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Abstract
Purpose To create a model for prediction of postoperative visual acuity (VA) after vitrectomy for macular hole (MH) treat-
ment using preoperative optical coherence tomography (OCT) images, using deep learning (DL)–based artificial intelligence.
Methods This was a retrospective single-center study. We evaluated 259 eyes that underwent vitrectomy for MHs. We 
divided the eyes into four groups, based on their 6-month postoperative Snellen VA values: (A) ≥ 20/20; (B) 20/25–20/32; 
(C) 20/32–20/63; and (D) ≤ 20/100. Training data were randomly selected, comprising 20 eyes in each group. Test data 
were also randomly selected, comprising 52 total eyes in the same proportions as those of each group in the total database. 
Preoperative OCT images with corresponding postoperative VA values were used to train the original DL network. The final 
prediction of postoperative VA was subjected to regression analysis based on inferences made with DL network output. We 
created a model for predicting postoperative VA from preoperative VA, MH size, and age using multivariate linear regres-
sion. Precision values were determined, and correlation coefficients between predicted and actual postoperative VA values 
were calculated in two models.
Results The DL and multivariate models had precision values of 46% and 40%, respectively. The predicted postoperative VA 
values on the basis of DL and on preoperative VA and MH size were correlated with actual postoperative VA at 6 months 
postoperatively (P < .0001 and P < .0001, r = .62 and r = .55, respectively).
Conclusion Postoperative VA after MH treatment could be predicted via DL using preoperative OCT images with greater 
accuracy than multivariate linear regression using preoperative VA, MH size, and age.
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Key messages

Several factors have been reported to influence postoperative visual acuity after macular hole surgery, but the 
models using these predictive factors are not accurate enough to predict postoperative visual acuity.   

Our study is the first report of successful postoperative visual acuity prediction from preoperative optical cohe-
rence tomography images using deep learning-based artificial intelligence.   

Our deep learning - based artificial intelligence method showed better accuracy and stronger correlation with ac-
tual postoperative visual acuity than prediction of postoperative visual acuity using a multivariate linear regression 
model or an ordinal multinomial logistic regression model.   

 * Shumpei Obata 
 obata326@belle.shiga-med.ac.jp

1 Department of Ophthalmology, Shiga University of Medical 
Science, 520 – 2192, Seta Tsukinowacho, Otsu, Shiga, Japan

/ Published online: 12 October 2021

Graefe's Archive for Clinical and Experimental Ophthalmology (2022) 260:1113–1123

http://orcid.org/0000-0001-6120-2392
http://crossmark.crossref.org/dialog/?doi=10.1007/s00417-021-05427-2&domain=pdf


1 3

Introduction

Macular holes (MHs) are full-thickness vertical retinal 
defects in the foveal neurosensory retina [1]. MHs cause 
visual loss and/or anorthopia. Internal limiting membrane 
(ILM) peeling and gas tamponade are surgical procedures 
considered important for MH treatment, both of which 
have been shown to improve the MH closure rate [2–4]. 
Patients with MHs can achieve improved visual acuity 
(VA) through surgical treatment, but it is difficult to pre-
dict postoperative VA in these patients. Several factors 
have been reported to influence postoperative VA, namely, 
patient age, MH size, symptom duration, preoperative 
VA, and foveal vessel density [5–11]. In clinical practice, 
preoperative VA is an important prognostic factor that is 
frequently considered the strongest predictor of postop-
erative VA [12–15]. However, preoperative VA alone is 
insufficient for the prediction of postoperative VA.

