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Abstract
Purpose  To develop and evaluate an automated deep learning model to predict the anatomical outcome of rhegmatogenous 
retinal detachment (RRD) surgery.
Methods  Six thousand six hundred and sixty-one digital images of RRD treated by vitrectomy and internal tamponade 
were collected from the British and Eire Association of Vitreoretinal Surgeons database. Each image was classified 
as a primary surgical success or a primary surgical failure. The synthetic minority over-sampling technique was used 
to address class imbalance. We adopted the state-of-the-art deep convolutional neural network architecture Incep-
tion v3 to train, validate, and test deep learning models to predict the anatomical outcome of RRD surgery. The area 
under the curve (AUC), sensitivity, and specificity for predicting the outcome of RRD surgery was calculated for the 
best predictive deep learning model.
Results  The deep learning model was able to predict the anatomical outcome of RRD surgery with an AUC of 0.94, with a 
corresponding sensitivity of 73.3% and a specificity of 96%.
Conclusion  A deep learning model is capable of accurately predicting the anatomical outcome of RRD surgery. This fully 
automated model has potential application in surgical care of patients with RRD.
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Key messages
Deep learning models can accurately predict surgical outcomes. 

In this study, we developed a deep learning model to predict the anatomical outcome of rhegmatogenous
retinal detachment (RRD) surgery based on digital RRD images alone.   

Our deep learning model was able to predict the anatomical outcome of RRD surgery with an area under the
curve of 0.94 and an accuracy of 93.9%. 

Our deep learning model has potential application in surgical care of patients with RRD.  

Introduction

Rhegmatogenous retinal detachment (RRD) is a major cause 
of vision loss and its annual incidence has been reported to 
be between 6.3 and 17.9 cases per 100,000 persons [1]. The 
treatment of RRD is surgical and the ability to accurately 
predict the anatomical outcome after RRD surgery is fun-
damental to providing optimal surgical care. The anatomical 
outcome of RRD surgery is currently predicted by clinicians 
using their clinical judgment considering available preopera-
tive clinical data such as the extent of RRD, the presence 
of inferior retinal breaks, and the presence of proliferative 
vitreoretinopathy (PVR) [2–10].

Advances in applied modeling using deep learning, a 
prominent type of artificial intelligence (AI), have provided 
a novel and more accurate method for predicting surgical 
outcomes [6]. Deep learning techniques have the advan-
tage over other methods, because deep learning enables a 
computer model to automatically learn the best and most 
robust predictive features present in a dataset. Recently, 
deep convolutional neural networks (CNNs), a special type 
of deep learning technique, have been applied to produce 
highly accurate models that predict a range of postoperative 

outcomes on patients undergoing major surgical procedures 
within multiple surgical fields, including general, orthope-
dic, cardiothoracic, otolaryngology, gynecological, urology, 
neurosurgery, and vascular surgery [11].

Although deep CNNs have the potential to transform our 
abilities to predict surgical outcomes, this technique remains 
unexplored for predicting the outcome of RRD surgery. In 
this study, we aimed to develop and evaluate a CNN-based 
deep learning model to predict the anatomical outcome of 
RRD surgery.

Methods

Dataset

Using the British and Eire Association of Vitreoretinal 
Surgeons (BEAVRS) database, we extracted anonymized 
digital RRD images (Fig. 1) of eyes which underwent pars 
plana vitrectomy and internal tamponade between June 
2008 and September 2019. A total of 6661 digital images 
of RRD were included in this study. Details about the 
BEAVRS database, including its inclusion and exclusion 

Fig. 1   Examples of digital 
rhegmatogenous retinal detach-
ment images from the BEAVRS 
database. A A total (blue area) 
retinal detachment with the red 
areas representing the location 
and type of retinal breaks and 
the green area representing the 
presence and extent of PVR. B 
A superonasal (blue area) retinal 
detachment with the red areas 
representing the location and 
type of retinal breaks and the 
gray areas representing areas of 
lattice degeneration
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criteria, have been reported [12]. Briefly, the BEAVRS 
database is a web application where anonymized vitreo-
retinal surgical data are entered prospectively immediately 
following surgery by multiple clinicians at different sites. 
A digital drawing tool linked to diagnostic codes is used 
to record the anatomical details of RRD. This allows the 
recording of RRD extent, retinal break type and location, 
and the presence, extent, and severity of PVR at the time 
of surgery. The BEAVRS dataset also provided demo-
graphic data on age, sex, and lens status.

