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Abstract
Purpose The study aims to classify the eyes with proliferative diabetic retinopathy (PDR) and non-proliferative diabetic retin-
opathy (NPDR) based on the optical coherence tomography angiography (OCTA) vascular density maps using a supervised 
machine learning algorithm.
Methods OCTA vascular density maps (at superficial capillary plexus (SCP), deep capillary plexus (DCP), and total retina 
(R) levels) of 148 eyes from 78 patients with diabetic retinopathy (45 PDR and 103 NPDR) was used to classify the images 
to NPDR and PDR groups based on a supervised machine learning algorithm known as the support vector machine (SVM) 
classifier optimized by a genetic evolutionary algorithm.
Results The implemented algorithm in three different models reached up to 85% accuracy in classifying PDR and NPDR 
in all three levels of vascular density maps. The deep retinal layer vascular density map demonstrated the best performance 
with a 90% accuracy in discriminating between PDR and NPDR.
Conclusions The current study on a limited number of patients with diabetic retinopathy demonstrated that a supervised machine 
learning–based method known as SVM can be used to differentiate PDR and NPDR patients using OCTA vascular density maps.

Keywords Proliferative diabetic retinopathy (PDR) · Non-proliferative diabetic retinopathy (NPDR) · Optical coherence 
tomography angiography (OCTA) · Machine learning · Artificial intelligence

Introduction

Diabetic retinopathy (DR) is the primary cause of blind-
ness globally, with 80% of diabetic people developing 
DR within 20 years after diagnosis [1-4]. The efficacy 
of appropriate treatment options such as laser therapy or 
intravitreal injections of anti-vascular endothelial growth 
factors in diabetic retinopathy is contingent on early detec-
tion, remarkably when the retinopathy has progressed to 
the point where intervention is essential [1,5-10].

Key messages
� FA is currently the gold standard to distinguish PDRfrom NPDR.
� Automated Machine learning-based method on the OCTA vascular density map scan differentiate PDR from NPDR 
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� The mean accuracy in discriminating PDR from NPDR in vascular density maps of the DCP layer was highest and 
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In order to distinguish proliferative diabetic retinopa-
thy (PDR) from non-proliferative diabetic retinopathy 
(NPDR), fluorescein angiography (FA) is currently the 
gold standard for investigating a variety of characteristics 
of PDR [3, 4, 11,12]. FA, on the other hand, is a rela-
tively invasive procedure that requires intravenous fluo-
rescein dye injection and is associated with several con-
cerns, including nausea, vomiting, itching, urticaria, and 
even anaphylaxis [11-13]. Optical coherence tomography 
angiography (OCTA) provides depth-resolved images of 
the retinal vascular structure, allowing for the differentia-
tion of the superficial and deep capillary plexus layers of 
the retina, a phenomenon that FA is unable to detect due 
to the superimposition of the superficial capillary plexus 
over the deep capillary plexus. However, drawbacks of 
current OCTA devices, such as a limited field of view 
compared to FA and inability to detect vascular leakage, 
have hampered the use of OCTA as a reliable way to 
distinguish different stages of DR [11-15].

In recent years, many automated approaches based on 
machine learning or deep learning techniques have been 
developed to differentiate several stages of diabetic retinop-
athy. The classification models presented to date have been 
trained and tested using imperfect ground truths created 
using traditional fundus images rather than FA [15-28].

In the current study, we present a machine learning–based 
method to differentiate PDR from NPDR automatically from 
the OCTA vascular density maps with more accurate ground 
truths using FA images of patients.

Materials and methods

The Farabi Eye Hospital at Tehran University of Medi-
cal Sciences, Iran, provided the dataset for this research. 
The study was also authorized by the institutional review 
board of Tehran University of Medical Sciences (IR.
TUMS.REC.1399.019) and followed the Declaration of 
Helsinki’s principles. The patients all provided written 
informed consent.

