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Development of a deep-learning system for detection
of lattice degeneration, retinal breaks, and retinal detachment
in tessellated eyes using ultra-wide-field fundus images: a pilot study
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Abstract
Purpose To investigate the detection of lattice degeneration, retinal breaks, and retinal detachment in tessellated eyes using ultra-
wide-field fundus imaging system (Optos) with convolutional neural network technology.
Methods This study included 1500 Optos color images for tessellated fundus confirmation and peripheral retinal lesion (lattice
degeneration, retinal breaks, and retinal detachment) assessment. Three retinal specialists evaluated all images and proposed the
reference standard when an agreement was achieved. Then, 722 images were used to train and verify a combined deep-learning
system of 3 optimal binary classification models trained using seResNext50 algorithm with 2 preprocessing methods (original
resizing and cropping), and a test set of 189 images were applied to verify the performance compared to the reference standard.
Results With optimal preprocessing approach (original resizing method for lattice degeneration and retinal detachment, cropping
method for retinal breaks), the combined deep-learning system exhibited an area under curve of 0.888, 0.953, and 1.000 for
detection of lattice degeneration, retinal breaks, and retinal detachment respectively in tessellated eyes. The referral accuracy of
this system was 79.8% compared to the reference standard.
Conclusion A deep-learning system is feasible to detect lattice degeneration, retinal breaks, and retinal detachment in tessellated
eyes using ultra-wide-field images. And this system may be considered for screening and telemedicine.

Keywords Deep learning . Lattice degeneration . Retinal breaks . Retinal detachment . Tessellated fundus . Ultra-wide-field
fundus imaging
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Introduction

A significant increase in prevalence of high myopia has been
noted in recent decades. It is estimated that nearly 1 billion
people, 10% of the world, will have high myopia by 2050 [1].
Such trend has also been observed in myopic-related compli-
cations, which can cause irreversible vision loss. Retinal de-
tachment, as one of the complications, can lead to blindness
without prompt intervention. Higher incidence of retinal de-
tachment is associated with the increased axial lengths of
highly myopic eyes, so do the predisposing features of retinal
detachment, lattice degeneration, and retinal breaks [2–4]. The
prevalence of the former increases from approximate 8% of
the general population to 17% of high myopic patients and the
latter occurs 8% of high myopes [3, 5].

Tessellated fundus, defined as increased visibility of the
underlying choroidal vessels around the fovea and arcade ves-
sels, is often regarded as the commencement of retino-
choroidal degenerative changes in high myopia [6]. And near-
ly 50% of tessellated eyes of high myopic patients presented
with peripheral retinal degeneration [7]. Therefore, it is essen-
tial to access the peripheral retina in tessellated eyes for early
detection of retinal detachment and close monitoring of its
related predisposing conditions, lattice degeneration, and ret-
inal breaks. However, a thorough examination of peripheral
retina requires professional vitreoretinal skills of the ophthal-
mologists and pupil dilation of the patients, which is not fea-
sible for routine considering retinal specialist shortage, in-
creased risk of pupillary block, and blurred vision after my-
driasis in clinical practice.

Thanks to the advances of retinal imaging in recent years,
with the introduction of Optos, an ultra-wide-field scanning
laser ophthalmoscope, up to 200° of retina (covering 80% of
the fundus) can be captured in a single shot noninvasively,
even under non-mydriasis, providing a high efficient modality
for peripheral retina screening while avoiding the risk of

pupillary block and minimizing inconvenience caused by my-
driasis [8, 9]. The device has been widely utilized in the diag-
nosis or follow-up of various fundus diseases, and the simple
operation procedure makes it possible for telemedicine use in
underserved areas [9, 10].

Deep-learning algorithms have been successfully applied
to ophthalmology in recent years, and deep-learning models
based on Optos images, utilizing its advantage of peripheral
retina imaging, have also been developed and showed high
accuracy in identifying retinal detachment or notable periph-
eral retinal lesions in different studies [10–14]. However, so
far, there have been no deep-learning models based on Optos
images that are able to detect retinal detachment and its pre-
disposing peripheral lesions, lattice degeneration, and retinal
break simultaneously in one screening system, and previous
study on notable peripheral retinal lesions did not classify
lattice degeneration and retinal breaks independently.

In this study, we aimed to develop and assess a deep-
learning system for detecting lattice degeneration, retinal
breaks, and retinal detachment independently in tessellated
fundus using Optos images.

Methods

This study was approved by the Institutional Review Board of
Peking Union Medical College Hospital, China and conduct-
ed in compliance with the Declaration of Helsinki.

