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Abstract
Purpose  Anti-vascular endothelial growth factor (Anti-VEGF) therapy is currently seen as the standard for treatment of 
neovascular AMD (nAMD). However, while treatments are highly effective, decisions for initial treatment and retreatment 
are often challenging for non-retina specialists. The purpose of this study is to develop convolutional neural networks (CNN) 
that can differentiate treatment indicated presentations of nAMD for referral to treatment centre based solely on SD-OCT. 
This provides the basis for developing an applicable medical decision support system subsequently.
Methods  SD-OCT volumes of a consecutive real-life cohort of 1503 nAMD patients were analysed and two experiments 
were carried out. To differentiate between no treatment class vs. initial treatment nAMD class and stabilised nAMD vs. active 
nAMD, two novel CNNs, based on SD-OCT volume scans, were developed and tested for robustness and performance. In 
a step towards explainable artificial intelligence (AI), saliency maps of the SD-OCT volume scans of 24 initial indication 
decisions with a predicted probability of > 97.5% were analysed (score 0–2 in respect to staining intensity). An AI benchmark 
against retina specialists was performed.
Results  At the first experiment, the area under curve (AUC) of the receiver-operating characteristic (ROC) for the differen-
tiation of patients for the initial analysis was 0.927 (standard deviation (SD): 0.018), for the second experiment (retreatment 
analysis) 0.865 (SD: 0.027). The results were robust to downsampling (¼ of the original resolution) and cross-validation 
(tenfold). In addition, there was a high correlation between the AI analysis and expert opinion in a sample of 102 cases 
for differentiation of patients needing treatment (κ = 0.824). On saliency maps, the relevant structures for individual initial 
indication decisions were the retina/vitreous interface, subretinal space, intraretinal cysts, subretinal pigment epithelium 
space, and the choroid.
Conclusion  The developed AI algorithms can define and differentiate presentations of AMD, which should be referred for 
treatment or retreatment with anti-VEGF therapy. This may support non-retina specialists to interpret SD-OCT on expert 
opinion level. The individual decision of the algorithm can be supervised by saliency maps.

Keywords  Neovascular age-related macular degeneration (nAMD) · Anti-VEGF therapy · Artificial intelligence · Deep 
learning network · Convolutional neural network · Treatment algorithms
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Abbreviations
AI	� Artificial intelligence
AMD	� Age-related macular degeneration
AUC​	� Area under curve
BCVA	� Best corrected visual acuity
BM	� Bruch’s membrane
CATT trial	� Comparison of Age-related Macular Degen-

eration Treatment Trials: Lucentis-Avastin 
Trial

CNN	� Convolutional neural network
CNV	� Choroidal neovascularization
FA	� Fluorescein angiography
ILM	� Inner limiting membrane
IVAN trial	� Inhibition of VEGF in Age-related choroidal 

Neovascularisation trial
GPU	� Graphics processing unit
LSTM	� Long short-term memory
M	� Mean score
nAMD	� Neovascular age-related macular 

degeneration
PRN	� Pro re nata
RC	� reading centre
RPE	� Retinal pigment epithelium
ROC	� Receiver operating characteristic
ReLU	� Rectified linear unit
SD	� Standard deviation
SD-OCT	� Spectral domain optical coherence 

tomography
tanh	� Hyperbolic tangent
TNR	� True negative rate
TPR	� True positive rate
VEGF	� Vascular endothelial growth factor

Introduction

Anti-VEGF therapy is currently the standard for the 
treatment of neovascular age related macular degenera-
tion (nAMD) [1]. In all prospective studies the minimal 

inclusion criteria was “occult (type 1) choroidal neovas-
cularization (CNV) with recent disease progression”. 
But analyzing the individual clinical nAMD requiring 
anti-VEGF therapy using fundus examination, f luo-
rescein angiography (FA) and spectral domain optical 
coherence tomography (SD-OCT) in real-life, a misdi-
agnosis and disagreement between treating doctors and 
reading centres in a range between 5 and 18% could 
be identified [2, 3]. Therefore, it is a clinical need to 
improve the decision process for anti-VEGF treatment 
and retreatment of nAMD.

Recent years have seen a rapid implementation of arti-
ficial intelligence (AI) in medical image analytics and 
potential treatment predictions [4–9]. They have been 
established in subcortical vascular cognitive impairment 
[10] and glaucoma [11]. Also, in medical retina these 
AI approaches have been shown reliable to differenti-
ate between different macular diseases [7, 8, 12–14]. In 
addition, previous AI studies in nAMD have shown an 
acceptable prediction for conversion of nAMD in the 
same eye [9, 15] and the second eye [16]. Also the differ-
entiation of OCT images between normal vs. pathologi-
cal findings (AMD) [17] as well as the characterization 
of specific OCT biomarkers [15–18] could be achieved 
using AI algorithms. In this study, we aimed to develop 
an AI-based decision support for non-retina specialists in 
daily clinical work (see Fig. 1). Two experiments were 
carried out for this purpose. The first experiment aims to 
differentiate between nAMD patients who need anti-VEGF 
therapy from those AMD patients who do not. The sec-
ond experiment works on facilitating retreatment decisions 
(stabilised vs. active nAMD decision) during follow up. 
In both situations, referral to a treatment centre would be 
recommended. To demonstrate the robustness, the algo-
rithms were tested via cross-validation and benchmarked 
against multiple retina specialists.

