied Al methods to different ophthalmology dis-
eases, such as diabetic retinopathy (DR) [13-16], age-related
macular degeneration (AMD) [17, 18], cataract [19], dry eye
syndrome (DES) [20], and glaucoma [21-23]. For myopia,
research efforts are still relatively insufficient compared to
other subspecialties, even though Al has shown the potential
to address urgent needs in the field of myopia.

The clinical tasks of managing myopia include early
screening, risk stratification, progression prediction, timely
and individualized intervention, and ongoing management
[24, 25]. Relevant data modalities produced during the pro-
cess can be classified into two categories: clinical data and
imaging data. As a concept in Al, machine learning (ML) is
deeply entwined with statistics and is powerful for working
with numerical or categorical data [26]. Commonly used
ML techniques in myopia include support vector machine
(SVM), linear regression, random forest (RF), naive Bayes,
k-nearest neighbor (KNN), and extreme gradient boosting
(XGBoost) [27]. As a subset of ML, deep learning (DL) has
performed well in many image-based applications, such as
object recognition and semantic segmentation [28]. Con-
volutional neural networks (CNNs) are the foundation of
image-driven applications in myopia and the use of recur-
rent neural networks (RNNs5) is still at an early stage. The
abundant datasets with adjunctive Al analysis have led to
improvements in myopia management.

As an emerging research field, there are currently only
few reviews summarizing the application scenarios of Al in
myopia [29-32], and none has focused on the data modali-
ties available and the AI methods appropriate for each type
of data, which is insufficient as data continue to grow in
variety and quantity. Therefore, in this review, we examine
how AI methods have been applied in analyzing different
data modalities generated from clinical practice in myopia.

Method of literature review
We conducted a comprehensive literature review using two

databases (i.e., PubMed and IEEE Xplore) in August 2022
and March 2023. Our search terms included a combination
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of relevant keywords, such as “myopia” and “artificial intel-
ligence” and Boolean operators to ensure a comprehensive
search. We also reviewed the reference lists of relevant articles
to identify additional studies that may have been missed in our
initial search. Our review is focused on the use of Al in the risk
identification, screening, detection, classification, and treatment
of myopia. Accordingly, we considered research articles that
utilized Al for these purposes to be appropriate for inclusion in
our review and have incorporated relevant studies in this article.

Clinical practice of myopia management

When facing a patient with myopia in the clinic, clinician
considerations usually follow the sequence of risk factor
identification, the examination process, selection of treatment
strategies, and ongoing management [33], as shown in Fig. 1.

Myopia has been traditionally viewed as a consequence of
the sophisticated interaction of lifestyle, genetics, and environ-
mental factors. Therefore, detailed history taking is routinely
conducted at the very beginning, and risk factors for a given
individual are identified. Then, simple clinical tests such as
cycloplegic and/or noncycloplegic refraction, best-corrected
visual acuity, binocular vision and accommodative tests,
anterior eye health evaluation, and corneal topography are
taken for all visits. Measurement of axial length is optional,
and currently, there is no established standard for normal or
accelerated axial elongation. For patients who need further
examination, especially those with a high degree of refraction,
fundus imaging and examination are performed if indicated.
After all the examinations, for patients who may result in low
vision and blindness, selection of treatment strategies should
be considered and in an individual way. For those possessing
multiple risk factors, it will be helpful to predict the prognosis
and carry out regular follow-up.

During the whole process, a large amount of meaningful
data is generated. Since the key components of develop-
ing an Al application can be concluded as “MDT,” that is
“Model, Data and Target”[34, 35], the abundant datasets
make it possible for Al to assist in many tasks of myopia
management based on each type of data modality.

Artificial intelligence on clinical data
in myopia

At nearly all steps of the clinical practice mentioned above,
a considerable amount of clinical data is generated. These
data can include basic ophthalmologic information, such
as cycloplegic and noncycloplegic refraction, axial length
(AL), corneal curvature radius (CR), best-corrected visual
acuity (BCVA), and intraocular pressure (IOP); behav-
ioral and environmental data, such as eye habits, reading
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Fig. 1 The procedure of clinical practice on myopia. SVM support
vector machine, RF random forest, KNN k-nearest neighbor, mCNV
myopic choroidal neovascularization, TF tessellated fundus, MTM
myopic traction maculopathy, NPRLs notable peripheral retinal

distance, illumination conditions, and outdoor activity; and
personal information related to diseases, such as demograph-
ics, heredity, and psychological state. All of the basic oph-
thalmologic information is numerical data, which is a data
type expressed in quantitative numbers. For others, most of
them are categorical data, a collection of information that
is divided into groups and can take on numerical values,
although meaningless. In brief, all of these clinical data
can be expressed in a numeric form, which is different from
imaging data generated from fundus examination.