We classified each RRD image from the BEAVRS data-
base as a primary surgical success or a primary surgi-
cal failure. The BEAVRS definition of primary surgical 
success is complete retinal reattachment in the absence 
of tamponade and without any additional reattachment 
procedures [12]. Primary surgical failure was defined by 
BEAVRS as surgeon recorded redetachment, or a record 
of repeat RRD surgery [12]. The number of images that 
belonged to primary surgical success was 6027 (90%) 
whereas 634 (10%) belonged to primary surgical failure. 
Only cases with a recorded outcome (success or failure) at 
least 2 months following primary surgery were included.

This study was conducted in accordance with the Dec-
laration of Helsinki and the UK’s Data Protection Act. 
No patient details could be identified with any of the data 
contained in the BEAVRS database and a unique alphanu-
meric code is used for internal identification. As the BEA-
VRS dataset is considered a service evaluation, no IRB 
approval and/or informed consent were needed according 
to UK guidelines.

Model development and training

The imbalance between positive (failure) and negative 
(success) classes present in the original BEAVRS dataset 
was addressed using the Synthetic Minority Over-sam-
pling Technique (SMOTE). SMOTE is an over-sampling 
approach in which the minority class is over-sampled by 
creating synthetic examples rather than over-sampling with 
replacement [13, 14]. Previous studies with varying amounts 
of imbalance and varying amounts of data have found that 
SMOTE performs better than other class balancing meth-
ods for improving the accuracy of classifiers for a minority 
class [13, 14]. The balanced BEAVRS dataset was divided 
into training, validation, and test datasets (Table 1). The 
training dataset was used for developing and training the 

state-of-the art CNN architecture Inception v3 available in 
the Keras application programming interface inside Ten-
sorFlow (http://​tenso​rflow.​org). Images from the datasets 
were resized for the CNN architecture Inception v3. Initial 
layers of the CNN architecture Inception v3 were all pre-
trained on the ImageNet database of 1.2 million ontology 
of images from 1000 output classes [15] and the top layers 
were replaced and trained with layers that would support the 
classes from the BEAVRS dataset. This process of transfer 
learning has been shown to improve classification perfor-
mance [16]. The validation dataset was used for continuous 
validation of the model and to prevent overfitting. Training 
of the network model was achieved by presenting the model 
with batches of 32 labeled images from the training data-
set and 32 labeled images from the validation dataset. The 
independent test dataset was reserved for model testing after 
successful model development and training. The model was 
trained entirely on RRD images with no access to informa-
tion on patient demographics.

Model evaluation

The performance of the model for predicting the anatomi-
cal outcome of RRD surgery was evaluated using the fol-
lowing performance metrics: sensitivity, specificity, and 
the area under the curve (AUC) for the receiver operating 
characteristic (ROC) curve with 95% confidence intervals 
(CI) (Table 2). All statistical analyses were conducted using 
Python 2.7.15.

To highlight the visual features of the processed image 
that contributed the most to the model assignment of the 
predicted outcome or led to unappropriated misclassifica-
tion, we generated heatmaps using Gradient Weighted Class 
Activation Mapping (Grad-CAM) technology. Grad-CAM 
is a class-discriminative localization technique that uses the 
average gradient information flowing into the last convolu-
tional layer of any CNN-based network to assign importance 
values to each neuron for a particular decision of interest 
[17]. Grad-CAM heatmaps identify discriminative areas of 
the images that contribute to the decision of the deep learn-
ing model in classifying images as a failure or a success 
using a color-coded scale. A red area represents the area that 
critically contributed to the model’s classification decisions, 
yellow to green represents medium level, and blue represents 
the lowest level [17].