Deep learning (DL)–based artificial intelligence (AI) 
has recently attracted considerable global interest. DL uses 
a representation learning method with multiple levels of 
abstraction to process input data without the need for man-
ual feature engineering; it automatically recognizes the 
complex structure of high-dimensional data by projecting 
these data onto a low-dimensional manifold [16]. DL has 
the potential to enable analysis of complex phenomena 
that are difficult for humans to analyze manually. In the 
field of ophthalmology, there have been several DL-based 
studies involving fundus photographs and optical coher-
ence tomography (OCT). Major ophthalmic diseases have 
been investigated using OCT-focused DL technology; 
these include diabetic retinopathy, retinal vein occlusion, 
glaucoma, and age-related macular degeneration [17–24]. 
DL might enable the prediction of VA using OCT images 
in patients with age-related macular degeneration [25]. 
According to a PubMed search using the keywords “arti-
ficial intelligence, deep learning, prediction, retina” there 
are currently no published reports concerning the predic-
tion of postoperative VA after vitrectomy for the treatment 
of MHs using DL analysis of preoperative OCT images. 
We hypothesized that the postoperative VA values pre-
dicted using DL-based AI would be more strongly cor-
related with actual VA at 6 months postoperatively, in 
comparison with postoperative VA values predicted using 
preoperative VA alone, a multivariate linear regression 
model based on preoperative factors, or an ordinal mul-
tinomial logistic regression model based on preoperative 
factors. In this study, we created a model for the prediction 
of postoperative VA from preoperative OCT images using 
DL-based AI and compared the results with predictions 
made using preoperative VA alone, a multivariate linear 
regression model based on preoperative factors, and an 

ordinal multinomial logistic regression model based on 
preoperative factors.

Methods

Patient population, inclusion criteria, and treatment 
protocol

This retrospective study protocol was approved by the Insti-
tutional Review Board/Ethics Committee Shiga University 
of Medical Science (Otsu, Japan). For this study, an opt-out 
consent process was used at Shiga University of Medical 
Science Hospital following approval by the Institutional 
Review Board. This study adhered to the tenets of the Dec-
laration of Helsinki. We retrospectively reviewed the medi-
cal records of all patients who underwent vitrectomy for the 
treatment of idiopathic MH from January 2011 to April 2020 
at Shiga University of Medical Science Hospital. Patients 
were excluded if they met any of the following criteria: pres-
ence of high myopia (axial length, ≥ 26.5 mm), history of 
previous vitreous surgery; presence of macular disease other 
than MH, and/or postoperative complications.

All patients underwent 23- or 25-gauge pars plana vit-
rectomy, performed by six retinal specialists. Phacoemul-
sification and intraocular lens implantation were performed 
before vitrectomy in nearly all phakic eyes at the time of 
MH surgery. Triamcinolone acetonide, alone or in combi-
nation with either indocyanine green or brilliant blue G, 
was sprayed gently onto the macular area to detect the ILM, 
which was then peeled away from the retina in the macular 
area. Finally, air or 20% sulfur hexafluoride  (SF6) gas tam-
ponade was applied.

Deep learning model

Because of the lack of a large training dataset and consider-
ing the tradeoff between accuracy and computational speed, 
we built a deep neural network and trained it with the Adam 
optimizer [26]. We used batch normalization [25] (Fig. 1), 
which is a common approach for the acceleration of modern 
DL training methods. The batch size was 8, and the loss 
function was categorical cross-entropy. The learning rate 
was set to 0.0002. Our training data comprised horizontal 
and vertical scans of OCT images (taken by Cirrus OCT, 
Carl Zeiss Meditec, Dublin, CA, USA), coupled with post-
operative VAs as ground truth. The center of the original 
image was cropped at 1/7 of the image height + 6 pixels 
from the top, 1/4 of the image height from the bottom, and 
1/4 of the image width from both the left and right; it was 
resized using the OpenCV INTER_AREA algorithm. The 
resolution and size of the input images were 640 × 512 pixels 
and 169.35 × 135.47 mm, respectively. Data augmentation 
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techniques (e.g., horizontal flip, scale, shift, rotate, shear, 
crop, gamma contrast, and multiply) were programmed 
using the Python module “imgaug”; these were then applied 
to the images in the training dataset to increase the amount 
of training data.

