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Abstract
Purpose  To explore the feasibility of automatic detection based on air flow and blood oxygen in patients with sleep disor-
dered breathing.
Methods  This study proposes a new automated detection method for sleep disordered breathing based on overnight airflow 
and blood oxygen saturation (SaO2). In this regard, local range (LR) of the airflow was adopted to detect apnea events and 
the SaO2 sudden drops were used to help determine hypopnea events. Pearson correlation index was used to evaluate the 
relationship between the two automated methods (this study vs. Remlogic software) and the manual reports. Error and mean 
absolute error (MAE) were used to assess the two automated methods.
Results  For all patients, the apnea–hypopnea index (AHI), apnea index (AI) and hypopnea index (HI) for our automated 
scoring and manual reports were highly correlated (the Pearson correlation index were 0.996, 0.995 and 0.928, respectively, 
P < 0.001). However, HI for Remlogic automated scoring and clinical manual reports was poorly correlated (r = 0.316, 
P < 0.001). Compared with the manual reports, mean absolute error of AHI, AI and HI between the two automated meth-
ods (this study vs. Remlogic software) were statistically significant (P < 0.0001). Furthermore, among the three subgroups 
(group 1, AHI < 15/h, group 2, 15/h ≤ AHI < 30/h and group 3, AHI ≥ 30/h), the mean error and MAE of AHI between the 
two automated methods were also statistically significant (P < 0.01).
Conclusions  Generally, good agreements were shown between our automated detection and clinical reports. This procedure 
is robust and effective, which would significantly shorten the analysis time.
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Introduction

Sleep apnea hypopnea syndrome (SAHS) is a common sleep 
disordered breathing disease. It’s characterized by repetitive 
episodes of complete obstruction (sleep apnea events) or 

partial obstruction (hypopnea events) of the upper airway. 
According to the contemporary global investigation [1], 
prevalence of obstructive sleep apnea in China is 23.3%, 
and the prevalence of moderate and severe sleep apnea in 
China is 8.8%. Among the 16 countries, the number of 
affecting individuals was highest in China. It is one of the 
most common health disorders. OSA is commonly seen in 
patients with hypertension, atrial fibrillation, diabetes, coro-
nary artery disease, and stroke [2]. Hence, it is important 
to detection apnea events and hypopnea events accurately.

Currently, polysomnography (PSG) is used to diagnose 
sleep disordered breathing diseases, which is still considered 
the “gold standard” method to date [3]. Generally speak-
ing, PSG was an overnight recording in a sleep laboratory. 
Depending on the American Academy of Sleep Medicine 
(AASM) guidelines, all electrodes are connected to the scalp 
and the skin surface to get physiological signals. Because 
of wires hanging from one’s head and body, patients may 
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be unable to sleep well. Sleep technologists are required 
to spend a lot of time monitoring and manually reviewing 
the overnight recording for designating sleep stages, apnea 
and hypopnea types, events duration on the basis of AASM 
guidelines.

Respiratory signals including nasal airflow/pressure and 
respiratory efforts generated by respiratory muscles and 
oxygen saturation (SaO2) were elementary signals to detect 
sleep apnea and hypopnea events. So by means of using 
physiological signals, many researchers had employed dif-
ferent methods to identify apnea and hypopnea events. The 
frequently used signals included SaO2 [4, 5], airflow [6, 7], 
snore sounds [8], ECG [9, 10], or a combination of these 
signals [11, 12]. This process was time-consuming and 
costly, and required skillful personnel [13–15]. Park et al. 
[16] had compared automated method using the Embletta 
X100 (which is an unattended 11-channel portable PSG 
Device with an automated scoring system called Remlogic 
system.) with manual result of 116 suspected obstructive 
sleep apnea patients; they found that an overall agreement 
between automated scoring and manual scoring was around 
60.5%, and the automated method tended to excessively 
underestimate the apnea–hypopnea index. To improve the 
automated detection effectiveness, Marcin Ciolek et al. [17] 
used a robust airflow envelope to detect 30 patients’ airflow, 
accuracy, sensitivity, specificity, and Cohen’s coefficient 
of agreement was 95%, 90%, 96%, and 0.82, respectively. 
The shortfall of this article was they only used one single 
channel to detect and the sample number was small. Then, 
Tian et al. [18] detected respiratory nasal airflow signal and 
the oximetry signal of 30 patients; sensitivity and specific-
ity were 83.7% and 82.9%, respectively. Alvarez et al. [19] 
enlarged the number of patients to 148, but they had similar 
findings. The two studies showed that both the sensitivity 
and specificity were under 90%. To improve the detection 
effectiveness and decrease the cost of the artifact work, our 
study will use the local range and “SaO2 drop” to detect 
both the airflow and oximetry signal based on AASM 2012 
guidelines [20].

