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Abstract
Purpose To develop and validate a deep learning system for diabetic retinopathy (DR) grading based on fundus fluorescein 
angiography (FFA) images.
Methods A total of 11,214 FFA images from 705 patients were collected to form the internal dataset. Three convolutional 
neural networks, namely VGG16, RestNet50, and DenseNet, were trained using a nine-square grid input, and heat maps were 
generated. Subsequently, a comparison between human graders and the algorithm was performed. Lastly, the best model was 
tested on two external datasets (Xian dataset and Ningbo dataset).
Results VGG16 performed the best, with a maximum accuracy of 94.17%, and had an AUC of 0.972, 0.922, and 0.994 for 
levels 1, 2, and 3, respectively. For Xian dataset, our model reached the accuracy of 82.47% and AUC of 0.910, 0.888, and 
0.976 for levels 1, 2, and 3. As for Ningbo dataset, the network performed with the accuracy of 88.89% and AUC of 0.972, 
0.756, and 0.945 for levels 1, 2, and 3.
Conclusions A deep learning system for DR staging was trained based on FFA images and evaluated through human–machine 
comparisons as well as external dataset testing. The proposed system will help clinical practitioners to diagnose and treat 
DR patients, and lay a foundation for future applications of other ophthalmic or general diseases.
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Key messages

Currently, artificial intelligence has already played an important role in a series of studies on automatic diabetic 
retinopathy (DR) diagnosis, and achieved excellent performances. Past studies were mainly conducted based on 
color fundus photography (CFP), and few studies have focused on more precise DR diagnosis based on fundus 
fluorescein angiography (FFA) images.

FFA is a powerful tool for precisely assessing DR severity. We collected a large internal dataset consisted of 
11214 FFA images, and developed a deep learning system for DR grading based on the dataset. We validated 
the best model on two external datasets (Xian dataset and Ningbo dataset) to show the ability of wide application.

Considering the difficulties of dealing with the input of FFA images, we came up with a ‘nine-square grid input’ 

method in this study. Compared with other input methods, the model using nine-square grid inputs yielded the 

best results.
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Introduction

Diabetic retinopathy (DR) is the most frequent cause of 
preventable blindness across the globe [1–3]. It has been 
estimated that the number of DR patients will increase to 
more than 200 million by 2040 [2], resulting in a tremen-
dous social burden [4]. However, vision loss mainly occurs 
in the advanced stages of DR [5], and the most effective 
treatment for DR can be achieved in the early stages [6]. 
Therefore, it is necessary to provide patients with precise 
diagnoses of DR grade.

Clinical DR screening and diagnosis are typically 
performed based on color fundus photography (CFP) or 
fundus fluorescein angiography (FFA) images [7–9]. CFP 
is a simple and effective examination for DR screening 
because it is rapid, non-invasive, and widely available [10, 
11]. However, FFA can detect typical pathological changes 
such as microaneurysms, non-perfusion regions, and vas-
cular leakage and provides dynamic information regarding 
retinal blood vessels that CFP cannot identify [1, 7, 12]. 
FFA is a more powerful tool for precisely assessing DR 
severity, which directly guides individual treatment plans 
and plays a crucial role in DR diagnosis.

The traditional procedure for DR diagnosis is time-con-
suming, and its accuracy depends on the personal experi-
ence of experts. Deep learning is a machine learning tech-
nique that avoids complex engineering tasks by learning 
the most predictive features from a labeled dataset of med-
ical images [13, 14]. This technology has already played 
an important role in a series of studies on automatic DR 
screening [15–18]. Gulshan’s deep learning algorithm for 
DR detection has achieved excellent performance and can 
increase the efficiency, reproducibility, and coverage of 
screening programs [19]. Sayres et al. used a convolutional 
neural network (CNN) model to assist in DR grading and 
provided direct evidence for classification using explana-
tory heat maps [20]. Regardless of those great results, the 
existing CFP-based DR screening systems showed rather 
poor sensitivity in the diagnosis of early DR, and the 
binary diagnosis might not be directly enough to guide 
further treatment. For another, in many DR-related artifi-
cial intelligence studies, the data were heterogeneous, thus 
restricting their application in real clinical environment. 
For a comprehensive investigation and better application, 
the acquisition of multi-center data is essential.