For the DL model, we divided the patients into four 
groups (A, B, C, and D), based on their postoperative deci-
mal VA (Snellen VA) values: (A) ≥ 1.0 (20/20), (B) 0.9–0.7 
(approximately 20/25–20/32), (C) 0.6–0.3 (approximately 
20/32–20/63), and (D) ≤ 0.2 (20/100). These categories 
were defined as follows: ≥ 1.0 (20/20) was considered nor-
mal; ≥ 0.7 (approximately 20/32) is adequate for a driv-
er’s license in Japan; ≥ 0.3 (approximately 20/63) [27] is 

adequate for reading and writing; and ≤ 0.2 (20/100) is con-
sidered poor VA.

In this model, the input was the preoperative OCT images 
and the output was categories of postoperative VA (A, B, C, 
and D). Following categorization, the resulting predicted 
postoperative VAs were converted into a single predicted 
postoperative VA using regression analysis.

We used a simple but very successful approach to reg-
ularization, known as label smoothing [28]. If the actual 
postoperative VA was in group A, we weighted the data at 
65% toward group A, 25% toward group B, and 10% toward 
group C, rather than 100% toward group A during training. 
If the actual postoperative VA was in group B, we weighted 
the data at 25% toward group A, 50% toward group B, and 
25% toward group C, rather than 100% toward group B. If 
the actual postoperative VA was in group C, we weighted 
the data at 25% toward group B, 50% toward group C, and 
25% toward group D, rather than 100% toward group C. If 
the actual postoperative VA was in group D, we weighted the 
data at 10% toward group B, 25% toward group C, and 65% 
toward group D, rather than 100% toward group D. Because 
groups A and D were the boundary/limiting groups in terms 
of actual postoperative decimal VA, our label smoothing 
could not include values at both ends of the true value of 
those groups; therefore, we modified the weighting values, 
compared with weighting values used for groups B and 
C. We also produced saliency heatmaps using gradient-
weighted class activation mapping (Grad-CAM) [29].

The number of eyes in each group was as follows: (A) 
68 (26%), (B) 81 (31%), (C) 85 (33%), and (D) 25 (10%). 
Group D had the lowest number of eyes, so the sizes of train-
ing and test datasets were established in accordance with 
the size of group D. OCT data were randomly divided into 
80% (20 eyes/40 images) for training and 20% (5 eyes/10 
images) for testing in group D. Because imbalances among 
categories are commonly regarded as potential reasons for 
unsatisfactory training results in machine learning studies 
[30], we used a similar number of training images (n = 40) 
for each group. Training data were randomly selected for all 
groups from among images of eyes that met the correspond-
ing group criteria. Test data were randomly selected at the 
same proportions as those of each group in the total data: 
A, 14 (26%); B, 16 (31%); C, 17 (33%); and D, 5 (10%) 
(Table 1). The test data were used to evaluate the final per-
formance of the trained model.

Preoperative VA model and multivariate linear 
regression model

Subsequently, a model for the prediction of postoperative 
VA from preoperative VA (i.e., a preoperative VA model) 
and a model for the prediction of postoperative VA from pre-
operative predictors of postoperative VA (i.e., a multivariate 

Fig. 1  Deep neural network architecture used in this study. ConvBN 
(16, 3): convolution batch normalization, 16 filters, 3 × 3 kernel. A 
method to stabilize and accelerate learning by allowing each layer to 
learn independently after the convolutional layer. The output of the 
convolutional layer will be 16 channels, with a kernel size of 3 × 3. 
Filtering on nearby nodes in the previous layer to obtain a “feature 
map.” Max pooling: the feature map output from the convolutional 
layer is further reduced to create a new feature map, which extracts 
only the larger values from the filtered ones. Flatten: converting data 
dimension to one dimension. DenseBN: batch normalization after the 
dense layer. Dense: a layer where all the neurons in the front and back 
layers are connected
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linear regression model) were created using the 80 eyes that 
had been included as training data in the DL model. For 
the preoperative VA model, we calculated the correlation 
coefficients between the preoperative and postoperative VA; 
predicted postoperative VA values were calculated using the 
correlation equation obtained from this calculation. Several 
factors have been reported to influence postoperative VA: 
patient age, MH size, symptom duration, preoperative VA, 
and foveal vessel density [5–11]. For the multivariate linear 
regression model, preoperative VA, MH size, and patient age 
were used as independent variables, for which information 
was available in the current study.