Table 1   Breakdown of training, validation, and testing datasets

Success Failure

Train Validation Test Train Validation Test

5727 150 150 3228 150 150

Table 2   Performance of the model on the test dataset

Accuracy 
(%)

Positive 
predictive 
value (%)

Sensitivity 
(%)

Specificity 
(%)

ROC AUC​
(%)

93.9 64.7 73.3 96 94
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Results

Demographics

The mean age of patients that underwent pars plana vit-
rectomy with internal tamponade was 61.5 years (range; 
34–96 years). Sixty-four percent of patients were male. At 
the time of surgery, 69% of eyes were phakic, 30% of eyes 
were pseudophakic, and 1% of eyes were aphakic.

Model performance

The AUC of the model was 0.940 (95% CI: 0.93–0.95), with 
73.3% (95% CI: 62.5–97.2) sensitivity and 96% (95% CI: 
88.3–96.2) specificity (Fig. 2).

Heatmaps

Examples of heatmaps corresponding to the best model for 
predicting the outcome of RRD surgery are shown in Fig. 3 
A and B. To analyze errors made by our best deep learning 
model, we checked all misclassified images. Among these 
images, six were success images misclassified as failure 
(false positives), and four were failure images misclassified 
as success (false negatives). Of the six false positive images 
(Fig. 3C), two showed heatmap visualization to areas of 
PVR, one showed heatmap visualization to an inferior retinal 
break, one presented heat map visualization to two temporal 
retinal breaks, and two showed non-specific heatmap visuali-
zation to the posterior pole. Of the four false negative images 
(Fig. 3D), two showed non-specific heatmap visualization 

to the posterior pole, one presented non-specific heatmap 
visualization to the inferior retina, and one showed heatmap 
visualization to a posterior retinal break.

Discussion

The application of AI-based learning techniques to retinal 
pathologies has increased over the last decade, mainly due 
to larger datasets, electronic medical records, and better 
application programming interfaces. Artificial neural net-
works from the 1990s and early 2000s were shown to be 
capable of performing at a similar level as an expert cli-
nician for detecting normal retinal landmarks and diabetic 
retinal lesions based on features extracted from color fundus 
images [18–20]. The subsequent development of deep CNNs 
has enabled the automated diagnosis and quantification of 
diseases such as diabetic retinopathy [21–23], age-related 
macular degeneration [24], and retinopathy of prematurity 
[25], from retinal images, with comparable accuracy to that 
of human experts.

In our pilot study, we have shown that the application of 
a CNN-based deep learning model to digital RRD images 
alone can be used to accurately predict the anatomical out-
come of RRD surgery. Our findings, together with what has 
been shown in non-RRD AI studies [11, 26], underline the 
value of deep learning in enhancing surgical outcome pre-
dictions through an automated approach.

Before the deep learning era, the anatomical outcome of 
RRD surgery was predicted based on the clinical characteris-
tics of RRD [2–10]. In a study of 847 eyes, Williamson et al. 
[4] found on multivariate analysis that the presence of PVR, 

Fig. 2   Receiver operating 
characteristic (ROC) curve of 
the best model for predicting 
the outcome of rhegmatogenous 
retinal detachment surgery
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inferior positioning of retinal breaks, greater extent of RRD, 
and increased number of retinal breaks were associated with 
an increased risk of surgical failure. Using univariate analy-
sis, Wickham et al. [2] identified prior cataract surgery and 
vitreous hemorrhage as additional risk factors for surgical 
failure. In the same study, Wickham et al. reported the use of 
a multivariable logistic regression model based on three risk 
factors—previous lens extraction, area of retina detached 
and preoperative grade C PVR—to predict the risk of failure 
from RRD surgery, showing an AUC of 0.658. Our study 
showed that a deep learning model can more accurately pre-
dict the outcome of RRD surgery with an AUC of 0.940. The 
accuracy of deep learning in predicting the anatomical out-
come of RRD surgery has the potential to equip vitreoretinal 
surgeons with the tools for optimized patient counseling and 
decision-making.