Methods

Study population

Subjects who complained of snoring or other symptoms 
(such as daytime sleepiness) of OSA, and who were referred 
to our sleep center between July 2019 and October 2019 
were consecutively enrolled.

Sleep evaluation

Object total sleep was evaluated by standard PSG (Embla 
systems N7000 or S4500, Natus Medical Incorporated, 
Pleasanton, CA, USA). According to AASM guidelines, 
three pairs of electroencephalograms, bi-lateral electrooc-
ulograms, modified lead II electrocardiograms, bipolar 
chin electromyograms, oral–nasal airflow, thoracic and 
abdominal respiratory effort, pulse oximetry, a posture 
and snoring sensor were recorded and obtained. The flow 
data were stored as a time series with 0.005-s interval (i.e., 
sampling rate 200 Hz), and the SaO2 data were stored as a 
time series of 10-Hz or 2-Hz sampling rate. Sleep record-
ings were automatically diagnosed and then compared to 
the manually checked results by two skilled technicians.

Apnea was defined as an absence of oronasal airflow 
by at least 90% relative to baseline and lasting ≥ 10 s. 
Hypopnea was defined as any upper airflow reduction of 
50% for at least 10 s, accompanied by either a decrease 
in oxyhemoglobin saturation at least 3% or terminated by 
awakening [20]. The apnea–hypopnea index (AHI) was 
indicated by the number of apnea and hypopnea events per 
hour of sleep. SAHS was diagnosed as the AHI ≥ 5 times 
per hour. SAHS was classified as mild (5–15), moderate 
(15–30), or severe (≥ 30), respectively [20].

Local range (LR), LR thresholds and apnea events

The airflow waveform was directly involved in the occur-
rence of respiratory events [21]. Clear oscillations were 
observed for normal breathing periods; whereas, apnea 
and hypopnea cause obvious amplitude reduction. There-
fore, an intensive analysis of the information from the two 
channels was suggested to help in SAHS diagnosis. In this 
study, the local range (LR) was adopted to evaluate the 
airflow situation.

LR was defined as the difference between the local 
maximum and the local minimum of a segment of airflow 
data P.

Here, LR (t) was the local range at time t and P 
(t → t + Δt) was the airflow slice from time t to t + Δt. The 
slice length Δt was chosen to be 10 s according to the 
clinical minimum duration of detecting breathing events.

To determine an apnea event using LR (or more pre-
cisely 1/LR), two thresholds, Ta and Tc (0 < Ta < Tc), 
were introduced. Ta was the threshold to distinguish two 
apnea events. If 1/ LR between two events were larger than 
Ta, the two events were considered as a single event. Tc 
was the threshold to distinguish apnea events. Thus, if 1/ 

LR (t) = max(P(t → t + Δt)) −min(P(t → t + Δt)).
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LR > Tc, it was considered as an apnea event. In our study, 
the best Ta and Tc were 10 and 25, respectively.

“SaO2 drops” and hypopnea events

According to the definition, one hypopnea must have one 
SaO2 drop. In this study, a “SaO2 drop” event was marked 
when two simple rules were satisfied: (1) the SaO2 data 
drops at least 3%; and (2) the drop slope should be larger 
than a certain value, here 0.001 is adopted.

Event number and AHI calculation

The number of SAH events can be achieved by the auto-
mated detection procedure, as described previously. The 
total sleep time should be obtained. An alternative way was 
to obtain the total sleep time from the EEG data. Accord-
ing to reports by the American Academy of Sleep Medicine 
(AASM), the sleeping period of adults was divided into peri-
ods of Wakefulness (W), Non-Rapid Eye Movement (includ-
ing NREM 1 (N1), NREM 2 (N2), NREM 3 (N3) and REM 
(R)) [22]. Therefore, the total sleep time was automatically 
calculated as a summation of N1, N2, N3 and R.

During the whole study, firstly, we detected apnea events 
from airflow data using local range. Then, we detected 
SaO2 desaturation events utilizing SaO2 data and merged 
the apnea and SaO2 desaturation events to get sleep apnea 
and hypopnea events. Finally, statistical analysis of event 
number AHI, AI and HI was performed.