Considering the size, especially for a complex disease
such as myopia where numerous codependent factors are
involved in the causes, epidemiology, diagnostics, and pro-
gression, it is almost impossible to manually analyze the
clinical data. Therefore, ML methods, with the capability
of handling large amounts of data in a nonlinear way and
extracting large numbers of potential predictive parameters,
even when it outnumbers observations [36], are suitable for
applications in myopia (Table 1). Applications based on this
type of data mainly include prognosis prediction, refractive
surgery assistance, and remote monitoring.

Prognosis prediction
By constructing risk models with various variables in this

data modality, many studies have determined the capabil-
ity of ML methods for prognosis prediction. The random

lesions, FP fundus photography, OCT optic coherence tomography,
OCTA optic coherence tomography angiography, UWF ultra-wide-
field

forest model is shown to predict the onset of high myopia at
18 years of age as early as 8 years in advance at a clinically
acceptable accuracy by using long-term refraction data [37].
Comprehensively assessing the physiological elongation of
axial length, a key indicator for high myopia, by SVM and
GBRT, instead of mydriatic optometry can be used to pre-
dict myopia progression [40]. Additionally, the probability
produced by these models can help persuade patients for
further referral [39].

Refractive surgery

ML methods have been applied to eye parameters obtained
from advanced instruments to screen candidates for refrac-
tive surgery [46], detect corneal ectasia susceptibility [47],
and distinguish healthy corneas from diseased one [48, 49].
One of the earliest studies on Al applications in myopia
focused on using ML methods and data collected by the
GALILEI Dual Scheimpflug Analyzer to automate the detec-
tion of subclinical keratoconus, which is a contraindication
for refractive surgery [50]. Additionally, different ML mod-
els trained on medical records of myopia patients have been
reported to improve the accuracy of intraocular lens (IOLs)
power selection, which is crucial for reducing postoperative
refraction errors, especially in highly myopic eyes that have
undergone cataract surgery. The integration of Al into IOL
power calculation formulas, such as Hill-RBF3.0 and Kane,
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has shown to produce more accurate prediction results com-
pared to traditional formulas, including Barrett Universal II,
Haigis, and SRK/T [53, 54].

Monitoring

Environmental risk factors, such as working at a close
range (<20 cm) and excessive continuous close working
time (> 30 min), are considered to be factors relevant to the
development of myopia, and increasing effective outdoor
exposure time is an independent protective factor against
myopia. However, it is difficult to monitor them widely
in the public. Various smart wearable devices have been
developed for monitoring working distance or outdoor
exposure time, such as RangeLife [59], FitSight [60], and
Cloud clips [61]. Through the data collected by wearable
devices, an SVM model has been trained for distinguishing
indoor and outdoor locations [43]. It may further combine
with Internet apps, encouraging children to spend more
time outdoors [60].

Artificial intelligence on imaging data
in myopia

Fundus examination, which is recommended annually in
high myopes, provides a visualization of both the central
and peripheral retina under dilation and generates a consid-
erable amount of imaging data. Among the different imaging
methods, fundus photography (FP) and optical coherence
tomography (OCT) are most commonly used for the assess-
ment of myopia-related fundus changes.

By fundus examination, optic disc tilt and arc-shaped
spots can be found in simple high myopia. For the fundus of
pathologic myopia, a severe form of high myopia, posterior
staphyloma, myopic traction maculopathy (MTM), myopic
choroidal neovascularization (mCNV), dome-shape macula
(DSM), and high myopia-related optic neuropathy can be
seen, with a high specificity. These pathologic changes usu-
ally lead to irreversible damage to the retina, choroid, and
other tissues, which will seriously affect the visual function
of patients, but may present insidiously. Thus, timely imag-
ing as well as accurate interpretation with the help of Al is
important in detecting early complications and monitoring
progression [62].

Fundus photography-based applications
FP is routinely ordered in a wide variety of ophthalmic con-
ditions [63, 64]. It documents the retina, macula, optic nerve,

and main retinal blood vessels in our eyes by using a highly
specialized camera with high-powered lenses designed to
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visualize the pattern of the back of the eye [65]. It is often
referred to as retinal fundus photography (RFP), highlighting
the fact that an ophthalmologist’s primary goal is typically
to identify the appearance of the retina.

