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ABSTRACT

Convective storms and lightning are among the most important weather phenomena that are challenging to forecast. In
this study, a novel multi-task learning (MTL) encoder-decoder U-net neural network was developed to forecast convective
storms  and  lightning  with  lead  times  for  up  to  90  min,  using  GOES-16  geostationary  satellite  infrared  brightness
temperatures (IRBTs), lightning flashes from Geostationary Lightning Mapper (GLM), and vertically integrated liquid (VIL)
from  Next  Generation  Weather  Radar  (NEXRAD).  To  cope  with  the  heavily  skewed  distribution  of  lightning  data,  a
spatiotemporal  exponent-weighted  loss  function  and  log-transformed  lightning  normalization  approach  were  developed.
The  effects  of  MTL,  single-task  learning  (STL),  and  IRBTs  as  auxiliary  input  features  on  convection  and  lightning
nowcasting were investigated.
      The  results  showed  that  normalizing  the  heavily  skew-distributed  lightning  data  along  with  a  log-transformation
dramatically outperforms the min-max normalization method for nowcasting an intense lightning event.  The MTL model
significantly  outperformed  the  STL  model  for  both  lightning  nowcasting  and  VIL  nowcasting,  particularly  for  intense
lightning events.  The MTL also helped delay the lightning forecast  performance decay with the lead times.  Furthermore,
incorporating  satellite  IRBTs  as  auxiliary  input  features  substantially  improved  lightning  nowcasting,  but  produced  little
difference  in  VIL  forecasting.  Finally,  the  MTL  model  performed  better  for  forecasting  both  lightning  and  the  VIL  of
organized convective storms than for isolated cells.
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Article Highlights:

•  A novel multitask learning U-net model was developed for forecasting VIL and lightning, and it outperformed the single-
task learning model.

•  Spatiotemporal  exponent-weighted loss function and a logarithmic normalization were formulated to improve VIL and
lightning nowcasting.

•  Incorporating satellite infrared brightness temperatures as auxiliary input significantly improves lightning nowcasting.
 

 
 

 1.    Introduction

Warm-season  convective  storms  frequently  produce

severe  weather  conditions,  including  heavy  rainfall,  light-
ning,  hail,  damaging  winds,  and  tornadoes  (Houze  et  al.,
2007; Yao et al., 2015). Accurate and timely convection now-
casting  is  crucial  for  mitigating  this  damage.  The  intrinsic
complexity  of  convection  makes  it  challenging  to  forecast
its  location  and  intensity.  Convection  nowcasting  appro-
aches can be divided into two classes: radar-echo extrapola-
tion or satellite images (Dixon and Wiener,  1993; Ayzel et
al., 2019) and numerical weather models (NWP) (Sun et al.,
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2014).  The  latter  typically  requires  vast  computational
resources to integrate mathematical–physical forecasting equa-
tions at high temporal and spatial resolutions, making it chal-
lenging for the desired frequent update cycles. Radar extrapo-
lation convection nowcasting approaches have been used oper-
ationally in many national and regional weather centers.

Lightning is  a  concomitant  phenomenon of  convective
storms. Lightning forecasting remains a significant challenge
in  operational  meteorology  (Sun  et  al.,  2014; Zhou  et  al.,
2020). There are primarily two methods for lightning nowcast-
ing. One is a lightning diagnostic scheme based on NWP out-
puts that contain electrification parameterizations (Fierro et
al., 2013) or cloud microphysical parameters as a proxy for
lightning (Tippett and Koshak, 2018). The other is based on
an  extrapolation  scheme  using  measurements  of  satellite,
weather radar, NWP model output, and lightning location sys-
tem measurements, alone or combined (Meng et al., 2019).
With  the  rapid  increase  in  modern  observation  sources,
many  efforts  have  been  made  to  explore  novel  methods  to
improve convective storms and lightning nowcasting.