Statistical methodology

All the analysis was conducted in a personal laptop (Intel 
i7-8650U, 16 GB RAM), Protocol code was written and run 
in MATLAB (R2019a). The average cost time for analyzing 
the overnight data per patient was less than 3 s (including 
reading raw ASCII data of about 90–100 MB).

Statistical analysis was performed with SPSS 20.0 (IBM, 
Armonk, NY, USA). Descriptive statistics were calculated 
for all variables. Continuous variables were summarized 
through means and standard deviations. The Pearson corre-
lation analysis was utilized. Besides, statistical results have 
also been compared, e.g., the AHI, AI, HI, etc. Ideally, the 
automated diagnosed results should be identical to the clini-
cal manually marked results and also the automated diag-
nosed results by our study and the Remlogic software (self-
contained by Embla) should be distinguished. Therefore, the 
commonly used mean absolute error (MAE) is adopted:

A cutoff of P < 0.05 was used to determine statistical 
significance.

MAE =
1

n

∑n

i=1
|Xi,predicted − Xi,standard|

Results

All 143 patients were enrolled in the experiment, aged 
16–74, with an average age of 40.6 years, including 122 
men and 21 women. Apnea–hypopnea index (AHI), apnea 
index (AI) and hypopnea index (HI) of manual reports 
were 44.2 ± 26.74 events/h, 37.0 ± 27.85 events/h and 
6.8 ± 6.84 events/h, respectively (Table 1). All of the man-
ual reports were analyzed by two experienced technicians. 
We divided the patients into three subgroups. In detail, 
group 1 was snoring and mild SAHS (AHI < 15/h, n = 26), 
group 2 was moderate SAHS (15/h ≤ AHI < 30/h, n = 24) 
and group 3 was severe SAHS (AHI ≥ 30/h, n = 93).

For all patients, AHI, AI and HI for our automated scor-
ing were 43.4 ± 26.35 events/h, 35.7 ± 26.92 events/h and 
7.6 ± 7.73 events/h, respectively. They were highly cor-
related with the results of manual reports (the Pearson 
correlation index was 0.996, 0.995 and 0.928, respectively, 
P < 0.001). Similar findings were got by Remlogic soft-
ware (AHI, r = 0.971, AI, r = 0.918, P < 0.001). However, 
HI for Remlogic automated scoring and clinical man-
ual reports was poorly correlated (r = 0.316, P < 0.001) 
(Figs. 1, 2 and 3d). Detailly, three subgroups were ana-
lyzed. Firstly, AHI for our automated scoring of all the 
three groups was highly correlated with the results of 
manual reports (r = 0.893, 0.847 and 0.993, respectively, 
P < 0.001) (Fig. 1a–c). Similar finding of group 3 was got 
by Remlogic software (r = 0.925, P < 0.001) (Fig. 1c). But 
AHI and HI for Remlogic software for group 1 and group 
2 were moderately correlated with the results of manual 
reports (r < 0.80, P < 0.001) (Fig. 1, 3a, b). Then, AI for 
two automated scoring was both highly correlated with 
the results of manual reports (this study vs. Remlogic 
software, the Pearson correlation index were 0.941 vs. 
0.828, 0.956 vs. 0.842 and 0.990 vs. 0.811, respectively, 
P < 0.001) (Fig. 2a–c). Finally, HI for our automated scor-
ing of group 2 and group 3 was highly correlated with 
the results of manual reports (r = 0.910, 0.936, respec-
tively, P < 0.001) (Fig. 3b, c).Otherwise, HI for Remlogic 

Table 1   Characteristics of subjects

AHI apnea–hypopnea index, AI apnea index, HI hypopnea index

Characteristics All patients (n = 143)

Age (years) (mean ± SD, range) 40.6 ± 11.44 (16–74)
Male/Female (%) 122/21 (85.3/14.7)
Body mass index (kg/m2) (mean ± SD, 

range)
27.2 ± 3.72 (19.3–38.1)

AHI (/h) (mean ± SD, range) 44.2 ± 26.74 (1.2–98.7)
AI (/h) (mean ± SD, range) 37.0 ± 27.85 (0.2–96.0)
HI (/h) (mean ± SD, middle, range) 6.8 ± 6.84 (4.90–35.0)
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software for group 3 was poorly correlated with the results 
of manual reports (r = 0.270, P < 0.001) (Fig. 3c).