On the other hand, few studies have focused on more 
precise DR diagnosis based on FFA images [21–23]. 
Firstly, unlike CFP images, there is a lack of FFA image 
dataset, because FFA images are relatively hard to obtain. 
Then, an FFA report always contains nine or more fundus 
images, and former studies focused on either single FFA 
image or a continuous input of each image from the report, 

making the information not fully used or the whole process 
pretty complex. Recently, Pan et al. compared three CNNs 
for the multi-label classification of DR lesions and laid a 
foundation for the automatic analysis of FFA images and 
DR diagnosis [12].

In this study, we came up with a novel “nine-square 
grid input” to deal with the input of FFA images and then 
developed a deep learning algorithm based on FFA images 
for DR grading. We trained and validated the system on 
an internal dataset and evaluated its functionality through 
human–machine comparisons and multi-center dataset test-
ing. Its quick and precise DR grading can potentially aid 
decision-making for other ophthalmic or general diseases.

Methods

An overview of the study approach and methodology is pre-
sented in Fig. 1. This is a sub-analysis of FFA data from a 
clinical study (A New Technique for Retinal Disease Treat-
ment, ClinicalTrials.gov identifier: NCT04718532).

FFA report acquisition

In this study, we retrospectively collected 11,214 FFA 
images from 1114 eyes (563 right eyes and 551 left eyes) 
of 705 diabetes patients (age range of 22 to 85 years, male-
to-female ratio of 1.39:1) who received FFA examinations 
at the Eye Center at the Second Affiliated Hospital of Zhe-
jiang University School of Medicine between August 2016 
and July 2020. Images of both early and late phase of dif-
ferent retina fields are included in this dataset. The images 
are JPEG format, with a resolution of 768*768. Operations 
were performed by two experienced ophthalmologists using 
the Heidelberg retina angiograph (Heidelberg Engineering, 
Heidelberg, Germany) with a 30° field of view. Subjects 
were not included if their fundus could not be photographed 
because of a turbid medium or overexposure.

Annotation

The DR severity level of each eye was determined based on 
a set of images from an FFA examination report. Images 
were graded according to the international clinical diabetic 
retinopathy (ICDR) disease severity scale [24], as shown in 
Table 1. Examples of lesions in FFA images with different 
DR severity levels are presented in Fig. 2.

Three ophthalmologists were involved in the grading 
project. They were considered to be experienced and well 
trained prior to this project. Labels were determined with-
out previous communication, and a ground-truth label was 
confirmed if there was no divergence for a single eye. Oth-
erwise, another round of discussion and adjudication was 
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Fig. 1  Illustration of the entire procedure
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required, and the final results were decided by the majority 
rule.

Dataset establishment

Only images considered gradable by human graders were 
used for further AI analysis. Techniques such as rotating, 
flipping, or otherwise were not used to increase the num-
ber of images. Before training CNNs, we randomly divided 
the entire dataset into training, validation, and testing sets. 

The training set was used to train the models, the validation 
set was used to validate the results of each training cycle 
(epoch), and the testing set was used to validate the func-
tionality of the models.