Ordinal multinomial logistic regression model

We also created an ordinal multinomial logistic regression 
model for the prediction of postoperative VA groups from 
preoperative predictors of postoperative VA (i.e., an ordinal 
multinomial logistic regression model). Several factors have 
been reported to influence postoperative VA: patient age, 
MH stage and size, symptom duration, preoperative VA, and 
foveal vessel density [5–11]. For the ordinal multinomial 
logistic regression model, we used the following informa-
tion from the 52 eyes that had been included as test data in 
the DL model: patient age, preoperative VA, and minimum 
MH size. After the exclusion of variables with a variance 
inflation factor > 10, preoperative VA and minimum MH size 
remained independent variables in the ordinal multinomial 
logistic regression model. The precision (positive predictive 
value) and recall (sensitivity) of this ordinal multinomial 
logistic regression model were evaluated using the 52 eyes 
that had been included as test data in the DL model.

Model evaluation

We evaluated the accuracy of these four models, as well as 
the precision and recall in each group, using the 52 eyes 
that had been included as test data in the DL model. The 
accuracy is the proportion of correct predictions (both true 
positives and true negatives) among the total number of 
eyes. We also calculated the correlation coefficient and mean 

absolute error (MAE), performed Bland–Altman analysis, 
and compared area under the receiver operating characteris-
tic curve (AUROC) and area under the precision-recall curve 
(AUPRC) in each group between the predicted postopera-
tive VA and the actual postoperative VA in the DL model, 
preoperative VA model, and multivariate linear regression 
model. The ordinal multinomial logistic regression model 
was excluded from these comparisons because it could not 
predict postoperative VA values.

Finally, to determine whether the VA in an eye could be 
accurately predicted, the test data were divided into two 
groups: eyes with correctly predicted VA and eyes with 
incorrectly predicted VA. Differences in preoperative and 
intraoperative factors (e.g., age, sex, right or left side, pre-
operative VA, axial length, MH stage and estimated dura-
tion, surgical time, ILM peeling or inverted treatment, dye 
liquid, and tamponade substance) were compared between 
eyes with correctly predicted VA and eyes with incorrectly 
predicted VA.

Statistical analyses

The best-corrected visual acuity (BCVA) was measured 
using a Landolt C chart in this study. The decimal VA was 
converted to Snellen VA and the logarithm of the minimum 
angle of resolution (logMAR) for statistical analyses. The 
statistical analyses were performed using EZR version 1.52 
(Saitama Medical Center, Jichi Medical University, Saitama, 
Japan) [31], which is a graphical user interface for R version 
4.03 (The R Foundation for Statistical Computing, Vienna, 
Austria), and GraphPad Prism 9 software (GraphPad Soft-
ware, Inc., La Jolla, CA, USA). Results were expressed as 
mean ± standard deviation for continuous variables and 
as proportion (percentage) for categorical variables. The 
Mann–Whitney U test was used for two-group compari-
sons. Spearman correlation coefficients were calculated to 
determine the relationships between actual and predicted 
postoperative VA values from the DL, preoperative VA, 
and multivariate linear regression models. Differences with 
P < 0.05 were considered to be statistically significant.

Table 1  The number of eyes 
in each group A–D; total data, 
training data, testing data, and 
unused data

Total data Training data Testing data Unused data

Group A (eyes)
Decimal VA: ≧ 1.0

68 (26%) 20 14 (27%) 34

Group B (eyes)
Decimal VA: 0.9–0.7

81 (31%) 20 16 (31%) 45

Group C (eyes)
Decimal VA: 0.6–0.3

85 (33%) 20 17 (33%) 48

Group D (eyes
Decimal VA: ≦ 0.2

25 (10%) 20 5 (10%) 0

Total (eyes) 259 (100%) 80 52(100%) 127
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Results