An RTVue XR 100 Avanti  device (Version 
2017.1.0.151, Optovue, Inc., Fremont, CA, USA) was 
used to obtain 6 × 6-mm2 macular OCTA images of 
patients with varying stages of diabetic retinopathy 
between 8:00 and 12:00 a.m. All patients underwent 
fluorescein angiography (Heidelberg Engineering, Hei-
delberg, Germany) at baseline for the staging of the DR. 
Two retina experts (H. R. E. and E. K. P.) assessed the 
results of fundus exams and fluorescein angiography 
images of patients and determined the stage of the retin-
opathy by consensus. Individuals with neovascularization 
at the disc (NVD) and/or neovascularization elsewhere 
(NVE) in fundus exams and FA were categorized as PDR, 

while the others were classified as NPDR. Afterward, 
according to this consensus-based labelling of patients, 
all corresponding OCTA images of patients were labelled 
as NPDR or PDR.

The exclusion criteria were the presence of exudate 
and fibrovascular proliferation in the macular area, other 
macular diseases (like age-related macular degeneration or 
macular dystrophies and vitreomacular interface disorders), 
uveitis, uncontrolled glaucoma, severe media opacity, vis-
ual acuity of less than 20/200, and refractive error >  + 3 
and <  − 3. Those having a history of previous PRP, macu-
lar photocoagulation, intravitreal anti-VEGF injections, or 
intraocular surgery except for cataract extraction were also 
excluded. Low-quality images (signal strength index (SSI) 
less than 40 according to built-in RTVue software quality 
assessment report) were omitted from the study. Images 
with different artifacts (including movement, shadow, 
decentration artifacts, and defocus) preventing accurate 
determination of the superficial and deep capillary plex-
uses and FAZ area were excluded.

In each OCTA printout, 333 × 333-pixel images of vascu-
lar density maps at three levels, superficial capillary plexus 
(SCP), deep capillary plexus (DCP), and total retina (Retina) 
were cropped.

Examples of vascular density maps from three levels of 
SCP, DCP, and Retina employed in this experiment for two 
patients in the NPDR and PDR groups are depicted in Fig. 1. 
Cold hues indicate regions of decreased perfusion in each 
vascular density map.

Pre‑processing

After cropping the original vascular density map images, we 
attempted to extract each image features using Gabor-based 
filters that enabled us to estimate the image’s content to dif-
ferentiate NPDR images from PDR.

After applying the Gabor’s filter to the images, we 
acquired approximately 65,000 features from each image, 
which was a significant quantity, and we need to choose the 
relevant features to accurately classify images as NPDR or 
PDR. As a result, we employed neighborhood component 
analysis (NCA), a non-parametric supervised technique for 
feature selection that is based on an improved K-nearest 
neighbor (KNN) algorithm [29]. This strategy offers a higher 
positive weight to the most significant features, which are 
often located in the blue sections of vascular density maps, 
and reduces our feature set to 50 appropriate features for 
each vascular density map image.

Classification of PDR and NPDR

After the pre-processing stage, to classify the images as 
NPDR or PDR, we used a supervised machine learning 

392 Graefe's Archive for Clinical and Experimental Ophthalmology (2023) 261:391–399



1 3

based algorithm known as the support vector machine 
(SVM) classifier with radial basis function (RBF) ker-
nel [30]. To reach the most accuracy in classification, 
we optimized the SVM using the genetic evolutionary 
algorithm to determine the optimal parameters of the 
classifier [31]. To find a hyperplane in an N-dimensional 
space, the goal of the SVM algorithm is to find one that 
clearly separates the data points from each other.

To evaluate the accuracy of the algorithm, we assessed 
it in three different models:

A) Model 1: feature extraction with Gabor filter and clas-
sification with simple SVM.

B) Model 2: feature extraction with Gabor filter and clas-
sification with SVM improved by genetic algorithm.

C) Model 3: feature extraction with Gabor filter, feature 
selection, and classification with SVM improved by 
genetic algorithm.