The applicability of the approach is underlined by the fact 
that no specific OCT features were extracted or annotated, 
that an end-to-end process was established, that the trained 
models were based on image data taken from daily routine 
treatment, and that special requirements for the images, such 
as scan density, were left out and thus the developed AI 
model can be more easily used for clinical application.

Key messages

Decisions for treatment of neovascular AMD are often challenging for non-retina specialists.

Initial and repeated indication of anti-VEGF therapy in neovascular AMD can be assisted using deep learning 

network analysis.

The algorithm can be supervised by activation map volume scan visualization.
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Patients and methods

Overview

OCT scans and treatment decisions were collected during 
daily practice. For a retrospective cohort of patients with-
out previous selection where at least one eye was treated 
following a standardized treatment protocol, this data was 
used as input data. For experiment 1, the two classes are fel-
low eyes without indication for treatment and eyes requiring 

treatment. For experiment 2, the two classes consist of the 
doctor’s assessments of stabilised nAMD or active nAMD 
during the course of treatment. Only SD-OCT scans with 
a standardised resolution made by Heidelberg Engineering 
devices were used.

A single data preprocessing pipeline and for each experi-
ment a convolutional neural network (CNN) applying deep 
learning were developed. Preprocessing consisted of nor-
malizing image eye side orientation, downsampling to a 
quarter of the original resolution, removing areas outside a 

Fig. 1   Treatment procedure 
for nAMD following the PRN 
schema with AI decision sup-
port systems for initial indica-
tion and retreatment decision
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defined region of interest (ROI) and contrast enhancement. 
To increase the amount of training data, the dataset was 
augmented by variations of the original images randomly 
rotated and shifted. 3D convolutional blocks were used in 
the CNNs so that the models are trained by all dimensions 
of the OCT volume. Experiment 1 uses one OCT scan and 
its target value in a single CNN. In experiment 2, two subse-
quent OCT scans of one eye and the corresponding decision 
for the latter image were used. Both inputs were processed 
by one CNN and their separate outputs combined using a 
LSTM to also capture temporal information.

To demonstrate the robustness of the developed algo-
rithms, cross-validation (tenfold) was used. In addition, 
we generated saliency maps of the deep learning model to 
visualize the relevant characteristics of the individual deep 
learning analysis and results of the algorithms. These sali-
ency map characteristics of initial indication decisions were 
analysed by retina specialists (H. F., B. H.-B., M. Z.) for 
corresponding biomarkers.

To benchmark the AI analysis, the results were compared 
to gradings made by retina specialists (B. H.-B., M. Z., 
M. G.) for differentiation of initial indication of patient eyes.

Data

The Department of Ophthalmology, St. Franziskus-Hospi-
tal, Muenster, Germany, has established a digital platform 
between local ophthalmologists and its clinical treatment 
centre for cooperative anti-VEGF treatment of patients 
with nAMD. Using this platform, all images and clini-
cally relevant information are exchanged digitally prior 
to initial treatment and before every subsequent treatment 
[19] with intravitreal anti-VEGF therapy. Decisions for 
treatment and retreatment were based on reading centre 
(RC) analysis at the treatment centre (RC: M3 Macula 
Monitor Muenster GmbH & Co KG, Muenster, Germany). 
The study used the pro re nata (PRN) Inhibition of VEGF 
in Age-related choroidal Neovascularisation (IVAN) [20] 

trial protocol (three monthly injections). Treatment and 
retreatment decision were defined following the interna-
tionally published criteria (Comparison of Age-related 
Macular Degeneration Treatments Trials: Lucentis-Avastin 
Trial [21], IVAN trial [20]).

Using this cooperative analysis and treatment system, 
a consecutive unfiltered cohort of 1503 nAMD patients 
with SD-OCT volume scans and clinical information was 
analysed. Patients were seen between 2012–2020. Clinical 
information (best corrected visual acuity (BCVA), FA, gen-
der) and SD-OCT volume scans (Spectralis SD-OCT 1 or 2, 
Heidelberg Engineering, Heidelberg, Germany, 49 B-scans, 
20° × 20°) were collected. SD-OCT images of fellow eyes 
were also transferred to the RC and were used as a com-
parative cohort. These eyes demonstrated most often early/
intermediate AMD, but a substantial number of eyes also 
had disciform scars with BCVA > 1.3 logMAR or additional 
other pathologies like epiretinal gliosis (Table 1). The study 
was conducted in compliance with the Declaration of Hel-
sinki. Ethics Committee (University of Muenster) approval 
was obtained.