Datasets

For dataset establishment, initial 1500 consecutive Optos
(Daytona, Optos PLC, Dunfermline, UK) color images were
retrospectively obtained from patients presenting for fundus
evaluation between August, 2017 and December, 2018 at
Beijing Hua’er Eye Hospital. All images were checked for
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duplicate acquisition and deidentified before further
assessment.

Firstly, all these images were reviewed by 2 retinal special-
ists independently to confirm the presence of tessellated fun-
dus. Only those with consensus agreement were registered as
tessellated dataset. Secondly, since we aimed to screen for
lattice degeneration, retinal breaks, and retinal detachment in
untreated tessellated fundus, we excluded poor-quality images
that were not feasible for tessellation discrimination or with
≥25% peripheral region was obscured. Unclear images attrib-
uted to vitreous hemorrhage, astrocytosis, or intense cataracts
and images showing signs of previous vitreoretinal surgery or
retinal photocoagulation were also excluded at this step.

The features of lattice degeneration, retinal breaks, and
retinal detachment were characterized and described in
Table 1, according to the Posterior Vitreous Detachment,
Retinal Breaks, and Lattice Degeneration Preferred Practice
Pattern® (PPP) guidelines [15]. Investigators identified the
three target findings (lattice degeneration, retinal breaks, and
retinal detachment) and annotated their corresponding lesion
location in images from tessellated dataset. Images with other
peripheral retinal lesions rather than the target ones, such as
hemorrhage, hard exudate, or cotton-wool patch, were exclud-
ed at the annotation step.

To ensure an accurate identification of target lesions, all
anonymous images were assessed independently by 3 retinal
specialists. A consensus identification outcome was given to
an image only when agreement was achieved among the 3
retinal specialists. Any level of inconsistency brought a dis-
cussion among 3 assessors, and images unable to achieve a
consensus in final discussion were discarded. The consensus

identification outcome served as the reference standard for
deep-learning system development. Figure 1 illustrates the
workflow of image processing.

Of all eligible tessellated images, 60% were used for train-
ing, while 20% for validation of the trained model and 20%
for performance assessment.

Development of deep-learning system

Our screening system contains 3 binary classification models
to detect lattice degeneration, retinal breaks, and retinal de-
tachment. We analyzed the outputs of the 3 models compre-
hensively to get the final prediction.

Convolutional neural network architecture

The state-of-the-art convolutional neural network (CNN) ar-
chitecture seResNext50 was used for training the binary clas-
sification models [16]. The CNN seResNext50 is based on
ResNext50 with the SE module applied in each ResNext
block [17]. The SE module learns the correlation between
feature maps of different channels and applies a larger weight
factor to the more effective feature maps. We used the weights
pretrained on the ImageNet dataset to initialize the CNN.

Image preprocessing

We investigated two image preprocessing methods:

(1) Original resizing method: Original images were resized
to 512 × 512 for training, validation, and test set. The

Table 1 Images categories and
their corresponding clinical
features

Classification Presence of clinical features

Tessellated Well-defined choroidal vessels can be observed clearly around the fovea and
arcade vessels.

Treated Presence of any sign of previous vitreoretinal surgery or retinal
photocoagulation

Untreated No sign of previous vitreoretinal surgery or retinal photocoagulation

Lattice degeneration Peripheral circumferentially oriented linear or ovoid retinal thinning
with/without whitish lines, reddish crater-like appearance, superficial whitish
yellow flecks, and pigmentary disturbances

Retinal breaks Full-thickness defects in the retina including round atrophic holes and
horseshoe-shaped tears due to vitreoretinal traction

Retinal detachment A separation of the retina from the retinal pigment epithelium

Other peripheral retinal
lesions

Any peripheral retinal abnormality rather than the 3 target lesions above

No significant peripheral
retinal lesions

None of the above peripheral manifestations

Non-tessellated No presence of tessellation changes

Poor quality Insufficient for tessellation discrimination or peripheral evaluation (≥25% of the
peripheral region was obscured, vitreous hemorrhage, astrocytosis, or intense
cataracts)
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model took the whole image as the input and output of a
positive score for each lesion per image.