To test the suggested model’s performance, we calculated 
the accuracy, precision, recall, and F-measure using the fol-
lowing equations (Eqs. (1)–(4)):

In these equations, NTP is the number of true positives, 
NTN is the number of true negatives, NFP is the number of 
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Fig. 1  Vascular density maps of two patients in NPDR and PDR 
groups; top row represents a NPDR patient. (a) The vascular density 
map in superficial capillary plexus (SCP), (b) the vascular density 
map in deep capillary plexus (DCP), and (c) the vascular density map 

in total retinal layer (Retina). Additionally, the bottom row contains 
(d) vascular density map in SCP, (e) vascular density map in DCP, 
and (f) vascular density map in total retinal layer for a PDR class
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false positives, and NFN is the number of false negatives in 
differentiating NPDR from PDR.

We applied our models to images of the vascular den-
sity map in three different layers (SCP, DCP, and Retina) to 
determine which layer is more accurate in identifying PDR 
and NPDR and also to evaluate the performance of the three 
mentioned models in each layer of vascular density maps.

In this experiment, we used the stratified cross-validation 
method to evaluate the proposed model, and for this purpose, 
we selected 10% of the patients as test data and used the rest 
of the patients for the training data. Then, we constructed 
the model using classified ten-fold cross-validation, and after 
that, we assessed the model using test data.

Statistical analysis

The following tests were used to compare various variables 
and characteristics between the two groups. For continuous 
quantity variables such as age and BCVA, the independent 
t-test was utilized. The categorical factors were determined 
using Chi-square test: gender, type of diabetic retinopathy, 
and left and right affected eye. When P < 0.05 was assumed 
to be significant, the findings were considered statistically 
significant. All statistical analyses were conducted in R, a 
statistical programming language (R version 3.1.3; e Foun-
dation for Statistical Computing, Vienna, Austria).

Results

Among 89 patients, 148 eyes from 78 patients were included 
in this study based on the inclusion and exclusion criteria 
(NPDR = 103 eyes, including mild and moderate NPDR = 33 
eyes and severe NPDR = 70 eyes and PDR (45 eyes)). The 
mean age of participants was 56 ± 10.8 (range: 44–71 years) 
and 79 (53.4%) were male. Table 1 demonstrates the base-
line characteristics of participants.

Table 2 shows the results of the implementation of the 
three mentioned models in vascular density maps of three 
retinal layers (SCP, DCP, and Retina) in classifying PDR and 

NPDR. Model 3 showed the best performance in all vascular 
density map images to classify PDR and NPDR with more 
than 85% accuracy in all layers. This model demonstrated a 
90% accuracy in discriminating between PDR and NPDR in 
deep retinal layer vascular density maps.

Figure 2 and Table 3 illustrate the accuracy, precision, 
recall, and F-measure of model 3 (feature extraction with 
Gabor filter, feature selection, and classification with SVM 
improved by genetic algorithm) for categorizing PDR and 
NPDR in vascular density maps of DCP retinal layer.

Figure 3 shows the receiver operating characteristic 
curve (ROC curve) of the proposed model 3 algorithm 
for detecting PDR and NPDR in OCT-A vascular density 
maps. In the figures shown, the performance of the pro-
posed model is compared with other introduced models. 
The proposed method 3 performs much better than models 
1 and 2. As a consequence, according to the area under 
the curve (AUC), the proposed model 3 (feature extraction 
with Gabor filter, feature selection, and classification with 
SVM improved by genetic algorithm) is capable of making 
better discrimination between PDR and NPDR based on 
vascular density maps of DCP layer.

Discussion

We have presented a novel approach for discriminating 
patients with PDR from those with NPDR using OCTA 
images by employing SVM, a well-known machine learn-
ing algorithm. The best performing model (Model 3) showed 
the acceptable proficiency in vascular density map images 
to classify PDR and NPDR with more than 85% accuracy 
in all layers including SCP, DCP, and total retina. The mean 
accuracy of this model (model 3) in discriminating PDR 
from NPDR in vascular density maps of the DCP layer was 
highest and reached 90%.