Recent advances in machine learning and deep learning
have  greatly  improved  data  inference  ability  in  the  diverse
domains  of  business  and  science  (LeCun et  al.,  2015).  For
weather applications, several machine learning models have
been  developed  to  represent  unresolved  physical  processes
in coarse-scale climate models (Gentine et al., 2018; Rasp et
al.,  2018; Pal  et  al.,  2019; Seifert  and Rasp,  2020; Beucler
et  al.,  2021),  improve  medium-range  weather  forecasting
(Rasp et al., 2020; Rasp and Thuerey, 2021), and post-process
numerical  weather  model  outputs  (Krasnopolsky  and  Lin,
2012; Rasp  and  Lerch,  2018; Li  et  al.,  2019; Han  et  al.,
2021).  Furthermore,  deep  learning  technologies  have  the
potential  to obtain the best  possible estimate of  the current
atmospheric state for initializing numerical weather models
(Abarbanel et al., 2018; Arcucci et al., 2021; Geer, 2021).

Deep learning methods have been successfully applied
to predict the spatiotemporal evolution of convective precipi-
tation based on radar-image extrapolation (Shi et al.,  2015;
Wang et al., 2017; Sønderby et al., 2020; Wu et al., 2021).
Shi et al. (2015) introduced a convolutional long short-term
memory neural network model (ConvLSTM) to forecast pre-
cipitation using weather radar measurements.  Several other
deep learning models have been developed for convection pre-
cipitation forecasting using weather radar, satellites, or com-
bined  observations  (Franch  et  al.,  2016; Han  et  al.,  2020,
2021; Ravuri et al., 2021). Mostajabi et al. (2019) applied a
machine learning method for lightning nowcasting for up to
30  min  using  four  meteorological  parameters:  air  pressure,
air temperature, relative humidity, and wind speed. Zhou et
al. (2020) proposed a U-net model for 0–1 h ahead cloud-to-
ground (CG) lightning occurrence probabilities using observa-
tions  from the  Himawari-8  geostationary  satellite,  Doppler
weather radar networks, and CG lightning location systems
in central-eastern and southern China.

The above deep learning models for convective storms
and lightning nowcasting are based on convolutional neural

networks (CNN) with single-task learning (STL).  STL is  a
standard method for training a machine learning model for a
given  task  (Shi  et  al.,  2015; Zhou  et  al.,  2020; Han  et  al.,
2021; Liu et al., 2021). Recently, multi-task learning (MTL),
which  aims  to  simultaneously  optimize  multiple  objectives
using shared weight parameters of neural network models to
learn the common patterns of related tasks, has been proposed
(Crawshaw,  2020).  The  MTL  exhibits  good  potential  for
improving the accuracy and generalization of neural network
models  (Zhang  and  Yang,  2018; Zhuo  and  Tan,  2021).
Herein, we explore the MTL for convective storms and light-
ning nowcasting and compare it to STL models. To the best
of  our  knowledge,  this  is  the  first  application  of  the  MTL
paradigm to convection and lightning nowcasting.

In  this  study,  GOES-16 geostationary satellite  infrared
brightness temperatures (IRBTs) and lightning flashes (includ-
ing  both  intra-cloud  and  cloud-to-ground  lightning  events)
from  the  Geostationary  Lightning  Mapper  (GLM),  and
mosaics of vertically integrated liquid (VIL) from Next Gener-
ation Weather Radar (NEXRAD) were used to train a U-net
neural network model for 0–90 min lightning and VIL now-
casting, and algorithms including MTL, batch normalization,
and cost function strategies were introduced to improve the
U-net  model  for  lightning  and  VIL  forecasting.  Moreover,
the effects of GOES-16 IRBTs on lightning and VIL nowcast-
ing  were  investigated  using  the  MTL  U-net  model.  The
remainder of this paper is organized as follows. In section 2,
we  introduce  the  data  used  for  training  the  neural  network
models  and  data  preprocessing  approaches.  Section  3
describes the architecture of the neural network models devel-
oped in this study and the specification of the temporal-spatial
weighted loss functions. Section 4 presents and analyzes the
results of experiments with varying training parameters and
input  data.  Finally,  the  findings  and  conclusions  of  this
study are summarized in section 5.