Furthermore, we compared our automated method with 
the Remlogic software. For all patients, it was found that the 
range of the middle error between two methods was − 1.10 
to 0.70 and − 6.40 to 1.50, respectively (Table 2). Mean-
while, in this study, the middle MAE between our automate 
diagnosis method and manual analysis was from 0.60 to 
1.90; whereas, the middle MAE between Remlogic soft-
ware and manual analysis was from 1.10 to 6.90 (Table 2). 
It was shown that both AHI error and AHI absolute error 
of two methods were statistically significant (P < 0.0001) 
(Fig. 1e–l). We also found that almost AI error and AI 
absolute error of two methods were statistically significant 
except AI error of group 1 (mean ± SD, − 0.18 ± 1.260 vs. 
− 0.65 ± 2.181) and AI absolute error of group 2 (mid-
dle MAE, 1.65 vs. 2.25) (Fig. 2e–l). It was also shown 
that almost HI error and HI absolute error of two methods 

were statistically significant except HI error of all patients 
(mean ± SD, 0.84 ± 2.902 vs. 1.08 ± 8.422) and HI absolute 
error of group 1 (middle MAE, 1.15 vs.1.30) (Fig. 3e–l).

Finally, the sensitivity and positive predictive value 
(PPV) of our study were 93.0% and 95.7%, respectively.

Discussions

To the best of our knowledge, there are plenty of commercial 
products which currently present on the market and offer a 
system for automatic sleep scoring analysis. Software tools 
include Embla Remlogic, Noxturnal, Somnolyzer System, 
Michele Sleep Soring and so on. In the work conducted 
by Punjabi et al. [23], it was important to note the aver-
age correlation between the manual and Somnolyzer-scored 
AHI value was 0.93. In the work carried out by Park et al. 
[16], it was shown that the average correlation between the 

Fig.1   The AHI distribution, error and absolute error between all the 
patients and three groups AHI apnea and hypopnea index. a, e, i Snor-
ing and mild SAHS. b, f, j Moderate SAHS. c, g, k Severe SAHS. 
d, h, l All the 143 patients. a–d Comparison of the AI distribution 
between predicting results and clinical manually marked results. e–h 

Comparison of AI error between predicting results and clinical manu-
ally marked results. i–l Comparison of AI absolute error between 
predicting results and clinical manually marked results. *P < 0.05, 
**P < 0.01, ****P < 0.0001
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manual and Remlogic-scored AHI, obstructive AI and HI 
value was 0.761, 0.791 and 0.451, respectively. There was 
different from those between two methods. One reason was 
that Embla Remlogic and Somnolyzer System were two 
separate algorithms that belong to different companies. The 
other important factor was that Somnolyzer System used the 
AASM (2007) criteria but Embla Remlogic used the newest 
AASM (2012) criteria to date. In our study, the AHI, AI and 
HI between the manual and Remlogic scored were highly 
correlated. Both our study and Park’s work [16] showed that 
Remlogic-scored HI had poor agreement with manual scor-
ing. From this study, we found that our automated detection 
reports and clinical manual reports generally demonstrated 
good agreement. Statically, the AHI, AI and HI were very 
similar, higher than Remlogic software did. Specially, the 
similar result could be achieved among our three groups. In 
detail, this study showed the best correlation between our 
automated detection reports and manual reports. According 

to our result, scatter diagram and error analysis both showed 
that our method was central tendency, but Remlogic soft-
ware may underestimate the AHI (Fig. 1e–h), AI (Fig. 2f–h) 
and HI (Fig. 3e–g), which was similar to Park’s finding [16]. 
Furthermore, in point of MAE, we found that our automated 
detection method had better agreement with manual analysis 
than the Remlogic software among all three groups and all 
test patients.

It is more practical and accurate to detect sleep apnea and 
hypopnea events using the main signals of respiratory and 
blood oxygen. Firstly, the two signals are recorded by data 
segments or epochs. Then, manual scoring is found in the 
way of the combination of these two signals and the addi-
tional signals of EEG, EMG, ECG, snore sound and posi-
tion. Finally, it was found that there were lots of detecting 
findings based on different combination methods.

During the past two decades, about 14 articles studied the 
single airflow signal and 27 articles studied the single blood 

Fig. 2   The apnea index distribution, error and absolute error between 
all the patients and three groups AI apnea index. a, e, i Snoring and 
mild SAHS. b, f, j Moderate SAHS. c, g, k Severe SAHS. d, h, l All 
the 143 patients. a–d Comparison of the AI distribution between pre-
dicting results and clinical manually marked results. e–h Comparison 

of AI error between predicting results and clinical manually marked 
results. i-l Comparison of AI absolute error between predicting 
results and clinical manually marked results. *P < 0.05, **P < 0.01, 
****P< 0.0001
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oxygen signal, but only 4 articles studied the combination 
airflow and blood oxygen signals.