OCTA, as a unique non-invasive dye-free imaging 
technique, visualizes microvascular structures across the 
retina, allowing for a thorough quantitative investigation 
of pathological vascular alterations. Due to the fact that 
DR is predominantly a disease of the retinal vasculature, 

Table 1  The demographic 
data of patients enrolled in the 
current study

BCVA best-corrected visual acuity, NPDR non-proliferative diabetic retinopathy, PDR proliferative diabetic 
retinopathy
a Chi-square test
b Independent t-test

NPDR (n= 103) PDR(n = 45) Total (n = 148) Pvalue

Men, n (%) 47 (45.6) 32 (71.1) 79 (53.4) 0.005a

Right eye, n (%) 50 (48.5) 23 (51.1) 73 (49.3) 0.859a

Age (years), mean ± SD 56.2 ± 11.3 55.6 ± 9.8 56 ± 10.8 0.758b

log MAR BCVA, mean ± SD 0.32 ± 0.42 0.42 ± 0.47 0.35 ± 0.43 0.201b
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OCTA can offer more instructional information than 
fundus photos and maybe a more appropriate imaging 
modality for automated categorization of DR, despite its 
smaller field of view [12-14].

The findings of the current study are consistent with pre-
vious deep learning classification studies using OCT and 
OCTA, which demonstrated that the detailed information 
extracted from OCT/OCTA images is sufficient to diag-
nose and classify DR at a level comparable to fundus pho-
tographs, despite a limited field of view in OCTA images 
[17-20, 24-28].

Regular DR screening is critical to implementing prompt 
therapy to avoid vision loss. Early intervention with glu-
cose and blood pressure management can help to delay the 
course of DR, whereas intervention with photocoagulation 
or intravitreal injection can help to prevent vision loss [1, 3, 
4, 32]. Although many ophthalmologists suggest routine DR 
screening, complete DR screening is not commonly under-
taken due to limitations associated with the availability of 
human evaluators [33, 34]. Regular retinal screening is sug-
gested at the community level as a cost-effective preventa-
tive intervention. Task shifting is one strategy that the public 
health community may use to confront this issue head on, 
allowing ophthalmologists to treat but not screen. Task shift-
ing is the term used by the World Health Organization to 
refer to a process of delegation in which responsibilities are 
transferred to less skilled health professionals when appro-
priate. Recent data suggest that screening by healthcare staff 
with prior training in DR grading has a role [35, 36]. How-
ever, we continue to encounter inadequacies in their training 
and placement within the system. As a result, a diagnostic 
system that utilizes automated algorithms is necessary to 
assist with DR screening.

Machine learning and deep learning algorithms have 
recently enabled computers to learn from enormous datasets 
in ways that far exceed human skills. Numerous machine 
learning or deep learning algorithms have been created with 
excellent specificity and sensitivity for the categorization 
or diagnosis of certain disease states using medical images, 
including retinal imaging studies [15, 16, 21

Table 2  Classification accuracy was determined using all three models for the three layers of retinal vascular density maps

Bold values imply more accurate classification results of the model 3 in comparison to other models
SD standard deviation, SCP superficial capillary plexus, DCP deep capillary plexus, Retina total retina

No. of 
features

SCP layer Retina layer DCP layer

Model 1  
(accuracy ± SD)

Model 2  
(accuracy ± SD)

Model 3  
(accuracy ± SD)

Model 1  
(accuracy ± SD)

Model 2  
(accuracy ± SD)

Model 3  
(accuracy ± SD)

Model 1  
(accuracy ± SD)

Model 2  
(accuracy ± SD)

Model 3  
(accuracy ± SD)

tenfold 
(1)

0.80 ± (0.05) 0.84 ± (0.06) 0.85 ± (0.09) 0.81 ± (0.03) 0.84 ± (0.05) 0.86 ± (0.06) 0.83 ± (0.05) 0.86 ± (0.06) 0.89 ± (0.09)

tenfold 
(2)

0.80 ± (0.05) 0.83 ± (0.06) 0.85 ± (0.09) 0.80 ± (0.03) 0.84 ± (0.05) 0.87 ± (0.05) 0.83 ± (0.05) 0.86 ± (0.06) 0.90 ± (0.09)

tenfold 
(3)

0.79 ± (0.04) 0.82 ± (0.05) 0.85 ± (0.08) 0.80 ± (0.02) 0.84 ± (0.03) 0.85 ± (0.05) 0.84 ± (0.04) 0.85 ± (0.05) 0.90 ± (0.08)

tenfold 
(4)