 2.    Satellite, radar, and lightning data

The GOES-16 6.9 and 10.7 μm infrared (IR) brightness
temperature, total lightning flashes of GLM (including intra-
cloud  and  CG  lightning),  and  mosaics  of  VIL  from
NEXRAD (Table 1) were collected from the SEVIR (Storm
Event  ImagRy)  dataset  (Veillette  et  al.,  2020).  A  total  of
6960 convective events were selected to train the neural net-
work models.  Each event  in  SEVIR is  on a  384 km × 384
km patch, selected based on the National Centers for Environ-
mental  Information  (NCEI)  Storm  Events  Databasea.
Details regarding the SEVIR datasets can be found in the Veil-
lette et al. (2020) study. In this study, each convective event
consisted  of  a  155  min  time  sequence  of  images  at  5-min
time steps in this study. It contained a set of observed variables
with fixed dimensions and different geographic location infor-
mation, as shown in Table 1. The data were split into three
subsets: training and validation datasets (4324 and 764 sam-
ples,  respectively)  from February 2018 to May 2019 and a
 
a https://www.ncdc.noaa.gov/stormevents/
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test  dataset  (647  samples)  from  June  to  November  2019.
Training and validation datasets were used to train the neural
network  models,  and  the  test  dataset  was  used  to  evaluate
them.

The  GOES-16  measurements  used  in  this  study  are
from two IR channels, 6.9 and 10.7 μm, with 2 km grid resolu-
tion,  the  gridded  lightning  density  measured  by  GLM  is
with a resolution of 8 km, and the VIL data is at 1−km intervals
(Fig. 1). The VIL data were resampled at 2 km grid intervals
to align with the IR channel data. To improve the neural net-
work  model  training,  VIL  with  a  range  of  0−255  in  the
SEVIR  dataset  (including  training,  validation,  and  testing
datasets) was normalized to 0−1 using the min-max normal-
ization method. The 6.9 and 10.7 μm brightness temperatures
were  normalized  by  subtracting  their  average  and  dividing
by the IRBT standard deviation from the training and valida-
tion dataset.

As  the  lightning  flash  density  data  were  severely
skewed, they were normalized as follows: 

loglght = log2
(
lght+1

)
, (1)

where lght is the number of GLM lightning flashes measured
in an 8 × 8 km2 grid box. Figures 2a and b compare the distri-
bution of lightning flashes normalized by the min-max and
Log2Norm normalization methods, respectively. Log2Norm
greatly reduces the skewness of min-max normalization.

 3.    Deep-learning  models  and  experiment
design

Convective and lightning nowcasting can be viewed as
an extended image-to-image (or video) projection issue. Sin-
gle-task  learning  (STL),  in  which  the  cost  function  is
defined as a function of the inference task itself, is a standard
method  adopted  for  training  machine  learning  models  for
convection  nowcasting  by  previous  researchers.  Multi-task
learning (MTL) is  a  subfield of  machine learning in which
multiple projecting targets are inferred simultaneously with

Table 1.   Description of variables was used to train the neural network models.

Image Type Description Spatial Resolution (km) Patch Size

IRBTs 6.9 μm Mid-level water vapor 2 192 × 192
IRBTs 10.7 μm Clean longwave window 2 192 × 192

VIL NEXRAD radar mosaic of VIL 2 192 × 192
Lightning Intercloud and cloud to ground lightning 8 48 × 48

 

 

Fig. 1. Measurements of a sample convection storm: (a) 6.9 μm and (b) 10.7 μm infrared brightness temperatures with 2-km
grid  resolution  and  5-min  intervals  from  GOES-16  geostationary  satellite  measurements,  (c)  a  mosaic  of  VIL  from
NEXRAD with 1 km grid resolution, and (d) lightning density at 8 km grid resolution from GLM.