During the study period, 259 eyes with idiopathic MHs 
that were treated surgically met the abovementioned 
inclusion/exclusion criteria. In total, 140 eyes were in 
female patients (54%) and the median overall patient age 
was 67.5 years (range, 30–85 years). Of the total, 126 eyes 
(48%) were right eyes. ILM peeling was performed in 
251 eyes (97%) and an inverted ILM flap procedure was 
performed in 8 eyes (3%).  SF6 tamponade was performed 
in 239 eyes (92%) and air tamponade was performed in 
20 eyes (8%). Twenty-one eyes (8%) were pseudo-phakic 
at the time of surgery and 238 eyes (92%) were phakic. 
Cataract surgery was performed during MH surgery in 
236 of the 238 phakic eyes (99%), and lens-sparing sur-
gery was performed in the other 2 eyes (1%). The mean 
preoperative BCVA was 0.59 ± 0.28 logMAR; the mean 
postoperative BCVA significantly improved to 0.21 ± 0.26 
logMAR (P < 0.0001). MHs closed in 250 eyes (97%) fol-
lowing the first surgery and closed in all 259 eyes (100%) 
following additional surgeries.

DL model for prediction of postoperative VA

The model precision was 46%, according to analysis of the 
test data. The precision and recall in each group are shown 
in Fig. 2. The predicted postoperative VA based on DL was 
correlated with actual postoperative VA at 6 months postop-
eratively in training data (P < 0.0001, r = 0.81, MAE = 0.15) 
and in test data (P < 0.0001, r = 0.62, MAE = 0.186) (Fig. 2). 
The AUROC values in each group (A through D) were 0.75, 
0.57, 0.65, and 0.85, respectively. The AUPRC values in 
each group (A through D) were 0.53, 0.52, 0.49, and 0.52, 
respectively. Only random errors were apparent, according 
to Bland–Altman analysis (Fig. 2). We could not determine 
the regions of OCT images that were the focus of our DL-
based AI predictions (Fig. 3). The training curve is shown 
in Fig. 4.

Preoperative VA model for prediction 
of postoperative VA

The model precision was 40%, according to analysis of 
the test data. The precision and recall in each group are 
shown in Fig. 5. The actual postoperative VA at 6 months 

Fig. 2  Deep learning (DL) 
model. (A) Precision and recall. 
(B) Correlation coefficients 
between the deep learning–
based predicted postoperative 
logarithm of the minimum 
angle of resolution (logMAR) 
visual acuity (VA) and actual 
postoperative VA (test data: 52 
eyes/104 images). (C) Bland–
Altman plot
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postoperatively was correlated with preoperative VA 
(P < 0.0001, r = 0.65). The predicted postoperative VA 
based on preoperative VA was correlated with actual VA 
at 6 months postoperatively in the test data (P = 0.0003, 
r = 0.48, MAE = 0.19) (Fig. 5). The AUROC values in each 
group (A through D) were 0.70, 0.54, 0.62, and 0.74, respec-
tively. The AUPRC values in each group (A through D) were 
0.52, 0.50, 0.59, and 0.43, respectively.

Multivariate linear regression model for prediction 
of postoperative VA

Multivariate linear regression showed that preoperative VA, 
minimum MH size, and patient age were significantly asso-
ciated with postoperative VA (P < 0.0001, P = 0.0009, and 

P = 0.08, respectively; Table 2). The model precision was 
40%, according to the analysis of test data. The precision 
and recall in each group are shown in Fig. 6. The predicted 
postoperative VA based on preoperative VA was correlated 
with actual VA at 6 months postoperatively, according to 
analysis of the test data (P < 0.0001, r = 0.55, MAE = 0.194) 
(Fig. 6). The AUROC values in each group (A through D) 
were 0.67, 0.57, 0.58, and 0.88, respectively. The AUPRC 
values in each group (A through D) were 0.42, 0.45, 0.38, 
and 0.52, respectively.