0.80 ± (0.04) 0.83 ± (0.05) 0.86 ± (0.08) 0.81 ± (0.02) 0.83 ± (0.03) 0.86 ± (0.05) 0.82 ± (0.04) 0.86 ± (0.05) 0.89 ± (0.08)

tenfold 
(5)

0.79 ± (0.04) 0.82 ± (0.05) 0.85 ± (0.08) 0.81 ± (0.02) 0.83 ± (0.03) 0.86 ± (0.05) 0.81 ± (0.04) 0.86 ± (0.05) 0.89 ± (0.08)

Fig. 2  The mean accuracy of model 3 in vascular density maps of 
DCP for differentiating PDR from NPDR reached 0.895%, the mean 
of precision was 0.91, the mean of recall was 0.905, and finally, the 
mean of F-measure value was 0.9

Table 3  The accuracy, precision, recall, and F-measure of model 3 
(feature extraction with Gabor filter, feature selection, and classifi-
cation with SVM improved by genetic algorithm) with a 95% confi-
dence interval for categorizing PDR and NPDR in vascular density 
maps of DCP layer

Index Mean Unbiased dis-
persion

95% confidence 
interval for mean

Accuracy 0.895 0.009 0.866–0.926
Precision 0.910 0.020 0.885–0.939
Recall 0.905 0.010 0.873–0.935
F-measure 0.900 0.045 0.884–0.925
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Ophthalmologists frequently differentiate PDR from 
NPDR by finding abnormalities such as neovascularization 
over disc (NVD) or neovascularization elsewhere (NVE) 
during fundus examinations. However, fluorescein angi-
ography is the gold standard diagnostic tool for detecting 
PDR [32, 43, 44]. Due to the invasive and costly nature of 
angiography, which not all patients are capable of perform-
ing, access to machine learning and artificial intelligence 
algorithms that can discriminate PDR patients from NPDR 
ones is critical. The power of these algorithms lies in their 
potential ability and accuracy to make connections not read-
ily apparent to human investigators. These algorithms are 
especially beneficial in developing countries because the 
number of patients referred for regular diabetic retinopathy 
screening is significantly lower than in industrialized coun-
tries. Many of these patients with advanced PDR stages are 
directed to retinal clinics, where therapies at these stages 
are too expensive, and sometimes visual function cannot 
be recovered to a significant amount [45]. As a result, in 
this investigation, we attempted to evaluate the screening 
capability of a conventional machine learning algorithm on 
OCTA vascular density images of different retinal capillary 
plexuses to detect patients with PDR. Nearly 90% accuracy 
is considered satisfactory for identifying PDR individuals 
who require definitive treatments such as PRP or anti-VEGF 
injection.

Current machine learning and deep learning algorithms 
for DR screening have been primarily focused on identify-
ing patients with referable DR (moderate NPDR or worse) 
or vision-threatening DR mostly based on fundus photos, 
implying that patients should be sent to ophthalmologists 
for treatment or additional follow-up [45]. One of their 
fundamental drawbacks is that they provide images in only 

two dimensions with no appreciation for depth, compared 
to OCTA imaging which provides quantifiable informa-
tion about different capillary plexuses in different depths; 
therefore, it is possible to detect pathology with topological 
changes in vivo.

In the current study, we tried to detect patients with 
PDR in OCTA images as a group of patients that need to 
be treated as soon as possible. The following points explain 
why we chose to distinguish PDR from NPDR patients in 
this study: a subset of individuals with referable DR fall 
into the category of moderate to severe DR. In contrast to 
patients with PDR, these patients require periodic fundus 
examinations but may not require definite treatment espe-
cially in the absence of macular edema. On the other hand, 
the exclusion of patients with earlier stages of DR, such as 
moderate and severe NPDR, by subjective fundus exami-
nation or FA is prone to mistake, affecting the algorithm’s 
training, particularly in small sample size studies such as 
ours [33, 34]. However, the critical role of early detection of 
DR should not be overlooked. Early intervention to achieve 
optimal management of glucose, blood pressure, and lipid 
profiles has been shown to greatly delay the progression of 
DR and even restore moderate NPDR to a DR-free state [46].