Training of deep learning models

Because severity levels were determined based on sets of 
images, a suitable method was required to handle inputs. 
Several methods were tested, and a nine-square grid input 

Table 1  Standard for DR severity levels

ICDR international clinical diabetic retinopathy, FFA fundus fluorescein angiography, DR diabetic retinopathy, DD disc diameter, IRMA intra-
retinal microvascular abnormalities

Severity level ICDR severity scale Findings on FFA images

1 Mild DR and moderate DR Microaneurysm-like punctate or clustered intense fluorescence; or small 
sheet capillary leaking fluorescence; or non-perfusion areas ≤ 5 DD

2 Severe DR 4 quadrants with extensive microaneurysm-like fluorescence or retinal 
hemorrhagic obscured fluorescence and 1 quadrant with severe intra-reti-
nal microvascular abnormalities; or IRMA; or non-perfusion areas ≥ 5 
DD

3 Proliferative DR Retinal neovascularization, vitreous hemorrhage or pre-retinal hemorrhage

Fig. 2  Examples of FFA images 
with different DR severity 
levels. a Images with mild 
microaneurysm-like punctate 
fluorescence. b Images with 
non-perfusion areas ≤ 5 DD in 
size. c Images with small sheet 
capillary leaking fluorescence. 
d Images with extensive micro-
aneurysm-like fluorescence 
and intra-retinal microvascular 
abnormalities (IRMAs). e 
Images with retinal hemor-
rhagic obscured fluorescence. f 
Images with IRMAs (indicated 
by red squares). g Images with 
non-perfusion areas ≥ 5 DD in 
size. h Images with fluores-
cence leakage caused by retinal 
neovascularization. i Images 
with pre-retinal hemorrhage. j 
Images with vitreous hemor-
rhage
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provided the best results. The specific process for generating 
a nine-square grid input is to select nine FFA images ran-
domly from one patient’s FFA report and then combine them 
along their edges to form a nine-square grid in chronologi-
cal order of imaging. Additionally, a histogram equalization 
technique was applied in this study to enhance the contrast 
of images prior to training.

Performance evaluation

We tested three mainstream CNNs (VGG16, ResNet50, and 
DenseNet) to achieve the best possible grading performance. A 
confusion matrix was generated using five-fold cross-validation 
to ensure the stability of each model. Following classification, 
we also developed a visualization model to interpret results.

Comparison to human graders

To demonstrate the capabilities of our models more com-
prehensively, we compared the performance of the proposed 
algorithm to that of human graders on the testing set. The 
performances of the CNNs were assessed according sepa-
rated accuracies for each level of image, overall accuracy, 
F1-score, and AUCs. Trained ophthalmologists were then 
asked to label the images manually, and their performances 
were evaluated in terms of separated and overall accuracy.

Performance of models on external datasets

There were two external datasets in this study, namely Xian 
dataset and Ningbo dataset. The Xian dataset collected FFA 
reports from the Second Affiliated Hospital of Xi’an Jiao-
tong University (Xibei Hospital), including 308 eyes of 160 

DR patients. The image format is JPG, and the resolution is 
412*412. The Ningbo dataset consisted of FFA reports from 
27 eyes of 14 DR patients, who received examination from 
the Eye Center at Ningbo First Hospital. The image format 
is PNG, with a resolution of 518*518. Each report was pro-
cessed and labeled and then tested by the CNNs. Accuracies 
for each level of image, overall accuracy, F1-score and AUCs 
were generated to evaluate the performance.

Results

Internal dataset

Table 2 presents the patient characteristics and distribution 
of the internal dataset. The numbers of eyes with DR sever-
ity levels of 1, 2, and 3 are 180, 395, and 539, respectively. 
For all three levels, patients were divided into groups with 
similar age, sex, and right eye proportion distributions. The 
training set accounted for 60% of the dataset, while the vali-
dation set and testing set each accounted for 20%. Each set 
was well balanced in terms of severity levels.

In this work, the accuracies and F1-scores of the CNN 
models were evaluated, as shown in Table 3. VGG16 per-
forms the best, with a maximum accuracy of 94.17% and 
average accuracy of 91.11%, while RestNet50 yields values 
of 91.03% and 90.22%, respectively, and DenseNet yields 
values of 91.93% and 90.87%, respectively. The F1-scores 
for VGG16 are 85.30%, 91.92%, and 98.62% for the three 
severity levels, while for RestNet50 are 71.64%, 89.03%, and 
98.61%, and for DenseNet are 87.18%, 88.00%, and 96.33%.