Ordinal multinomial logistic regression model 
for prediction of postoperative VA

The model precision was 37%, according to the analysis of 
test data. The precision and recall in each group are shown 
in Table 3. Variance inflation factor assessment was used 
to check for multicollinearity. None of the variance infla-
tion factor values was > 10, implying no collinearity in the 
model. Residual deviance was 121.9 and Akaike’s informa-
tion criterion was 131.9. The odds ratio, confidence inter-
val, and P-value of each independent variable are shown in 
Table 4.

Differences in preoperative and intraoperative factors 
between eyes with correctly predicted VA and eyes with 
incorrectly predicted VA are shown in Table 5. None of the 
tested factors differed significantly between eyes with cor-
rectly predicted VA and eyes with incorrectly predicted VA.

Discussion

We are unaware of any previous reports on prediction of 
postoperative VA after vitrectomy for MHs from preopera-
tive OCT images using DL-based AI; moreover, we could 
find no references to such reports in PubMed. Thus, we 
presume that this is the first report on prediction of post-
operative VA from preoperative OCT using DL-based AI. 

Fig. 3  Saliency heatmaps using 
gradient-weighted class activa-
tion mapping

Fig. 4  Training curve of deep learning (DL) model. Training loss: 
output value of a loss function during training. Loss function is a 
function defined to evaluate discrepancy between prediction calcu-
lated using current trained parameters and ground-truth values dur-
ing model training. Training loss keeps decreasing until the training 
process is convergent in theory. Although there is no guarantee, the 
model obtained by a well-convergent training usually has good accu-
racy
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Notably, our predictions were good despite the small number 
of eyes in this study. Preoperative VA is the strongest predic-
tor of postoperative VA according to several previous reports 
[12–15]. Additionally, in comparison with predictions made 
on the basis of preoperative VA, a multivariate linear regres-
sion model constructed using preoperative factors, or an 
ordinal multinomial logistic regression model constructed 
using preoperative factors, our DL-based AI model predicted 
postoperative VA with similar or slightly better precision; 
the correlation coefficient of the DL model was better than 
the correlation coefficients of the preoperative VA model or 
the multivariate linear regression model.

To efficiently train data, first, we used the Adam opti-
mization algorithm and convolutional batch normalization; 
for each group, the data augmentation methods (horizontal 

flip, scale, shift, rotate, shear, crop, gamma contrast, and 
multiply) and number of eyes were identical. Second, we 
used a simple but very successful approach to regularization, 
known as label smoothing (detailed in the “Methods” sec-
tion) [28]. Label smoothing can help to avoid overconfident 
models while enhancing overall accuracy and learning speed 
[28]. Finally, we focused the analysis on the center part of 
each image, which was expected to be most important for 
the prediction of postoperative VA. Thus, we successfully 
created a model for the prediction of postoperative VA after 
vitrectomy for MHs, despite the small number of included 
images.

In the present study, the DL model showed the highest 
accuracy among the tested models. In the DL model, preci-
sion and recall tended to be relatively high in most groups. 

Fig. 5  Preoperative visual acu-
ity (VA) model. (A) Precision 
and recall. (B) Correlation coef-
ficients between the predicted 
postoperative logarithm of the 
minimum angle of resolution 
(logMAR) visual acuity (VA) 
from preoperative VA and 
actual postoperative VA (test 
data: 52 eyes/104 images). (C) 
Bland–Altman plot

Table 2  Multivariate linear 
regression analysis

SE, standard error; CI, confidence interval

β value SE 95% CI t value P value

Preoperative visual acuity 0.52 0.11 0.31 to 0.74 4.9  < 0.0001
Age (years) 0.009 0.005  − 0.0009 to 0.018 1.8 0.08
Minimum MH size (μm) 0.0005 0.00013 0.0002 to 0.0008 3.5 0.0009
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In contrast, the preoperative VA model had worse recall in 
groups B and D, the multivariate linear regression model 
had worse recall in groups A and D, and the ordinal multi-
nomial logistic regression model had worse recall in groups 
B and D. Bland–Altman analyses showed that the DL model 
had random error, indicating that this model was ideal. In 

eyes with poor actual VA and poor predicted VA, the pre-
dicted VA tended to be better than the actual VA; in eyes 
with good actual VA and good predicted VA, the predicted 
VA tended to be worse than the actual VA. The AUROC 
and AUPRC tended to be greater in the DL model than in 
the other models. Because the ordinal multinomial logistic 
regression model could not calculate a single postoperative 
VA, it could not be included in the Bland–Altman analysis 
or in analyses of AUROC and AUPRC.