Based on this data modality, several studies have reported
the use of machine learning methods for myopia and associ-
ated complications, as shown in Table 2. Unlike prognosis
prediction, which is based on clinical data, the prediction
task based on FP images mainly aims at predicting refractive
error with ResNet [66], a famous CNN model used for fea-
ture extraction, which is surprising given that this was not a
task thought to be possible manually. This might be useful for
studying possible morphological changes in myopic eyes and
can also help in epidemiologic research of myopia from large
fundus image datasets where refraction labels are unavailable.
In addition, fundus images can be investigated by fully con-
volutional networks (FCNs), a model modified from CNN:ss,
and the semantic segmentation, or pixelwise classification, of
these myopia-related fundus changes is possible [67]. For dif-
ferent types of myopic maculopathy, CNN-based models have
been exploited to perform the classification task according to
the META-PM classification system [68, 69]. In addition to
private datasets, the utilization of a public dataset for training
UNet+ + to detect pathologic myopia and highlight the areas
of lesions is also possible [70].

Traditional fundus cameras only capture images at an
angle of 30 to 60° [78]. Therefore, combined with UWF
imaging techniques, a novel form of FP, namely UWF fun-
dus images (UWF-FP), enables ophthalmologists to observe
the peripheral retina without pupillary dilation [79], with up
to a 200° view of the ocular fundus in a single exposure. The
employment of artificial intelligence in this data modality
has achieved promising results, such as detecting glaucoma-
tous optic neuropathy [80], identifying lattice degeneration
[81], and even screening anemia [78]. For myopia, UWF-FP
enables ophthalmologists to screen notable peripheral retinal
lesions (NPRLs), the clinically significant peripheral retinal
lesions that are more frequently seen in myopic eyes than nor-
mal eyes [82]. If kept untreated, patients with NPRLs will
likely result in rhegmatogenous retinal detachment (RRD),
an important cause of visual loss [83]. Based on the periph-
eral retinal information provided by UWF-FP, a customized
CNN network [77] has achieved satisfying accuracy in auto-
matically identifying the NPRLs. Similar to FP, UWF-FP can
also be used by CNN-based models to predict refractive error,
with an MAE of predicted spherical equivalent (SE) equal to
1.1150D [71]. Although surprisingly, this accuracy is infe-
rior to the result of Varadarajan et al. [66], which is based
on FP. This might result from the difference in the quality
and quantity of the training and validation datasets. Further
comparison of the performance of Al applications between
FP and UWF-FP is needed.
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Optical coherence tomography-based applications

To analyze the fundus changes associated with myopia, OCT
is another widely used method. It is carried out for detecting
myopia-related vision-threatening conditions, such as retinal
detachment, pathological mCNV, macular hole, and retinoschi-
sis [84]. The characteristics of OCT enable ophthalmologists
to see a myriad of pathologies in the anterior and posterior
segments of myopic eyes, including the cornea, sclera, anterior
chamber, vitreous, choroid, retina, and optic nerve, which can
only be seen in enucleated eyes before [85].

Based on OCT, deep learning has been extensively studied
for the detection of AMD [86] and glaucoma [87]. Regard-
ing myopia and associated complications, 12 studies reported
the use of CNN-based models (Table 3). It can help ophthal-
mologists identify myopic maculopathy in patients with high
myopia [88] and the presence of pathologic myopia [89]. Four
vision-threatening conditions associated with myopia can also
be automatically detected with InceptionResNetV2 [84]. Since
OCT images contain layer information, which is its unique
characteristic, studies have demonstrated the potential for
segmenting and analyzing the choroidal sublayers by using
U-Net [90] and mask R-CNN [91], and further utilization of
this in myopia is expected. It can also be helpful in automatic
screening for high myopia [92] and estimating uncorrected
refractive error [93].

Apart from applications that produce actual outputs, there
are other ways to use Al methods in myopia. The ATN classifi-
cation and grading system is a widely applicable clinical diag-
nostic criterion for myopic maculopathy [102]. While atrophy
(A) can be judged based on FP only, determining the catego-
ries of traction (T) and neovascularization (N) requires FP
together with OCT images. Apparently, OCT examination is
much more difficult to adopt than FP. Therefore, a study built a
multibranch ResNet with FP and OCT images to achieve ATN
grades based on FP only, and the performance was superior to
that of ophthalmologists who are not retinal specialists [101].

Limitations and prospects

Despite the reported effective implementation of Al in
the clinical practice of myopia, problems and roadblocks
remain. Prior to the general adoption of Al, critical technical
and clinical restrictions must be overcome.

Establishment of a solid data foundation

The quality and quantity of data are extremely important to
the applications of Al. The majority of the aforementioned
Al applications in myopia use datasets collected by ophthal-
mologists during their clinical practice, which are usually
on one or a few population groups exclusively. This might

@ Springer

result in poor generalizability [103] and makes it difficult to
determine whether the poor performance is attributable to
spectrum bias [104, 105]. The disparity of imaging systems,
discrepancy in imaging and postprocessing protocols, and
lack of computing power also hinder the implementation
of these algorithms into clinical practice. People who are
in low-resource environments are frequently undercounted
because it can be challenging to obtain medical attention and
thus capture their data [106].