To further evaluate the performances of the CNNs, 
receiver operating characteristic (ROC) curves were drawn. 

Table 2  Population 
characteristics and statistical 
information from the internal 
dataset

Type Age (year) Male sex (%) OD/OS Number of eyes Training Validation Test

Level 1 59 ± 10 51.11 1.02 180 108 36 36
Level 2 57 ± 10 57.72 0.98 395 237 79 79
Level 3 52 ± 10 60.67 1.05 539 323 108 108
Total 55 ± 10 58.08 1.02 1114 668 223 223

Table 3  Comparison of CNNs 
and three ophthalmologists

Acc accuracy

Best Acc Overall Acc Level 1 Level 2 Level 3

Acc F1-score Acc F1-score Acc F1-score

VGG16 94.17% 91.11% 80.55% 85.30% 93.67% 91.92% 99.07% 98.62%
ResNet50 91.03% 90.22% 66.67% 71.64% 92.40% 89.03% 98.15% 98.61%
DenseNet 91.93% 90.87% 94.44% 87.18% 83.54% 88.00% 97.22% 96.33%
Doctor 1 92.96% 95.74% 89.10% 89.76% 92.70% 94.38% 93.21%
Doctor 2 88.05% 82.93% 80.01% 87.02% 92.82% 90.50% 93.47%
Doctor 3 91.87% 91.84% 87.38% 93.36% 92.49% 90.79% 93.56%
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Figure 3 presents the ROC curves and best confusion matrix 
for each CNN. The areas under the ROC curves (AUCs) 
of VGG16 are 0.972, 0.922, and 0.994 for levels 1, 2, and 
3, respectively. For ResNet50 and DenseNet, the values 
are 0.948, 0.946, and 0.990 and 0.989, 0.898, and 0.994, 
respectively. Confusion matrices for the multiclass task were 
generated for all three networks, as shown in Fig. 3. VGG16 
and DenseNet exhibit better stability, while ResNet50 yields 
poor overall results. The original images and images dealt 
with visualization models are presented in Fig. 4. In the heat 

maps, the red areas represent areas of interest to machine, 
and the blue areas represent areas deemed unimportant by 
the machine, and the white arrows indicate areas that the 
doctors considered important.

The results of the human–machine comparisons are 
presented in Table 3 and Fig. 5. There were 2248 FFA 
images from 223 eyes in the test set. The overall accura-
cies of three ophthalmologists were 92.96%, 88.05%, and 
91.87%. In Fig. 5, we present a few examples from the 
testing set and their labels assigned by the networks and 

Fig. 3  ROC curve and confusion matrix for the multiclass task for three CNNs. a and b VGG16. c and d ResNet50. e and f DenseNet

Fig. 4  Heat map of the deep learning model. The white arrows point to crucial areas
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ophthalmologists. If a label is the same as the ground-
truth label, it is shown in green. Otherwise, it is shown in 
pink. Also, accuracies between human and machine were 
shown directly using histogram.

External datasets

The patient characteristics and distribution of two external 
datasets are available in Table 4. The numbers of eyes with 

DR severity levels of 1, 2, and 3 are 147, 108, and 53 for Xian 
dataset and 11, 11, and 5 for Ningbo dataset. We applied the 
best performing network (VGG16) to them. For Xian data-
set, our model reached the beat accuracy of 82.47% and the 
AUC of 0.910, 0.888, and 0.976 for levels 1, 2, and 3. As for 
Ningbo dataset, the network performed with the best accu-
racy of 88.89% and the AUC of 0.972, 0.756, and 0.945 for 
levels 1, 2, and 3. Figure 6 presents the ROC curves and best 
confusion matrix for the multi-center datasets.