The DL model precision was 46%, according to the 
analysis of test data; however, postoperative VA could not 
be successfully predicted in 54% of eyes. To investigate 
whether specific eyes exhibited features that facilitated 
predictability, we divided the eyes into those with correctly 

Fig. 6  Multivariate linear 
regression model. (A) Precision 
and recall. (B) Correlation coef-
ficients between the predicted 
postoperative logarithm of the 
minimum angle of resolution 
(logMAR) visual acuity (VA) 
from preoperative VA and mini-
mum size of macular hole, and 
actual postoperative VA (test 
data: 52 eyes/104 images). (C) 
Bland–Altman plot

Table 3  The ordinal 
multinomial logistic regression 
model using preoperative VA 
and minimum size of MH

Predicted postoperative VA

A B C D Recall Total

Actual postoperative VA A (eyes) 5 6 3 0 36% 14
B (eyes) 8 1 7 0 6.3% 16
C (eyes) 4 1 12 0 71% 17
D (eyes) 0 0 4 1 20% 5
Precision 29% 13% 48% 100%

Table 4  Ordinal multinomial logistic regression analysis

CI, confidence interval

Independent variables Odds ratio 95% CI P value

Preoperative VA 1 1–1.01 0.02
Minimum MH size 11.6 1.38–113 0.03
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predicted VA and those with incorrectly predicted VA. We 
then examined differences in preoperative and intraopera-
tive factors between the two groups. However, we found no 
significant differences between the groups; thus, it remains 
unclear why VA was not correctly predicted in some eyes.

Because the lack of accurate prediction may have 
involved cases in which the MH did not close during the 
first surgery, we examined these cases in detail. The pre-
operative and postoperative characteristics of MHs that 
did not close after the first surgery are shown in Table 6. 
Of the 9 eyes with unclosed MHs, 2 eyes were assigned to 
the training data, 3 eyes to the testing data, and 4 eyes were 
assigned to neither the training nor the testing data. Of the 
3 eyes assigned to the testing data, 1 case was correctly 
predicted and 2 were incorrectly predicted; the prediction 
accuracy was 33%. However, due to the small number of 
cases, we could not conclude whether the prediction accu-
racy was poor in cases where the MH did not close after 
the first surgery. The predicted and actual VA for each 
eye in which the MH did not close after the first surgery 
are listed below. In case 1, the predicted decimal VA was 
0.6–0.3 and the actual decimal VA was 0.3; postoperative 
VA was correctly predicted in this case. In case 2, the 
predicted decimal VA was 0.6–0.3; however, the actual 
decimal VA was 0.15. In case 3, the predicted decimal 
VA was less than 0.2 and the actual decimal VA was 0.3. 
Postoperative VA was incorrectly predicted in cases 2 and 
3. In a previous report, poor VA and large MH were risk 
factors for MH not closing [32]. In our study, the reasons 
why some MHs did not close after the first surgery were 
also considered to be poor preoperative VA (mean preop-
erative logMAR VA: 0.82) and large MH (mean MH size: 
423 μm).