Artificial intelligence is based on experience encoded in 
data. To develop the AI decision support algorithms, we 
generated two data sets from this cohort that contain the his-
torical imaging data from SD-OCT volume scans of AMD-
affected patients and their corresponding treatment decisions 
from retina specialists. We used these data sets to train and 
test the algorithms.

The historical SD-OCT image data and meta data were 
extracted from Heidelberg Engineering's HEYEX 2 soft-
ware, which uses a proprietary data format. These files con-
tain the raw pixel data of the SD-OCT scans, in our case with 
49 B-Scans containing 512 A-Scans with 496 pixels. Addi-
tionally, the file’s meta data contain SD-OCT segmentation 
lines automatically generated by the HEYEX 2 software. 
The historical patient treatment data at every examination 
date was extracted from a structured medical record system. 
The predefined treatment process supported by the medical 

Table 1   Breakdown of “no 
treatment” class into subclasses 
for experiment 1 by expert 
opinion

TNR true negative rate

Definition of subclass Number of predictions Class preva-
lence (sum)

Subclass 
TNR (speci-
ficity)Initial treatment no treatment

Early AMD 3 137 140 98%
Intermediate AMD 32 211 243 87%
Geographic atrophy 12 52 64 81%
Disciform scar 18 34 52 65%
Other pathologies (e.g. epiretinal mem-

brane, pattern dystrophy)
8 26 34 76%

Namd with bcva > 1.3 logmar 62 76 138 55%
Not graded (missing or low-quality data) 3 3 6 50%
Totals 138 539 677 80%
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record systems ensures treatment process integrity and the 
use of structured treatment forms ensures high data quality.

We linked the image and treatment data for each patient 
based on the image acquisition date and the medical record 
date.

Data set for experiment 1: no treatment vs. initial 
treatment

To develop an AI decision support algorithm that differenti-
ates between no treatment vs. initial treatment of suspicious 
nAMD cases, we selected all SD-OCT volumes of initial 
RC examinations with a nAMD indication and a succeed-
ing intravitreal anti-VEGF therapy resulting into 1712 eyes 
with nAMD that required anti-VEGF treatment. SD-OCT 
images of fellow eyes without an indication for anti-VEGF-
therapy were used as a comparative cohort to form the no 
treatment class. The no treatment class contained 737 eyes. 
All samples of this class were evaluated by retina specialists 
to divide it into six subclasses for different stages of AMD 
and other pathologies (early AMD, intermediate AMD, geo-
graphic atrophy, disciform scars, nAMD with BCVA > 1.3 
logMAR, other pathologies).

We ensured that only the very first indication of one 
patient’s eye was included in our data set since there were 
patients with multiple AMD indications with treatment gaps 
of several years. Overall, this unfiltered data contained 2449 
eyes from 1503 patients.

Finally, after filtering for sufficient segmentation lines, 
2322 eyes of 1477 patients (1644 eyes with nAMD that 
required anti-VEGF treatment and 678 eyes where no treat-
ment was indicated) were considered in the following exper-
iment. This data underwent the preprocessing steps and was 
used for training.

Data set for experiment 2: stabilised nAMD vs. 
active nAMD

The treatment following the IVAN trial protocol makes 
ongoing AMD examinations of activation criteria inevitable. 
Ophthalmologists decide about retreatment with a new anti-
VEGF injection series. To develop a decision support algo-
rithm that helps differentiating between stabilised vs. active 
nAMD, we assembled a data set that contains historical SD-
OCT volumes and the corresponding retreatment decision. 
When following the PRN treatment schema, the decision can 
either be retreatment (active nAMD class) resulting into a 
new anti-VEGF injection series or follow-up visit resulting 
in a new examination four weeks later (stabilised nAMD 
class). We selected every two consecutive SD-OCT volume 
scans of one initially treated unique patient eye’s treatment 
history and the corresponding retreatment decision.

For example, from the following ordered images for one 
patient eye SD-OCTt-3, SD-OCTt-2, SD-OCTt-1, SD-OCTt0 
three unique timeseries-samples were generated:

Timeseries sample 1: SD-OCTt-3, SD-OCTt-2, retreatment 
decision t-2
Timeseries sample 2: SD-OCTt-2, SD-OCTt-1, retreatment 
decision t-1
Timeseries sample 3: SD-OCTt-1, SD-OCTt0, retreatment 
decision t0

By providing two consecutive SD-OCTs to the CNN, 
the network can learn to compare both volumes to make a 
decision.