 

 

Fig.  2. Distribution  of  normalized  lightning  flashes  in  training  dataset  by  (a)  min-max  (b)  Log2Norm
normalization method, respectively.
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minimization  of  the  shared  weight  parameters  of  a  model
(Crawshaw, 2020). Optimizing multiple objectives at once,
the MTL reduces the cost of running multiple models to com-
plete multiple tasks and has the potential to improve the accu-
racy of the results. The MTL is particularly effective when
the training data are sparse (Zhang and Yang, 2018). In this
study,  the  MTL  was  constructed  along  with  an  encoder-
decoder U-Net deep learning model to jointly forecast light-
ning flash and VIL, and the results were evaluated and com-
pared  to  those  generated  with  the  STL  approach  that  opti-
mized VIL and lightning nowcasting separately.

 3.1.    MTL and STL neural network models

The  architecture  of  the  encoder-decoder  U-Net  model
constructed for convection and lightning nowcasting (Fig. 3)
is  similar  to  that  of  Ronneberger  et  al.  (2015).  This  model
consists  of  convolution  (Conv2d),  pooling  (Maxpool2d),
upsampling, batch normalization, and rectified linear unit (i.
e.,  activation function) layers.  The convolutional layers are
used to extract the key features using a specified number of
filters with assigned kernel sizes from the image data and to
generate  the  feature  maps.  The  pooling  layers  reduce  the
dimensions  of  the  feature  maps  and  control  the  possible
model overfitting. For example, a Maxpool2d layer of size 2
×  2  takes  nonoverlapping  2  ×  2  patches  of  an  image  and
maps each to a single-pixel containing the maximum value
of the 2 × 2 patch.

In  contrast,  the  upsampling  layers  invert  operations  in
the pooling layers. Conv2dTrans layers with a size of 2 × 2
windows  were  used  to  expand  the  image  resolution.  The
upsampling layers are not intended to invert the pooling layers
to restore the information lost during the pooling operations,
but  to  simply  expand  the  resolution  of  an  image,  that  is,

restore the data dimension. As small-scale features were lost
during  the  pooling  operations,  skip  connection  operations
were used to concatenate the large- and small-scale features
to  maintain  multi-scale  features  during  upsampling.  The
batch normalization layer was used to accelerate neural net-
work  model  training  by  transforming  the  intermediate
results  of  the  neural  network  model  to  reduce  the  internal
covariate shift (Ioffe and Szegedy, 2015). An activation func-
tion  (e.g.,  LeakyReLu)  was  applied  to  the  feature  maps  to
introduce nonlinearity.

Unlike  the  original  U-net  model  (Ronneberger  et  al.,
2015), the U-net model configured herein contains three fea-
ture extractor modules for VIL, GLM lightning flashes, and
both: 1) the VIL feature extractor module (light gray rectangle
in Fig.  3)  extracts  the  VIL  and  IRBTs  features  in  the
encoder and extracts the features of the VIL, lightning, and/
or  IRBTs  in  the  decoder;  2)  the  common  feature  extractor
modules (the deep gray rectangle in Fig. 3) share the weight
parameters for extracting the features from VIL, GLM light-
ning flashes, and/or IRBTs in both the encoder and decoder;
3) the feature extractors of lightning in the decoder (the blue
rectangle  in Fig.  3)  are  used  to  extract  features  from  VIL,
lightning, and/or IRBTs for predicting lightning flashes.