On account of the influence of airway obstruction, air-
flow signal was the most important respiratory signal 
used for detecting sleep apnea. Two studies published by 
Gutiérrez-Tobal et al. [24, 25] used the same large dataset 
(148 patients) to make a distinction between OSA positive 
and OSA negative. In the first study, a logistic regression 
analysis (LRA) model was used, which was performance 
improved using multilayer perceptron (MLP) model in 
the second study. The accuracy, sensitivity and specificity 
of the two articles were 82.4%, 88.0%, 70.8% vs. 91.5%, 
92.5%, 89.5%, respectively. Then Gutiérrez-Tobal et al. [26] 
reported an AdaBoost algorithm– classification and regres-
sion trees (CART) which was utilized to separate normal and 
apneic patients got good accuracy. The accuracy, sensitivity 
and specificity were 86.5%, 89.0%, 80.0%, respectively. Sel-
varaj and Narasimhan [27] used a per-second basis logical 

algorithm to distinguish apneic and normal patients; sensi-
tivity and PPV were 83.6% and 72.3%. So, it is important 
to improve classification approach to get a more acceptable 
performance.

Like the airflow signal, SaO2 was another important 
physiological signal using for detecting sleep apnea events. 
Marcos et al. [28–30] reported a lot of methods such as a 
threshold-based technique, neural networks including radial 
basis function and multi-layer perception (MLP), and sup-
port vector machine had distinguished OSA-positive and 
OSA-negative patient. The accuracy, sensitivity, speci-
ficity was 81.3–3%, 81.3–97%, 79.3–100%, respectively. 
Rolón et al. [31] used an MLP neural network method to 
distinguish mild, moderate and severe patients. The accu-
racy, sensitivity and specificity were 85.8%, 85.6%, 85.9%, 
respectively.

To improve the detection effectiveness, a combination 
of airflow and SaO2 signals had been applied. Tian et al. 

Fig.3   The HI distribution, error and absolute error between all the 
patients and three groups HI hypopnea index. a, e, i Snoring and mild 
SAHS. b, f, j Moderate SAHS. c, g, k severe SAHS. d, h, l All the 
143 patients. a–d Comparison of the AI distribution between predict-
ing results and clinical manually marked results. e–h Comparison 

of AI error between predicting results and clinical manually marked 
results. i–l Comparison of AI absolute error between predicting 
results and clinical manually marked results. *P <0.05, ** P < 0.01, 
****P < 0.0001
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[18] used time-delay neural network applied to airflow and 
SaO2 signals to detect apnea and hypopnea events; the 
sensitivity and specificity were 83.7% and 82.9%. Simi-
larly, Álvarez et al. [19] used a nonparametric threshold-
based method for airflow and SaO2 signals to distinguish 
OSA-positive and OSA-negative patients. The accuracy, 
sensitivity and specificity were 84.5%, 84.0%, 85.4%, 
respectively. Apnea and normal events were distinguished 
by multivariable fuzzy temporal profile model, which 
accuracy is 90.0% [32]. Huang et al. [15] found it had 
good accuracy to detect apnea and hypopnea events using 
the respiratory event detection algorithm. The sensitivity 
and PPV were 97.6% and 95.7%. In our study, we use the 
local range and “SaO2 drop” to detect apnea and hypo-
pnea events. According to the AASM definition, we clarify 
that SaO2 drop events can be triggered by both apnea and 
hypopnea events. Since apnea events have previously been 
detected by the airflow data, the rest drop events should be 
caused by hypopnea events. Among the five articles, our 
specificity and was higher than the previous two articles, 
which were similar to Huang’s report, but their patients’ 
sample was smaller.

We should account into some drawbacks that restrict the 
generalization of our result. The population under study 
could be larger that we can distinguish simple snoring and 
mild SAHS. An important limitation should be pointed out. 
Our procedure could noot differentiate obstructive, mixed 
and central events because of the imperfect used signals. 
These detailed diagnoses could be obtained by adding and 
combining more channels such as ECG or snoring.

Conclusion

This procedure is accurate, robust and effective, which 
would shorten the clinical diagnosis time and improve the 
diagnosis effectiveness compared with the traditional clini-
cal automated method.
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