We also run experiments with only one SD-OCT volume 
but found out that the AI performance increases by learning 
from two consecutive SD-OCTs as seen in the “Results” 
section. This coincides with how retina specialists evalu-
ate the development of activation criteria by examining the 
preceding and current SD-OCT scans.

In total 9451 timeseries samples containing two consecu-
tive SD-OCT volumes were built: 5717 SD-OCT volume 
scan pairs with decision of stabilised CNV were compared 
with 3734 SD-OCT volume scan pairs with decisions for 
retreatment. Only patient eyes and their follow-up appoint-
ments which previously had been given an initial diagnosis 
of nAMD needing treatment (see data set 1) appeared in 
this dataset.

Data preprocessing

To aid model training, we evaluated several, appropriate 
image preprocessing methods and chose the most effective 
for both experiments. The contribution of each preprocess-
ing step to the model performance for experiment 1 can be 
found in the result section and in Table 2. Figure 2 shows 
the steps of the final data preprocessing pipeline with one 
sample slice. Raw data of pixel-wise reflectivity of the SD-
OCT scans were separated and manually transferred into the 
data preprocessing pipeline. For the analysis, SD-OCT scans 
with 49 B-Scans containing 512 A-Scans with 496 pixels 
were filtered from the obtained dataset (volumes with the 

Table 2   AUC results for experiment 1 and different preprocessing 
steps

Preprocessing CV AUC​

downsampled 0.880
downsampled, ROI 0.906
downsampled, ROI, CLAHE 0.925
downsampled, ROI, CLAHE, augmentation (final) 0.927
fullsize, ROI, CLAHE 0.894
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dimensions 512 × 496x49). Before feeding the images to the 
deep learning model, the provided images underwent pre-
processing. No SD-OCT scans were excluded due to image 
quality, only a small fraction (up to 7 percent) with non-
existent or highly discontinuous segmentation lines was dis-
regarded, as they were used for the next preprocessing step.

A region of interest (ROI) that is considered prognostic of 
AMD like in Russakoff et al. [9] was defined so that the CNN 
focuses on relevant areas only and variance in the dataset is 
reduced. For this, the area between the ILM segmentation 
line and the lower bound of the choroid area (outer choroidal 
boundary, OCB) is automatically identified. The areas outside 

Fig. 2   Final preprocessing pipeline with one sample slice from the raw image data extracted from the SD-OCT machine to the final input used to 
train the deep learning model
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of this ROI (the vitreous body above the inner limiting mem-
brane (ILM) and the sclera below the choroid) were replaced 
with 97% black and 3% low intensity (grey values of 1–64) 
random noise pixels to improve saliency map interpretabil-
ity. The ILM segmentation line is produced by the SD-OCT 
proprietary software. We used the provided retinal pigment 
epithelium (RPE) segmentation line and generated the convex 
hull around RPE as an estimation of the Bruch's Membrane 
(BM) [22]. Following to Russakoff et al. [9] we shifted this 
BM line down in parallel by 390 μm (empirical mean + 2 
SD of the subfoveal choroidal thickness in a population with 
AMD) to define a lower bound of the ROI.

In the next step, contrast enhancement was applied to the 
images by using contrast-limited adaptive histogram equali-
zation (CLAHE).

Finally, the dimensions of the B-scans were down-
sampled to 128 ×  × 124 by using OpenCV's interpolation 
method INTER_AREA [23], resulting into a volume of 
128 × 124 × 49. As the scaling factor 4 is a common divi-
sor of the original dimensions, each resized pixel intensity 
shows the average of 4 × 4 pixels in the original image. 
Image downsampling is a common feature in deep learning 
for ophthalmic image analysis [9, 24]. Downsampling has 
been done in both aspect ratio conserving [24] and non-
conserving for both OCT [9] and for fundus image analysis 
[24]. Lower resolution images as model input allow for faster 
model training and parameter tuning in development and 
use less hardware resources both in training as well as infer-
ence. In addition, it increases transferability of the model to 
inputs by other SD-OCT machines with varying resolutions, 
vendor-specific differences in texture granularity and visual 
artefacts. To verify this downsampling does not significantly 
affect model performance, we conducted a ceteris paribus 
comparison for experiment 1 with an adapted CNN design 
to account for the bigger input dimensions.

To have a more uniform dataset, all images were nor-
malized regarding their horizontal orientation relative to the 
nose, meaning images from left eyes were flipped to have 
the same orientation as right eyes. To generally enlarge the 
training data, compensate for natural variations in scan posi-
tioning and alleviate overfitting, the training data was aug-
mented by random rotation (5–10°), vertical shift (3–15%), 
and horizontal shift (3–10%). We rescaled all pixel values 
of 0–255 to floats of 0.0–1.0 to improve the model training 
convergence speed.

All models were trained end-to-end, without any prior 
segmentation or biomarker definition.