Each convolution layer in Fig. 3 is followed by a batch
normalization layer and LeakyReLu activation layer. In the
input  layer,  VIL  and/or  IRBTs  were  fed  into  the  U-net
model.  Furthermore,  13  additional  lightning  frames  corre-
sponding to VIL and IRBTs as auxiliary input features were
fed into the model after the second Maxpool2d layer for light-
ning and/or VIL nowcasting (shown in Fig. 3). The encoder
section  consisted  of  six  sets  of  two convolution  layers  and
five maxpooling layers. Two output layers were used for light-
ning and VIL forecasting,  respectively,  in  the decoder sec-

 

 

Fig. 3. Description of the encoder-decoder U-net model with multi-task learning for convection and
lightning nowcasting. The light gray rectangle, navy blue rectangle, and deep gray rectangle blocks
denote  the  features  extractor  of  vertically  integrated  liquid  (VIL),  lightning  flashes,  and  both,
respectively. 3 × 3 represents the dimensions of the filter applied in the convolutional layers. 2 × 2 is
the  window  size  of  maxpooling  layers  and  upsampling  layers.  The  large-scale  and  small-scale
features are concatenated together by skip connections (dashed lines with arrows) to keep multi-scale
features. x in the input layer indicates that input channels 13 (39) of VIL (VIL and IRBTs) were fed
into the model.
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tion.  In  the  decoder  section,  the  common  feature  extractor
module consists of three sets of two convolution layers and
three upsampling layers; a lightning forecasting module con-
sists of two convolution layers without a LeakyReLu activa-
tion  layer;  and  a  VIL  forecasting  module  consists  of  two
sets of two convolution layers,  two upsampling layers,  and
the  last  output  layer  (one  convolution  layer  without  the
LeakyReLu activation layer).

The encoder-decoder U-net models were built using the
open-source  Python  library  PyTorch  Lightning  (https://
www.pytorchlightning.ai,  version  1.3.8)  with  PyTorch
(https://pytorch.org, version 1.7.1).  The U-net models were
run  on  a  graphics  processing  unit  (GPU:  RTX  8000).  The
batch size was empirically set to 8. The Adam optimization
scheme  with  default  values  was  used  as  the  learning  strat-
egy. The initial learning rate was set to 3 × 10−4, and a learning
rate  optimization  method  called  ReduceLROnPlateaub was
used,  which  reduces  the  learning  rate  by  a  factor  of  0.9
when a metric shows no improvement for three subsequent
epochs.  The  above  optimal  hyperparameters  are  based  on
the  results  of  a  group  of  experiments.  The  U-net  models
were set with the same random seed and weight initialization
methods to reproduce comparable results.

 3.2.    Design of loss function

To  cope  with  the  heavily  uneven  distribution  of  VIL
and  lightning  flashes,  the  following  temporal-spatial  expo-
nent weighted loss function was used to train the neural net-
work model: 

Loss =
T∑

t=0

Wt
1
M

N∑
i=1

N∑
j=1

expαym
(
ym,i, j− ŷm,i, j

)
, (2)

Wt

α

ym ŷm

where  is a weight parameter at the input time tc, T is the
total number of input times (i.e., 18), M is the total number
of grid points, N is the dimension of the image, and  is the
weight factor with a power function.  and  represent the
observed  and  predicted  values,  respectively.  A  time-expo-
nent-weighted MSE loss function was used to optimize the
VIL and lightning flash nowcasting tasks. The weight factor
α for  VIL  and  lightning  nowcasting  was  set  at  3.5  and  2
based on the results of a group of experiments, respectively.
With MTL, the total of loss is defined as follows: 

TLoss = β×VILLoss+γ×LghtLoss , (3)

β γ

where VILLoss and LghtLoss are the losses of VIL and light-
ning nowcasting, respectively;  and  are the weight parame-
ters of VILLoss and LghtLoss, respectively, to scale the VIL-
Loss and LghtLoss to the similar magnitude ranges.