Deep learning models are “black boxes” by construction 
since the features used in multiple layers of the model for 
prediction are learnt internally and not readily interpretable. 
In our study, we used Grad-CAM heatmaps to identify areas 
in the images that the deep learning model might have been 
using to make its predictions. Although our best deep learn-
ing model had high accuracy, misclassification still existed. 

To analyze errors made by our best deep learning model, we 
checked all the misclassified images carefully. Grad-CAM 
heatmap visualization of PVR and inferior retinal breaks 
appeared to result in false positive predictions in a few 
images using our deep learning model. In several images, 
false positive and false negative predictions seemed to be 
made based on non-specific locations the model used and 
produced unclear explanations. Due to its gradient averaging 
step, Grad-CAM can highlight image locations the model 
did not use to make its predictions and may explain why 
some of our image heatmap visualizations occurred in non-
specific locations [27, 28]. Increasing the training dataset 
size of RRD images in our model could potentially mini-
mize any false positive and false negative predictions [17]. 
In future studies, further detailed analysis of heatmaps using 
a variety of CNN visual explanation methods may reveal 
new features that are predictive of surgical success or failure, 
potentially serving as an educational tool for surgeons.

Despite the promising results, our study has several 
limitations. First, the overall size of the BEAVRS data-
set is relatively small for deep learning. However, our 
work has to be considered a pilot and proof-of-feasibility 
study, and future research will be needed to validate our 

Fig. 3   Heatmap visualization using gradient-weighted class activa-
tion mapping (Grad-CAM). A A Grad-CAM heatmap created by the 
best model that accurately predicted primary rhegmatogenous retinal 
detachment surgical failure. B A Grad-CAM heatmap created by the 

best model that accurately predicted primary rhegmatogenous retinal 
detachment surgical success. C Grad-CAM heatmap visualization for 
false positive images. D Grad-CAM heatmap visualization for false 
negative images
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deep learning model against significantly larger datasets 
with more positive (failure) outcomes. Second, only RRD 
images created from a digital drawing tool were used. 
These images are reliant on accurate data entry by the 
surgeons. Any errors in data entry have the potential to 
affect the reliability of the predictions. However, com-
mercially available digital fundus cameras are currently 
only successful at detecting the presence of an RRD, 
with limitations in their optics restricting their ability 
to accurately detect peripheral retinal pathology includ-
ing retinal breaks and PVR [29, 30]. Despite this, future 
work should examine the generalizability of our find-
ings to real color fundus photographs of RRD. Third, all 
RRD in this study were treated by pars plana vitrectomy 
and internal tamponade, and thus the use of this deep 
learning model is only applicable to retinal detachments 
treated by vitrectomy. Fourth, we included RRD images 
that had a recorded outcome (success or failure) at least 
2 months following primary surgery. It is possible that 
some failures may have occurred after the follow-up date, 
and may not have been recorded in the BEAVRS data-
base, leading to an incorrect image classification. Fifth, 
our deep learning model only predicted the anatomical 
outcome of RRD surgery. Future deep learning studies 
should also focus on the functional outcomes of RRD 
surgery. Lastly, we developed a deep learning model 
using images alone. The addition of other input varia-
bles, such as the patient’s age, lens status, the vitrectomy 
gauge size, the use of cryotherapy or laser for retinopexy, 
and the type of tamponade is likely to improve the com-
plexity and performance of a deep learning model for 
predicting the outcome of RRD surgery.

In conclusion, our pilot study shows that a CNN-based 
deep learning model can predict anatomical outcomes 
of RRD treated by vitrectomy and internal tamponade. 
Further deep learning studies are required to validate 
our deep learning model against other larger datasets for 
predicting the anatomical outcome of RRD surgery.
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