Deep learning

Both algorithms were trained using end-to-end deep learn-
ing, without any prior segmentation or biomarker definition. 
Two new deep learning architectures were developed.

Architecture experiment 1: no treatment vs. initial 
treatment

The 3D CNN scheme for experiment 1 consists of three 
stacked convolutional blocks followed by a global average 
pooling and a fully connected dense layers with rectified lin-
ear unit (ReLU) as the activation function. Finally, a softmax 
layer yields class probabilities for the input volume. Each 
convolutional block is composed (of a sequence) of a 3D 
convolutional layer, ReLU activation, batch-normalization 
and a 3D max pooling layer. Table 3 summarizes the struc-
ture and hyper-parameters of the network.

To mitigate overfitting, we applied L2-regularization 
(lambda = 0.005) in the convolutional layers and dropout in 
the fully connected layer with a dropout rate of 0.5. Fur-
thermore, early stopping policy terminated the training once 
the monitored validation loss had not improved for multiple 
epochs. For the final model the weights of the epoch with 
best performance (lowest validation loss) were selected.

Architecture experiment 2: stabilised nAMD vs. 
active nAMD

In experiment 2 each sample is treated as a timeseries of 
two SD-OCT scans, containing the current and the previ-
ous scan from a single patient and eye. Since the input 
contains spatial and temporal information, a hybrid model 
involving a CNN and long-short term memory (LSTM) 
was implemented. LSTM is a proven class of model in 
deep learning used to process sequence of data. In the pro-
posed model CNN is applied to extract the feature vector 
representation from each of the SD-OCT scans, passing 
the resulting feature vectors to the LSTM for the sequence 

Table 3   Parameters of the 3D-CNN architecture in experiment 1

(L2) = L2-regularization
(ReLU) = rectified linear unit

Layer Units Kernel Size Activation L2

3D convolution_1 32 3 × 3 × 3 ReLU 0.005
Batch normalization_1
3D Max pooling_1 2 × 2 × 2
3D convolution_2 32 3 × 3 × 3 ReLU 0.005
Batch normalization_2
3D Max pooling_2 2 × 2 × 2
3D convolution_3 32 3 × 3 × 3 ReLU 0.005
Batch normalization_3
3D Max pooling_3 4 × 4 × 4
Global Average Pooling
Fully Connected 64
Dropout (30%)
Fully Connected 2 Softmax
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learning of the above mentioned timeseries. This model 
architecture was comprised by the 3D CNN architecture 
from experiment 1 (here with lambda = 0.0001) as a time-
distributed input to an LSTM layer with 64 hidden cells 
outputting only the last hidden cell with activated inter-
nal dropout-rate and a recurrent-dropout-rate both of with 
0.1, and hyperbolic tangent (tanh) as the activation func-
tion. The output of the LSTM layer is connected to a fully 
connected layer with 64 units, and a dropout layer with a 
dropout-rate of 0.3 concluding to a final softmax layer for 
the two-class prediction problem.

Training

For training, the whole dataset was first randomly shuffled. 
To get a reliable evaluation of the model performance, 
we conducted tenfold cross validation at patient level. In 
each of the 10 training iterations a new rotating subset 
with 10% of all samples was held out for the test set. This 
ensured that each sample was classified once as part of a 
test set. The remaining samples were randomly divided 
into training (72% of all samples) and validation set (18%). 
To address data leakage in each iteration all data relat-
ing to a patient appeared strictly in one subset only. The 
validation sets served for early stopping and best model 
selection in each iteration. For overall AUC of an experi-
ment, the mean value of the AUCs from all 10 tests sets 
was calculated.

Both models were trained by Nadam optimizer [25], with 
an initial learning rate of 0.001 using cross entropy as the 
loss function. In experiment 1 the initial learning rate of 
0.001 was adapted during training to 0.0001 after the 10th 
epochs and then to 0.00001 after 20th epoch. Similarly, in 
experiment 2, after 20th epoch we set the learning rate to 
0.005 and to 0.0025 after 30th epoch. The batch size was 
set to 4. We assessed the prediction performance based on 
the area under receiver operating characteristic curve (AUC) 
score. An AUC of 1 indicates a perfect classifier, while 0.5 
represents a classifier without discriminative power. The 
receiver operating characteristic curve (ROC) itself plots the 
relation between the true positive and false positive rate. 
In this study, we preferred using 3D CNN over 2D CNN 
topologies, to also capture the spatial context in the B-scans 
dimension.

A special platform was created for configuring and vali-
dating the model parameters, tracking the experiments, visu-
alizing the results and evaluating the performance. Keras 
[26] served as the deep learning framework using Tensor-
Flow [27] as the backend. The experiments ran on a dedi-
cated machine running Ubuntu Server 20.04 and equipped 
with two linked GPUs (Nvidia GeForce Titan RTX, NVIDIA 
Corporation, Santa Clara, USA).