Fig. 5  Comparison between 
human graders and algorithms. 
a Diagnosis of test set by three 
CNNs and three ophthalmolo-
gists. b Performance of three 
CNNs and three ophthalmolo-
gists for each level of image

Table 4  Population 
characteristics and statistical 
information from the external 
dataset

Dataset Type Age (year) Male sex (%) OD/OS Number of eyes

Xian dataset Level 1 58 ± 9 66.67 1.01 147
Level 2 57 ± 10 70.37 0.89 108
Level 3 53 ± 11 69.81 0.96 53
Total 56 ± 10 68.51 0.96 308

Ningbo dataset Level 1 49 ± 15 63.64 1.20 11
Level 2 62 ± 10 72.73 0.83 11
Level 3 69 ± 4 60.00 1.50 5
Total 58 ± 14 66.67 1.08 27

1669Graefe's Archive for Clinical and Experimental Ophthalmology (2022) 260:1663–1673



1 3

Discussion

In this retrospective multi-center study, we tested and com-
pared three CNN models on an internal dataset to deter-
mine the optimal CNN architecture, conducted comparison 
between human and machine to do evaluation, and applied 
the best model to external datasets. To the best of our knowl-
edge, this is the first study to develop a deep learning method 
for DR grading based on a dataset consisting of FFA images. 
This study fills the gap of FFA images for DR artificial intel-
ligence diagnosis and has the potential to realize better DR 
classification results than CFP analysis.

Over the past few years, deep learning has become 
a popular tool for assisting in DR staging. Although few 
studies have applied artificial intelligence to FFA images, a 
number of algorithms have been developed based on CFP 
[25–30]. Gulshan et al. were the first to present a CNN net-
work that was only given an image and associated grade 
for detecting referable DR (RDR), resulting in an AUC of 
0.991 for EyePACS-1 and 0.990 for Messidor-2 [19]. They 
later studied the performance of their network on a cohort of 
patients with diabetes in India and found that it could match 
or exceed the performance of manual grading [31]. Li et al. 
developed a similar deep learning algorithm and tested its 
functionality on a large multiethnic dataset, achieving an 
AUC of 0.955 [32]. Bellemo et al. adopted an ensemble AI 
model consisting of two CNNs to classify RDR and vision-
threatening DR in a poor African population. Their model 
achieved an AUC of 0.973 [33]. Takahashi et al. proposed a 
neural network trained on four photographs for grading DR 
involving a retinal area that is not typically visualized in 
fundoscopy [34]. The prevalence and bias-adjusted Fleiss’ 
kappa (PABAK)-to-modified-Davis-grading ratio was 0.64 

and the PABAK-to-real prognosis-grading ratio was 0.37. 
Raumviboonsuk et al. presented a method for staging DR on 
a more granular five-point grade. Their study involved one 
of the largest clinical validations of a deep learning algo-
rithm [35]. Sayres et al. further improved this concept and 
investigated visualization models using predicted DR scores 
and explanatory heat maps, starting a trend toward higher 
accuracy, confidence, and grading times [20]. All of the 
studies discussed above have made significant contributions 
to the computer-aided diagnosis of DR and have promoted 
the development of deep learning algorithms for medical 
images. However, CFP images are qualitative, rather than 
quantitative [11], making them less accurate for staging DR 
severity. As indicated by the discussion above, most algo-
rithms in previous studies on DR classification have simpli-
fied various levels of DR into binary predictions. The not 
ideal sensitivity in early DR detection and the heterogeneity 
of data restricted their clinical application.

Compared to CFP, FFA is more invasive and time-con-
suming. Nevertheless, DR mainly affects retinal blood ves-
sels [36, 37], and FFA images can show more details of 
retinal blood vessels, including non-perfusion areas and 
vascular leakage, resulting in greater effectiveness for DR 
grading. In other words, FFA is the gold standard for DR 
grading. Additionally, CFP photos are only partial views of 
the retina, whereas FFA is able to capture peripheral lesions, 
leading to a more complete assessment of the entire retina. 
In real-world scenarios, patient management can be different 
at each level of DR [38]. Therefore, it is crucial to provide a 
precise diagnosis of DR stages. Up to now, there have been 
few studies focused on FFA images, which may be explained 
by the difficulty of data obtaining and processing.