(2) Cropping method: For training set, if an image was with
no abnormality, negative patches were cropped from the
raw image (resolution about 2000 to 3000) with size
randomly selected from {448 × 448, 512 × 512, 640 ×
640, 720 × 720} using sliding window. The stride of the
sliding window was set to half of the window size. If an
image was annotated with lesions, 20 positive patches
were selected for each lesion blob. For each lesion blob,
5 different positions of patch center were randomly se-
lected around the center of the lesion blob and 4 different
patch sizes ({448 × 448, 512 × 512, 640 × 640, 720 ×
720} for retinal breaks, {512 × 512, 640 × 640, 720 ×
720, 896 × 896} for lattice degeneration, and {640 ×
640, 720 × 720, 896 × 896, 1024 × 1024} for retinal
detachment) were selected for each position. All the se-
lected patches were finally resized to 512 × 512. The
model took a patch as the input and output of a positive
score for each lesion per patch. For test set and validation
set, a sliding window with size 512 × 512 and stride 256
× 256 was adopted to the raw image. The positive score
of a lesion of an image was taken as the max score of all
the image’s patches.

Model implementations

The SGD optimizer was applied to train the models with mo-
mentum of 0.9 and weight decay of 0.0001. The learning rate
for epochs 1-5 was 0.01 and was 0.005 for epochs 6-15. After
epoch 15, the learning rate would be halved if the performance
on validation set did not increase for two consecutive epochs.
The batch size was set to 10.

Data augmentation was adopted during training. Random
rotation, horizontal and vertical flipping, random crop, bright-
ness shift, contrast transform, and saturation transform were
applied.

Heatmap

To locate the most focused region of deep-learning system
and check the reasons for misclassified images, heatmaps
were generated using Class Activation Mapping (CAM) tech-
nology for all true-positive and false-positive images [18].
CAM visualizes the images in which the most salient pixels
for models’ prediction are highlighted.

Statistical analysis

We examined the areas under receiver operating characteristic
curve (AUCs) with 95% confidence intervals to evaluate the
performance of each deep-learning model; sensitivity and
specificity that yielded the highest harmonic mean with the
95% confidence intervals were also applied to assess deep-
learning models.

Our screening system consists of the better deep-learning
model for each finding. Referral accuracy of our screening
system was calculated compared to the reference standard.
Eligible images with any of the three target lesions (lattice
degeneration, retinal breaks, and retinal detachment) were
graded as referable. IBM Spss Statistics 23 was used for the
data analysis in this study (IBM, Armonk, New York, USA).

Results

After reviewing 1500 original Optos images, 995 images from
637 participants (mean age: 52 years; 56.2% female) were

Optos fundus images
N=1500

Untreated tessellated 
fundus images

N=995

Excluding images(N=513) 
for non-tessellated, poor 
quality and postoperative 

changes

Excluding images(N=8) 
failed to achieve agreement 
and images(N=76) for other 

peripheral retinal lesions

Eligible images
N=911

Training set
N=532

Validation set
N=190

Test set
N=189

Establishment of 
tessellated dataset

Identification & 
annotation

Lattice degeneration
N=267

Retinal breaks
N=49

Retinal detachmet
N=44

Normal peripheral 
retina,N=609

Fig. 1 The workflow of
establishing Optos image datasets
for deep-learning system
development
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qualified to make up the tessellated dataset. Further filtering
out 84 images for non-target peripheral retinal lesions and
inconsistent assessment, 911 eligible images were used to de-
velop the deep-learning system, among which 267 images had
been identified with lattice degeneration, while 49 with retinal
breaks, 44 with retinal detachment, and 609 with normal pe-
ripheral retina. Of all the eligible images, 60% (532 images)
were randomly assigned to the training set, while 20% (190
images) to the validation set and 20% (189 images) to the
testing set. More information on datasets is shown in Table 2.

A total of 6 models were trained when 2 preprocessing
approaches were used to develop deep-learning models
for 3 target lesions (lattice degeneration, retinal breaks,
and retinal detachment). Figure 2 presents the correspond-
ing receiver operating characteristic curves for each le-
sion. The AUC of original resizing preprocessing method
was higher in retinal detachment and lattice degeneration,
while the better preprocessing approach was cropping
method in retinal breaks. With the optimal preprocessing
approach, an AUC of 1.00 (95% CI, 1.00-1.00) was
achieved for retinal detachment, while an AUC of 0.888
(95% CI, 0.843-0.933) and 0.953 (95% CI, 0.923-0.983)
were for lattice degeneration and retinal breaks respective-
ly. In addition, sensitivity and specificity at the highest
harmonic mean for each lesion were measured and are
presented in Table 3.

Tessellated fundus detected with any one of the lattice de-
generation, retinal breaks, and retinal detachment should be
referred to retinal specialists for further evaluation. The refer-
ral accuracy of our screening system based on the optimal
deep-learning models was 79.8% compared to the reference
standard.