Saliency map viewer

In addition, a saliency map viewer was developed to visual-
ize the relevant characteristics of the individual deep learn-
ing analysis and results of the algorithms using colour cod-
ing. Saliency maps are obtained by computing the partial 
derivatives of the output class score with respect to each 
input image pixel. The magnitude of these partial derivatives 
denotes the contribution of each pixel to the predicted class 
[28, 29]. For improved interpretation a gaussian filter with a 
standard deviation value of 0.8 is applied to smooth out the 
resulting/calculated pixel values of the saliency map. Highly 
activated areas are highlighted in red to yellow colour.

Grading by retinal specialists

To compare our results with human decision making, we let 
three retina specialists perform a grading of 102 randomly 
chosen samples. Each grader was given the original full res-
olution SD-OCT volume scan used in the initial indication 
without any additional clinical information to differentiate 
between treatment and no treatment.

Results

Experiment 1: no treatment vs. initial treatment

In experiment 1, besides the final scores, we also determined 
the effects of the different preprocessing steps to evaluate 
their usefulness for the model. Without any preprocessing 
except resizing each B-scan to 1/4th of the original resolu-
tion a model was trained with an AUC of 0.880 to serve 
as a baseline for iteratively evaluating the usefulness of 
further preprocessing steps. All values were recorded with 
tenfold cross validation. By utilizing the ROI enhance-
ment preprocessing step after resizing the AUC increased 
to 0.906. Additionally, applying CLAHE, the mean AUC 
improved to 0.925. To verify that our downsampling did 
not significantly affect model performance, we conducted 
a ceteris paribus comparison for the preprocessing pipeline 
with ROI enhancement and CLAHE applied but using full-
sized images with an adapted CNN design to account for the 
bigger input dimensions. This showed that using full-sized 
images and the resulting bigger variance in samples pro-
duced lower AUC of 0.903 (SD: 0.018), indicating that our 
sample size did not suffice for the increased number of fea-
tures in the full-size image. By extending the preprocessing 
pipeline of ROI enhancement, CLAHE and downsampling 
with augmentation, the final AUC showed a slight improve-
ment: The model for initial indication achieved a mean AUC 
of 0.927 (standard deviation (SD): 0.018). Figure 3 depicts 
the single ROCs, the mean ROC and the standard deviation 
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of all ten runs. Additionally, an operating point for the opti-
mal operating threshold according to Zweig and Campbell 
[30] with equal costs for all decisions (m = 1, so TPR-TNR 
is maximized) is given. Also, the frequency of the prediction 

value was analysed to evaluate the effectiveness of the net-
work (Fig. 4). Among all instances the model predicts with 
high confidence the correct class with only small portion of 
misclassifications. Especially for true predictions of initial 
treatment a high frequency of confidence values close to 1.0 
was observed, while most true predictions of no treatment 
had a confidence value of at least 0.8. This validates the 
model's capacity discriminating no treatment versus initial 
treatment decisions with high confidences.

To further understand the model performance, all samples 
of the no treatment class were grouped by their respective 
subclass as described in the Data section. The number of 
correct “no treatment” (true negative) and incorrect “initial 
treatment” (false positive) predictions for the default deci-
sion threshold of 0.5 as well as the true negative rate (TNR 
or specificity) per subclass can be seen in Table 1. For sam-
ples with no treatment AMD the model showed the highest 
subclass TNR of 91% across both classes. Especially eyes 
with BCVA > 1.3 logMAR, where treatment is generally 
not considered, leads to a low subclass TNR of 55%. Even 
with this irregular real-life dataset, a big majority of patients 
requiring no treatment were correctly predicted as such, with 
a true negative rate (TNR) of 80%. When pruning the no 
treatment class by removing all subclasses except early/
intermediate AMD, model performance could be improved 

Fig. 3   Illustrates the receiver operating characteristic curves (ROC) 
for experiment 1, the faint-coloured lines show each of the 10 folds, 
the thick blue line the mean of all experiments; area under receiver 
operating characteristic curve (AUC)

Fig. 4   Frequency of the predic-
tion value no treatment and 
initial treatment of AMD

2225Graefe's Archive for Clinical and Experimental Ophthalmology (2022) 260:2217–2230



1 3

significantly to a TNR of 97%. The mean AUC increased 
from 0.927 with real-life data to 0.976 with pruned data. 
This indicates that improvements for real-life applications 
could be reached by automatic filtering of known properties 
(like BCVA) or using a multiclass model which differenti-
ates between characteristic subclasses.

Experiment 2: stabilised nAMD vs. active nAMD

Using the dataset without augmentation but with the final 
preprocessing pipeline the model for differentiation of sta-
bilised vs. active nAMD achieved a mean AUC of 0.842 
(SD: 0.022). By applying augmentation, the performance 
increased to a mean AUC of 0.865 (SD: 0.027; Fig. 5), 
which is the final AUC for experiment 2.