In this sense, public ophthalmological datasets are
essential and provide an equal platform for comparing the
outcomes of Al models in ophthalmology. There are some
popular public datasets established by ophthalmologists
from multiple centers for other ophthalmopathies, but none
of them focus on myopia alone [106]. Al research in myo-
pia might consider the feasibility of utilizing these public
datasets in the future. The establishment of a large-scale
public myopia dataset is also possible with novel Al tech-
nologies. A generative adversarial network (GAN) can be
used in the generation of a large number of random and
diverse images, and You et al. [107] determined its applica-
tion on FP and OCT images in ophthalmology, offering a
new way to enlarge datasets. Federated learning [108] and
swarm learning [109] have emerged as potential methods to
cope with privacy problems, providing a decentralized and
secure method of data management.

Handle multitasks with multimodal data

The complexity of clinical manifestations in diseases and
the diversity of data obtained through different examination
modalities present a challenge in Al applications. In myo-
pia, current Al models are typically designed for specific
data modalities and purposes, resulting in high accuracy
in distinguishing between “disease-free” and “diseased”
cases, but poor performance in more complex tasks such as
distinguishing between multiple diseases [48]. This chal-
lenge arises from the fact that some pathological changes in
myopia can also occur in other ophthalmic conditions. One
approach to address this is to exclude patients with comor-
bidities or group together a range of diseases. Alternatively,
multimodal medical data fusion techniques can be employed
by extracting relevant features from images and processing
them with Al algorithms [94, 100]. These features are not
limited to geometric measurements but may also include
characteristic lesion regions [110]. Additionally, image data
can be processed to obtain a virtual score, which can be
predicted together with clinical data by Al algorithms [72].
While new developments in this area continue to emerge, it
is important to note that multimodal data do not consistently
outperform unimodal data, as demonstrated in a study on
diabetic retinopathy staging [111].
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Explore the potential of novel data modalities

Novel forms of OCT images, such as UWF optical coher-
ence tomography (UWF OCT) and OCT angiography
(OCTA), can be seen in the clinical practice of myopia.
UWF OCT, instead of the traditionally used 3D-MRI, can
be helpful for better visualization of the posterior staphy-
loma in myopic eyes [112—114], which is “an outpouching
of the wall of the eye with a radius of curvature less than
the radius of curvature of the surrounding eye wall” [115]
and usually results in poorer vision and more anatomical
anomalies [116]. OCTA is very helpful for detecting reti-
nal microvasculature in a noninvasive and depth-resolved
way [117], thus providing a way of detecting mCNV with
high sensitivity and specificity. Based on UWF OCT and
OCTA, Al research is still restricted to improving the qual-
ity of images, such as image reconstruction [118, 119] and
denoising [120], and there is currently a dearth of research
exploiting the possibility of developing DL models to
detect posterior staphyloma or mCNV.

Conclusions

The advent of Al is expected to transform the management
of myopia. The findings of this review suggest that Al has
been applied to most parts of the clinical practice of myopia
and is built mainly on three types of data: clinical data, FP,
and UWF FP, OCT. Image-driven Al applications account
for the majority. However, compared with other ophthalmic
diseases, Al research in myopia is still in its early stages, and
these results are far from clinically viable. It is necessary to
establish large public datasets with high quality and improve
the capability of handling multimodal input. Exploring novel
data modalities, designing advanced algorithms, and find-
ing additional application scenarios could also be of great
significance.

Abbreviations AL: Axial lengths; AMD: Age-related macular degen-
eration; Al: Artificial intelligence; BCVA: Best-corrected visual acuity;
CNNs: Convolutional neural networks; CR: Corneal curvature radius;
DES: Dry eye syndrome; DR: Diabetic retinopathy; DSM: Dome-
shaped macula; FCNs: Fully convolutional networks; FP: Fundus
photography; GAN: Generative adversarial network; IOP: Intraocular
pressure; KNN: K-nearest neighbor; mCNV: Myopic choroidal neovas-
cularization; ML: Machine learning; MTM: Myopic traction maculopa-
thy; NPRLs: Notable peripheral retinal lesions; OCT: Optical coher-
ence tomography; OCTA: Optical coherence tomography angiography;
PM: Pathologic myopia; RF: Random forest; RFP: Retinal fundus
photography; RNNs: Recurrent neural networks; RRD: Rhegmatog-
enous retinal detachment; SVM: Support vector machine; SE: Spheri-
cal equivalent; SMILE: Small incision lenticule extraction; UWF
FP: Ultra-wildfield fundus photography; UWF OCT: Ultra-wildfield
optical coherence tomography
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