All misclassified images were analyzed by category based
on the corresponding optimal deep-learning model. For retinal
detachment, 2 images presenting shallow retinal detachment

were misclassified as normal (Fig. 3a), while none
misclassified as retinal detachment.

For lattice degeneration, 6 lattice degeneration images were
misclassified as normal all due to edge location of lesions (Fig.
3b), while 23 normal peripheral retina images misclassified as
lattice degeneration. The most common characteristics of
false-positive cases were vitreoretinal traction or proliferative
vitreous membrane (87.0%, 20/23) (Fig. 4).

For retinal breaks, 2 retinal break images with lesions
partly covered by upper eyelid were misclassified as
normal (Fig. 3c), while 11 normal peripheral retina im-
ages misclassified as retinal breaks. The common char-
acteristics of false-positive cases included vitreoretinal
traction (n = 3), lattice degeneration (n = 2), eyelashes
mimicking break edges (n = 2), and dark regions within
detached retina surrounded by vitreoretinal traction folds
(n = 2) (Fig. 5).

Discussion

In the pilot study, we developed a combined deep-
learning system based on Optos images for the detection
of lattice degeneration, retinal break, and retinal detach-
ment in tessellated eyes. Three models with optimal pre-
processing approaches were involved in the system,
which showed remarkable performance for retinal detach-
ment (AUC 1.000, sensitivity 0.875, and specificity
1.000) and moderate performance for retinal breaks
(AUC 0.953, sensitivity 0.875, and specificity 0.924)
and lattice degeneration (AUC 0.888, sensitivity 0.771,
and specificity 0.797). The system offered a cost-
effective way to distinguish the three most notable periph-
eral retinal lesions from normal in tessellated eyes at one

Table 2 Number of images in
training, validation, and testing
datasets with two image
preprocessing methods

Training set, no. (%) Validation set, no (%) Testing set, no. (%)

Origin

Lattice degeneration 151 (28.4) 59 (31.1) 57 (30.2)

Retinal breaks 16 (3.0) 17 (8.9) 16 (8.5)

Retinal detachment 16 (3.0) 12 (6.3) 16 (8.5)

Normal peripheral retina 366 (68.8) 122 (64.2) 121 (64.0)

Total 532 (100) 190 (100) 189 (100)

Crop and augmentation

Lattice degeneration 4500 1700 NA

Retinal breaks 340 500 NA

Retinal detachment 340 260 NA

Normal peripheral retina 23,047 22,240 NA

Total 28,227 24,700 NA
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time, and the reasonable referral accuracy achieved by the
system compared to the reference standard indicated it as
a potential screening tool in primary care with low acces-
sibility to retinal specialists. Moreover, it can be per-
formed in patients who cannot tolerate pupil dilation. To
the best of our knowledge, this study was the first to
establish a deep-learning system for combined detection
of lattice degeneration, retinal breaks, and retinal detach-
ment in tessellated eyes based on Optos images (Fig. 6).

Deep-learning systems in identifying retinal detach-
ment or notable peripheral retinal lesions (NPRL, includ-
ing lattice degeneration and retinal breaks) on Optos im-
ages were reported with high accuracies in previous stud-
ies [10–12]. However, none of them could evaluate both
retinal detachment and notable peripheral retinal lesions
simultaneously, and lattice degeneration and retinal
breaks were not further classified independently. For

notable peripheral retinal lesions that have progressed to
peripheral retinal detachment, urgent referrals and timely
appropriate treatment are desperately required. Missing
report of retinal detachment by NPRL-only screening sys-
tem could pose significant risks to these subjects.
Classification of NRPL is also necessary since manage-
ment and follow-up are recommended mainly based on
the presence of retinal breaks and their types according
to PPP guidelines. Horseshoe tear, one of the retinal
breaks, is in need of prompt referral and treatment, while
lattice degeneration needs only monitoring in most cases
[15]. Classifications in our system may implicate the
varying degree of referral urgency.

The CNN seResNext50 used in our study has previous-
ly been shown to be effective in natural scene image clas-
sification. By this algorithm, 2 models with different pre-
processing approaches were established for each target

Table 3 Performance of the deep-
learning models in detection of
for lattice degeneration, retinal
breaks, and retinal detachment
with two preprocessing methods

AUC (95% CI) Sensitivity (95%
CI)

Specificity (95%
CI)

Accuracy (95%
CI)

Lattice degeneration

Original resizing
method

0.888 (0.843,
0.933)

0.771
(0.712,0.831)

0.797 (0.74,0.855) 0.793
(0.735,0.85)

Cropping method 0.841 (0.788,
0.893)

0.829 (0.775,
0.882)