We were also interested to assess the benefit of utilizing 
preceding and current SD-OCT as a timeseries against the 
case of only using the current SD-OCT as input. For the case 
of using a single SD-OCT volume as input, the deep learning 
model consisted of the 3D-CNN part of our 3D-CNN-LSTM 
architecture only. For this comparison, datasets without 
augmentation were used. The model with the single (cur-
rent) SD-OCT volume achieved an AUC of only 0.815 (SD: 
0.027), compared to the AUC of 0.842 (SD: 0.022) in the 
timeseries case using the LSTM architecture.

Also, the frequency of the prediction value was analysed 
to evaluate the effectiveness of the network (Fig. 6). For 
true predictions of stabilised nAMD a high frequency of 
confidence values close to 1.0 was observed, while most 
true predictions of active nAMD had a confidence value of at 
least 0.8. This validates the model's capacity discriminating 

stabilised nAMD versus active nAMD decisions with high 
confidences.

Saliency map analysis

Figure 7a shows the saliency map for a single B-scan direc-
tion with highly activated areas in red to yellow colour. Fig-
ure 7b is showing the saliency map in direction across all 
49 B-scans. Since the areas, which demonstrated activation, 
are continuous between adjacent B-scans, it is indicating the 
value of using 3D CNN instead of 2D CNN. In the 3D CNN 
different structures (interface vitreous/retina, subretinal, 
intraretinal, sub-RPE space and choroid) could be differen-
tiated. To define a gradation of the relevant structures, on 
which the algorithm decided towards an individual recom-
mendation (red coded structure), the saliency maps of 24 
patients with a predicted probability of ≥ 97.5% and an active 
stage of the nAMD were analysed. Scores from 0 to 2 (0 = no 
staining, 1 = slight staining, 2 = intensive staining) were used 
for each morphological structure and a mean score (M) was 
registered. This analysis of colour intensity on individual 
saliency maps was applied on complete volume scans by 
two independent graders using standard images for classifi-
cation. The retina/vitreous interface was the most important 
structure relevant for the activity decision of the algorithm 
(M = 2.0; SD ± 0). This is followed by the subretinal space 
(M = 1.375; SD ± 0.770), the intraretinal cysts (M = 1.0; 
SD ± 0.933), the sub-RPE space (M = 0.667; SD = 0.868) 
and the choroid (M = 0.625; SD ± 0.824). Therefore, using 
the saliency map analysis, the deep learning model could 
visualize areas in the SD-OCT images, which are relevant 
for an individual decision and therefore the results of the 
AI algorithm can be correlated with typical corresponding 
retinal AMD changes.

Comparison with retinal specialists

The metrics of manual grading can be seen in Table 4. The 
results for grading with only SD-OCT volume information 
available show a high interrater reliability with a Fleiss’ 
Kappa [31] of κ = 0.824. As ground truth, the decisions by 
doctors in our real-life dataset were used and compared to 
the majority vote of the three retinal specialists. A Cohen’s 
Kappa value of κ = 0.776 was observed. Sensitivity for each 
grader ranged from 78 to 94% (majority vote: 91%), specific-
ity from 78 to 91% (majority vote: 87%). All false evalua-
tions by majority vote were looked at manually: the 6 false 
negatives can be explained by unicus situation and activity 
which is only visible in other imaging modalities than SD-
OCT images, while the remaining 4 false positives either had 
BCVA > 1.3 logMAR or disciform scars.

The grading performance can be compared to our pre-
dictions made in tenfold cross-validation for these 102 

Fig. 5   Illustrates the receiver operating characteristic curves (ROC) 
for experiment 2, the faint-coloured lines show each of the 10 folds, 
the thick blue line the mean of all experiments; area under receiver 
operating characteristic curve (AUC)
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samples as they are based on the same image data. Again, 
the doctors’ clinical decisions were used for comparison. 
With the default decision threshold of 0.5 a Cohen’s Kappa 
of κ = 0.650 was observed for all model predictions, being 
close to human performance.