A notable strength of this study is that it appears to be 

the first report of successful postoperative VA prediction 
from preoperative OCT images using DL-based AI. How-
ever, this study had some limitations. First, we included a 
small number of eyes. To improve prediction accuracy, this 

Table 5  The differences in the 
preoperative and intraoperative 
factors between eyes predicted 
correctly and incorrectly

Eyes predicted cor-
rectly
24 eyes

Eyes predicted incor-
rectly
28 eyes

P value

Females/males (eyes) 16/9 15/12 0.58
Age (years) 65.2 ± 9.1 68.8 ± 5.4 0.43
Right/left (eyes) 12/13 14/13  > 0.99
Preoperative logMAR VA 0.56 ± 0.28 0.54 ± 0.22 0.85
Axial length (mm) 23.9 ± 1.4 23.6 ± 1.1 0.58
Stage of MH (1/2/3/4, eyes) 1/11/8/4 0/14/7/5 0.69
Estimated duration of MH (days) 126 ± 113 113 ± 179 0.72
Phakic/intraocular lens 23/1 25/5 0.21
Combined cataract surgery (eyes) 22 23 0.43
Surgical time (min) 36 ± 11 38 ± 16 0.85
ILM peeling/inverted flap (eyes) 23/1 28/0 0.46
Dyeing liquid (BBG/TA/ICG, eyes) 18/5/1 18/10/0 0.31
Tamponade substance (SF6/air, eyes) 22/2 28/0 0.20
Initial MH closure rate 96% 93%  > 0.99
Final MH closure rate 100% 100%  > 0.99

Table 6  Preoperative and postoperative characteristics of macular 
holes that did not close after the first surgery

Abbreviations: VA, visual acuity; logMAR, logarithm of the minimum 
angle of resolution; MH, macular hole; ILM, internal limiting mem-
brane; BBG, brilliant blue G; TA, triamcinolone acetonide; ICG, indo-
cyanine green; SF6, sulfur hexafluoride

9 eyes

Training/testing/unused 2/3/4
Female/male (no. eyes) 5/4
Age (years) 68.2 ± 7.2
Right / Left (eyes) 2/7
Preoperative logMAR VA 0.82 ± 0.2
Axial length (mm) 23.4 ± 0.9
Stage of MH: 1/2/3/4 (no. eyes) 0/3/3/3
Estimated duration of MH (days) 233 ± 220
Combined cataract surgery/already underwent cataract 

surgery
(no. eyes)

6/3

Surgical time (minutes) 41.0 ± 15
ILM peeling/inverted flap
(no. eyes)

9/0

Dye: BBG/TA/ICG (no. eyes) 6/3/0
Tamponade substance:  SF6/air, (no. eyes) 7/2
Minimum MH size (μm) 422.9 ± 143
Postoperative logMAR VA 0.52 ± 0.32

1121Graefe's Archive for Clinical and Experimental Ophthalmology (2022) 260:1113–1123



1 3

method should be validated using a large amount of training 
data in a future study. In particular, a large training data-
set will enable us to rebuild our DL network with deeper 
architecture, which may lead to much more accurate pre-
dictions. Most DL research thus far indicates that a deeper 
network often provides better performance; a disadvantage 
of this is the exponential increase in the amount of train-
ing data required. Second, eyes with high myopia (axial 
length ≥ 26.5 mm) were excluded because the morphology 
of the retina in OCT images of such eyes differs considerably 
from that in eyes with a normal axial length owing to the 
presence of staphyloma; moreover, high myopia can cause 
vision loss. Finally, we could not determine the regions of 
OCT images that were the focus of our DL-based AI predic-
tions. Further DL studies may elucidate these regions pro-
viding a more useful clinical tool. Overall, a highly accurate 
model would help patients to more fully consider providing 
preoperative informed consent and may be useful for clinical 
decision making.

Conclusion

Our study is the first report of successful postoperative VA 
prediction from preoperative OCT images using DL-based 
AI. Our DL-based AI method showed slightly better accu-
racy and stronger correlation with actual postoperative VA 
than prediction of postoperative VA based on preopera-
tive VA alone (simplest and strongest predictive factor for 
postoperative VA). Furthermore, our DL-based AI method 
showed slightly better accuracy and stronger correlation with 
actual postoperative VA than prediction of postoperative VA 
using a multivariate linear regression model or an ordinal 
multinomial logistic regression model. Our DL-based AI 
method using OCT images may be a useful tool for the pre-
diction of postoperative VA. Further studies with a larger 
number of eyes are warranted.
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