 3.3.    Description of evaluating metrics and experiments

To evaluate the forecasting skill  of  the neural  network
models,  the  equitable  threat  score  (ETS),  critical  success
index  (CSI),  probability  of  detection  (POD),  false  alarm
ratio (FAR), and bias score (BIAS) were calculated for the
training,  validation,  and  test  datasets.  CSI,  POD,  FAR and
BIAS can be calculated from using the following equations: 

ETS =
TP+TPrandom

TP+FN+FP−TPrandom
, (4)

 

CSI =
TP

TP+FP+FN
, (5)

 

POD =
TP

TP+FN
, (6)

 

FAR =
FP

TP+FP
, (7)

 

BIAS =
TP+FP
TP+FN

, (8)

TPrandom= (TP+FN)×(TP+FP)/(TP+FN+FP+CN)where ,
TP (True Positive) is the number of grid points where both
prediction and observation satisfy an assigned threshold condi-
tion, FP (False Positive) is the number of grid points where
the prediction satisfies the assigned threshold condition, but
the observation does not; FN (False Negative) is the number
of  grid  points  where  the  observation  satisfies  the  assigned
threshold condition, but not the prediction; and CN (Correct
Negative)  indicates  correct  negative.  ETS,  CSI,  POD,  and
FAR have a range between 0 and 1, but BIAS ranges from 0
to  infinity  (a  frequency  bias  closer  to1  means  a  perfect
score).

The U-net model was formulated to run for convection
and  lightning  nowcasting  using  MUNet  (MTL  U-net)  and
SUNet (STL U-net) models, respectively. The experimental
design  is  summarized  in Table  2.  The  MUNet  and  SUNet
models  were  configured  to  forecast  the  VIL  and  lightning
over  the  next  90  min  (18  frames)  based  on  the  immediate
last 65-minute observations (13 frames). VIL and lightning
were optimized for MUNet (including M2DIR and M2DNR)
but separately for SUNet (e.g., S2DIR). Two common base-
line models,  the persistence and optical  flow models based
on the rainymotion package (Ayzel et  al.,  2019) were used
as baseline references for  assessing the performance of  the
neural network models developed in this study. The persis-
tence model assumes the last  input (value) not changing in
future time steps. The optical-flow model from the “rainymo-
tion package” estimates a dense flow at each pixel using the
last two frames in the inputs and creates a nowcast by advect-
ing each pixel using a semi-Lagrangian scheme, same as Veil-
lette  et  al.  (2020).  The  persistence  and  optical-flow  model
do  not  easily  grasp  the  generation,  disappearance  and

 

Wt

b https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.
ReduceLROnPlateau.html
c  is set to (1, 1.2, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5, 5, 5, 5, 5, 5, 5,
5) and (1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 2, 2.2, 2.4, 2.6, 2.8, 3,
3, 3, 3) from first frame to 18-th frame for VIL and lightning, respec-
tively.
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changes of convection storms from weather radar and/or satel-
lite cloud images.

During model training, we first determined the number
of  epochs  to  obtain  the  optimal  results  for  MUNet/SUNet
and  IRBTs  on  convection  and  lightning  nowcasting.  For
STL, the epoch that allowed the models to achieve the best
CSI of VIL (or lightning) nowcasting was selected. Neverthe-
less, for the MTL, the epoch number that resulted in the best
CSI for both VIL and lightning nowcasting was chosen.

 4.    Experiments and analysis

 4.1.    Performance Evaluation

⩾
⩾

The skill scores of 0–90 min VIL ( 3.53 kg m−2 corre-
sponding to 133 in Veillette et al.,  2020) and lightning [ 1
flash (64 km−2)]  nowcasting from the persistence,  M2DIR,
M2DNR and S2DIR are shown in Table 3. The neural network
models significantly outperformed the persistence model for
both VIL and lightning nowcasting. All neural network mod-
els  underpredicted  weak  lightning  and  overestimated
intense lightning (data not shown). However, the neural net-
work models  slightly overpredicted the VIL for  lower VIL
thresholds and underpredicted it for higher VIL thresholds.