0.752 (0.69,
0.813)

0.766 (0.706,
0.826)

Retinal breaks

Original resizing
method

0.843 (0.791,
0.895)

0.625 (0.556,
0.694)

0.953 (0.923,
0.984)

0.926 (0.888,
0.963)

Cropping method 0.953 (0.923,
0.983)

0.875 (0.828,
0.922)

0.924 (0.887,
0.962)

0.920 (0.882,
0.959)

Retinal detachment

Original resizing
method

1.00 (1.00, 1.00) 0.875 (0.828,
0.922)

1.00 (1.00, 1.00) 0.989 (0.975,
1.00)

Cropping method 0.979 (0.958,
0.999)

0.812 (0.757,
0.868)

0.953 (0.923,
0.984)

0.941 (0.908,
0.975)

Fig. 2 Receiver operating characteristic (ROC) curves for lattice degeneration, retinal breaks, and retinal detachment
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lesion. As shown in Fig. 2, the better preprocessing ap-
proach for retinal detachment and lattice degeneration is
original resizing method, while cropping method achieved
better outcome on retinal breaks. The difference may be
explained by the lesion size. Lesions of retinal breaks are
relatively small to ultra-wide-field images, for which
cropping method enables the deep-learning system to
learn more details about lesions. On the contrary, the
range of retinal detachment and the size of lattice degen-
eration are often large enough for direct detection, and
excessive irrelevant information may be augmented and
interfere the training of deep-learning model.

In the study, we reviewed all the misclassified images by
the optimal deep-learning system. For retinal detachment,
both false-negative images were attributable to shallow retinal
detachment. For lattice degeneration and retinal breaks, false-
negative classification was due to peripheral location of le-
sions or eyelid covering, while the most common reason for
false-positive cases was vitreoretinal traction in both groups.
Pigmentary disturbances within lattice degeneration were
misclassified as retinal breaks as shown by the heatmap in 2
false-positive images (Fig. 5b). The performance of our

systemmay be improved by further training with more images
of target lesions.

Our study has several limitations. First, as a pilot
study, our system was developed on a relatively small
dataset and was not validated by independent external
dataset, which could be the main reason for the acceptable
but not ideal performance of lattice degeneration and ret-
inal break models, though preprocessing approaches had
been optimized to improve the performance. Second, im-
ages with other peripheral retinal lesions rather than the 3
target ones were not assessed, and unclear images due to
vitreous hemorrhage or intense cataracts were not includ-
ed as well. We excluded postoperative eyes for regular
follow-ups they should have with retinal specialists, in
which our screening system was not indicated. Third,
even though up to 200° of retina can be captured by
Optos, some peripheral regions, especially superior and
inferior peripheral areas hidden by eyelids and eyelashes,
are still not covered. Pseudocolors and peripheral distor-
tion of Optos images compromised the reliability of using
consensus of specialists as reference standard. Goldmann
three-mirror contact lens examination as adjudication

Fig. 4 Representative Optos
image and corresponding
heatmap of false-positive case for
lattice degeneration. Peripheral
vitreoretinal traction shown on the
right of the Optos image displays
red in the corresponding heatmap

Fig. 3 Representative Optos images of false-negative cases. a Shallow
retinal detachment in the inferotemporal quadrant (dashed rounded rect-
angle). b Lattice degeneration with pigmentation on the bottom left

(dashed circle), partly covered by lower eyelid. c Retinal break on the
top right (dashed circle), partly covered by the upper eyelid (true-positive
for retinal detachment)
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process of determining peripheral retinal lesions would be
combined for further validation of the algorithms in the
future. Moreover, our deep-learning system was devel-
oped on selected tessellated eyes, and further studies with

larger sample sizes are needed to validate the generaliz-
ability of this system for all eyes.

In summary, the study preliminarily verifies the feasibility
of our deep-learning system as a screening tool to detect lattice

Fig. 5 Representative Optos
images and corresponding
heatmaps of false-positive cases
for retinal breaks. a Vitreoretinal
traction with punctate hemor-
rhage shown on the right of a1
presents red in heatmap a2. b
Lattice degeneration shown on
the bottom of b1 displays red in
heatmap b2. c Eyelashes mim-
icking break edges shown on top
left of c1 becomes red in heatmap
c3. d Several relative dark regions
within detached superotemporal
retina shown in d1 manifests red
in heatmap d2
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degeneration, retinal breaks, and retinal detachment in tessel-
lated eyes using ultra-wide-field images. Future research is
necessary to validate the algorithms with external datasets
and investigate the feasibility of applying the system in clini-
cal setting.
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