As a consequence of our research, we discovered that the 
machine learning method performs better in isolating PDR 
patients using deep capillary plexus vascular density maps 
than using superficial or whole retinal layer vascular den-
sity maps. This means that DCP layer alterations in diabetic 
retinopathy are likely to be more noticeable as compared 
to changes in the superficial layers of the retina in these 
individuals. This has been established in prior investiga-
tions using OCTA in diabetic retinopathy patients [47–50]. 
Capillaries of DCP are likely to be terminal vessels and tend 

Fig. 3  The receiver operating characteristic curve (ROC curve) of 
the proposed models of the algorithm for detecting PDR and NPDR 
in OCT-A vascular density maps. The performance of the proposed 
model 3 (feature extraction with Gabor filter, feature selection, and 
classification with SVM improved by genetic algorithm) is compared 

with other methods. According to the area under the curve (AUC), 
the proposed model 3 is capable of making better discrimination 
between PDR and NPDR based on vascular density maps of all lay-
ers, especially DCP layer. SCP superficial capillary plexus, DCP deep 
capillary plexus
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to be more sensitive than SCP to ischemic stress, similar to 
terminal capillaries in other organs, like kidneys [47, 51]. It 
has been shown that even slight changes in retinal circula-
tion may also primarily affect DCP [51]. Moreover, previous 
studies demonstrated the importance of ischemia in DCP in 
predicting visual acuity in DR [52, 53].

Overall, the implemented algorithm in the current 
study can categorize single OCTA images in less than 5 s. 
While categorizing images with this algorithm requires 
ophthalmologists to be familiar with platforms such as 
Python, exporting this algorithm to a user-friendly appli-
cation eliminates this requirement. Future large-scale 
research to create algorithms based on sophisticated 
classification methods, such as neural networks, with 
more accuracy and faster application would assist oph-
thalmologists in quickly classifying OCTA images in a 
user-friendly way.

This study has several limitations, as any study with 
a small sample size always does. Our suggested prelimi-
nary algorithm was trained on a small number of patients; 
therefore, the major challenge of distinguishing severe 
NPDR and PDR patients will be addressed in a larger 
study with a larger sample size. Despite the study contains 
fewer than 150 eyes, the mentioned algorithm achieved 
high levels of accuracy comparable to other algorithms 
using fundus photo or OCT to classify diabetic patients 
[18, 28, 54]. Noteworthy, individuals with retinal edema or 
vitreous hemorrhage, for example, were omitted because 
of the low picture quality and artifact of these lesions in 
the assessment of retinal vascular density maps, despite 
the fact that these patients reflect the pathophysiology of 
DR. As a result, a subset of diabetic patients in everyday 
practice will not benefit from the method applied in the 
current study. As the vascular alterations caused by dia-
betes are widely distributed, more than 50% of DR lesions 
are known to be located outside seven-standard Early 
Treatment Diabetic Retinopathy Study (ETDRS) fields. 
Previous studies reported that the presence of peripheral 
retinal lesions may suggest increased DR severity in 9 to 
15% of eyes [55–58]. In the current study we did not have 
access to ultrawide-field FA (UWF-FA) and used conven-
tional FA in all patients. Further studies are required to 
directly compare the results of machine learning algo-
rithms using OCTA and traditional fundus photography, 
respectively, based on more accurate ground truth using 
UWF-FA. Moreover, a 3D algorithm was recently pro-
posed for visualization of the retinal capillary plexuses. 
Future investigations using this approach may assess the 
3D relationship of the retinal ischemia and staging of 
diabetic retinopathy [59]. Multiple new insights may be 
gleaned from this emerging technology.

In conclusion, the current study developed a classifier 
using a supervised machine learning model known as the 

support vector machine (SVM) to automatically identify 
PDR and NPDR using OCTA superficial, deep, and total 
retinal vascular density maps. This approach was capable of 
differentiating between PDR and NPDR based on the OCTA 
vascular density map of DCP with a 90% accuracy.
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