Discussion

In this study using an unspecified real-life cohort of nAMD 
patients two new CNNs have been developed, which can 
support non-retina specialists to distinguish between 
AMD cases with no treatment needed and treatment indi-
cated nAMD as well as between stabilised and retreatment 
indicated situations based on SD-OCT raw data. These 
algorithms can be applied to daily practice to support the 
decision of non-retina specialists for referral to treatment 
centres. The defining characteristics of these algorithms 
are end-to-end processing and their independence of spe-
cific OCT feature analysis. In addition, the saliency map 
viewer could visualize the relevant characteristics for the 
algorithms. In previous studies the developed AI algorithms 
were predominantly addressing the question of AI-assisted 
automatically segmentations on SD-OCT images [32, 33]. 
In additional AI studies on nAMD the prediction for conver-
sion from intermediate into nAMD was of major interest [9, 
14, 15], but also the analysis for predictive biomarkers for 
AMD progression from intermediate AMD into nAMD was 
in the focus of interest [18, 34]. Especially the AI analysis of 
fluid distribution during anti-VEGF therapy of nAMD could 
be successfully achieved [35]. This study focuses on devel-
oping AI algorithms differentiating between no treatment 

Fig. 6   Frequency of the predic-
tion value stabilised nAMD and 
active nAMD

Fig. 7   Saliency map of one sample OCT for a single B-scan (a) and 
in z-axis direction across 49 B-scans (b)
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and treatment (initially and retreatment) in intravitreal anti-
VEGF therapy in nAMD.

In these and other AMD studies [15, 16, 36] an AUC 
of > 0.80 was considered as a clinically good and meaningful 
differentiation. The results of the present study with an AUC 
of 0.927 for the differentiation between treatment-indicated 
nAMD and fellow eyes with AMD cases with no treatment 
needed can therefore be considered clinically relevant, espe-
cially because the control group of fellow eyes contained 
beside eyes with early and intermediate AMD, a considera-
ble number of eyes with late stage nAMD and other patholo-
gies. Also, the AUC of 0.865 for the differentiation between 
stabilised and retreatment-indicated nAMD are in this rel-
evant range. The clinical relevance of these results is also 
highlighted by the fact, that in both situations in the IVAN 
and CATT trial there was also a disagreement between treat-
ing retina specialist and the RC of approximately 20% [20, 
21]. Because the developed AI algorithms were based on 
unselected real-life treatment data and because they demon-
strated robustness against downsampling, cross-validation, 
and retinal specialist´s opinion, these algorithms appear to 
be valid to be tested as a decision aid for referral in clinical 
practice.

In addition, the developed saliency map viewer could 
visualize the relevant characteristics of an individual deep 
learning analysis using colour coding the prediction of the 
trained 3D CNN models. In initial indication decisions with 
a predicted probability of ≥ 97.5% and an active stage of the 
nAMD, the retina/vitreous interface was the most important 
structure relevant for the activity decision of the algorithm, 
which may be a characteristic for retina thickness. Further-
more, changes in the subretinal space representing subreti-
nal fluid, intraretinal cysts, sub-RPE fluid and in some SD-
OCT scans analysis changes in the choroid were relevant. 
Therefore, using the saliency map analysis, the deep learning 
model could visualize areas in the SD-OCT volume scan, 
which supports the AI decision aid by visualizing the basic 
structural correlate for the examining ophthalmologist.

Our downsampling of each of the 49 B-scans of one SD-
OCT volume to 1/4th of the original dimensions might have 
led to information loss in the related biomarkers, yielding 
in decreased model performance. Comparison experiments 
using the developed model architecture showed that the 

full-sized volumes decreased scores against expectation. 
However, the model was not fully optimized for full-size 
volumes and the sample size might be too small for the 
increased number of features. In everyday clinical practice 
retina specialists base their diagnostic decision also on addi-
tional information, such as fundus images, BCVA, patients 
age and activity criteria which could be integrated into a 
clinical decision aid. Judging the treatment using an algo-
rithm based on OCT alone, may be more suitable for patients 
with large lesions and excessive exudation.

The cohorts used in this study were data of unselected 
case series of the clinical routine in the Department of Oph-
thalmology, St. Franziskus-Hospital, Muenster. Therefore, 
for retreatment some individual SD-OCT images were con-
sidered as stabilised in which the treatment was terminated 
because further anti-VEGF treatment was not considered 
to improve the situation. Eliminating these cases and re-
evaluating all decisions from the learning cohort as well as 
increasing in the number of SD-OCT volume scans by devel-
oping automatisation method for SD-OCT-data transfer may 
result in significant further qualitative improvement of indi-
vidual predictions. Even though the saliency map focused 
clinically relevant areas, they should be interpreted with 
caution, since data set was small in relation to the diversity 
of patterns in the images.

In summary, the results of our study demonstrate, that 
the developed AI algorithms can have great implications 
for the future development of medical care models between 
non-retina and retina specialists in the treatment of patients 
with nAMD in real-life clinical practice. These models also 
offer the possibility of being extended to collaborations 
between non-physician providers and retina specialists. The 
analysis of SD-OCT scans of AMD patients with initial or 
repeated indications for anti-VEGF therapy in nAMD using 
this algorithm may support non-retina specialists in their 
decision for referral to a treatment centre. In addition, the 
individual decision of the algorithm can be supervised by 
saliency map volume scan visualization. This algorithm can 
therefore improve the performance and accuracy of non-ret-
ina specialists in real life to achieve reading centre standard.
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