As for dataset acquiring, our work gathered one large 
internal dataset and collected two external datasets in other 

Fig. 6  ROC curve and confusion matrix for the external datasets. a and b Xian dataset. c and d Ningbo dataset
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centers. The model was developed on the internal one, con-
sisting of 11,214 FFA images from 1114 eyes. Among three 
mainstream CNNs, VGG16 achieved the best results in 
terms of accuracy, F1-score, and AUC, which can be indi-
cated from Table 3 and Fig. 3. The level 1 images yield 
relatively poor results, which can be attributed to an insuf-
ficient number of level 1 training samples. Additionally, our 
standard combines both mild and moderate DR into level 
1, which may be ambiguous when lesions lie between the 
moderate and severe level. This was also an issue during 
manual labeling. Level 3 images yield the best performance, 
which is intuitive based on the presence of prominent fea-
tures such as leakage and vitreous hemorrhage. The heat 
map in Fig. 4 presents the areas that the proposed algorithm 
found to be the most important, which are consistent with 
the white arrows identified by the ophthalmologists. This 
indicates that the model can aid in making clinical deci-
sions in a logical manner. The human–machine comparison 
in Fig. 5 showed that CNNs could reach a comparable level 
to the ophthalmologists. Afterwards, the external datasets 
were used for testing. The Xian dataset consisted of 308 
eyes, while the Ningbo dataset consisted of only 27 eyes. 
Also, the number and form of FFA reports from each dataset 
are slightly different due to the devices. However, the results 
showed that regardless of the size of dataset or the form of 
FFA reports, our model achieved an acceptable performance, 
indicating the possibility of wide application.

Considering the difficulties of dealing with the input of 
FFA images, the nine-square grid inputs used in this study 
are innovative. Each sample in our dataset contains nine or 
more images. Therefore, to ensure consistent input sizes, 
we randomly selected nine images and arranged them into a 
nine-square grid according to their order in the correspond-
ing inspection report. Additionally, we also considered other 
input methods such as overlay inputs (for each sample, nine 
pictures were selected randomly and depth-wise concat-
enation was performed in ascending order according to the 
order in the report) and average inputs (for each sample, 
nine pictures were selected randomly, added pixel by pixel, 
and average values were calculated to obtain the final input). 
Experimental comparisons revealed that the model using 
nine-square grid inputs yielded the best results.

There are several limitations in this study. First, there 
are no normal FFA images in our dataset because FFA 
is an invasive fundus examination and a normal image 
is relatively difficult to obtain. Second, it may be argued 
that FFA is invasive, and those with mild or moderate 
DR might have no need to do this test. However, without 
FFA images, we may find it difficult to say whether these 
patients are diagnosed with the right DR stage. Addi-
tionally, the proposed algorithm may not perform well 
on images with subtle lesions, which can be attributed 

to the input method we adopted and the features of deep 
learning algorithms. Moreover, we only gathered images 
from patients with DR without any other fundus diseases. 
This means that our model may not distinguish between 
individuals with combined diseases, which could lead to 
incorrect classification. Lastly, images used in this study 
were obtained from Chinese patients, and the model may 
not be suitable for other races.

In summary, we proposed a deep learning algorithm for 
DR staging based on FFA images, compared it to human 
graders, and analyzed its effects on two external clinical 
datasets. Our work may significantly improve the current 
clinical procedure by providing automated real-time evalu-
ations to expedite diagnosis. With appropriate technical 
help, we can embed the algorithm into the FFA machine, 
or build a website to automatically read the FFA reports 
online. Future studies should focus on enhancing classi-
fication results, the ability to discover tiny lesions, use 
of time information in FFA pictures, and incorporating 
additional modalities such as CFP images.
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