Figure 4 shows CSI of all models for VIL and lightning
nowcasting  with  95%  confidence  intervals  (obtained  by  a
bootstrapping method with 500 iterations). The range of confi-
dence interval is so small that it makes it difficult to distin-
guish it in the figure. It is possible that each neural network
model has similar performance for the convection storms in
the test data set, leading to the confidence interval differences
in the skill scores being not significant. All the neural network
models  showed  much  better  skills  than  the  persistence

model  with  a  lead  time  beyond  5−10  min  (Fig.  4b).  The
MUNet model evidently improved the lightning forecast for
all forecast lead times. For the larger lightning density thresh-
olds,  the  neural  network  models  (MUNet  and  SUNet)  did
not exceed the persistence model until the 10-min lead time
(Fig. 4c). Lightning density tends to have smaller scale struc-
tures,  exhibits  more randomness than VIL,  making it  more
challenging  to  forecast  than  VIL.  This  is  particularly  true
for intense lightning cores, where the CSI of the neural net-
work model forecast remains low within the first 5−10 min.
Therefore the persistence model, whose forecast skill starts
at  100%  accuracy,  performs  better  at  this  very  short  lead
time.

 4.2.    Sensitivity to the normalization method

To  investigate  the  effect  of  the  normalization  method
on lightning nowcasting, we trained two SUNet models for
lightning  nowcasting  with  the  same  mean  squared  error
(MSE) loss function but using the Min-max and Log2Norm
methods, respectively, to normalize lightning data. The skill
metrics  of  lightning flash nowcasting for  the Min-max and
Log2Norm normalization methods are listed in Table 4. The
skill scores (CSI and ETS) of lightning nowcasting suggest
that  the  Min-max  normalization  method  is  better  than
Log2Norm at the lower lightning density threshold for light-
ning  nowcasting.  However,  the  Log2Norm  normalization
method  is  superior  for  larger  lightning  density  thresholds,
and  its  performance  is  dramatically  improved  for  extreme
lightning  cases.  The  SUNet  model,  using  either  the  Min-
max or Log2Norm for lightning data normalization, underpre-
dicts the lightning flash density, especially for large lightning
density thresholds.

As  shown  in Fig.  5,  the  Log2Norm  normalization

Table 2.   Description of experiments for VIL and lightning nowcasting.

Abbreviation Description Input Features Targets

M2DIR Unet-2D with MTL, using IRBTs IRBTs, VIL and Lightning VIL and Lightning
M2DNR Unet-2D with MTL, w/o IRBTs VIL and Lightning VIL and Lightning
S2DIR Unet-2D with STL using IRBTs IRBTs, VIL and Lightning VIL or Lightning

⩾ ⩾Table 3.   Evaluation metrics of the VIL ( 3.53 kg m−2) and lightning [( 1 flash (64 km−2)] nowcasting for lead times of 0–90 min using
the persistence model and the MUNet (multi-task learning U-net) model with/without including IRBTs as auxiliary input features, and the
SUNet (single-task learning U-net) model including IRBTs as auxiliary input features. The bold black means the best skill scores.

Target Model POD FAR BIAS CSI ETS

VIL Persistence 0.233 0.754 1.027 0.138 0.116
Optical flow 0.349 0.654 1.078 0.212 0.190

S2DIR 0.461 0.593 1.170 0.267 0.242
M2DIR 0.488 0.600 1.247 0.277 0.252
M2DNR 0.496 0.599 1.283 0.278 0.253

lightning Persistence 0.199 0.800 1.156 0.110 0.096
Optical flow 0.210 0.721 0.836 0.136 0.124

S2DIR 0.334 0.716 1.301 0.169 0.154
M2DIR 0.355 0.651 1.064 0.208 0.195
M2DNR 0.324 0.643 0.950 0.198 0.185
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method  achieves  significantly  better  scores,  especially  for
longer  lead  times  and  large  lightning  densities.  The
Log2Norm normalization method handles the skewed light-
ning density distribution better than the Min-max normaliza-
tion methods (Fig. 2), which helps the neural network models
to learn the features with respect to intense lightning activities
in the lightning data.

 4.3.    Effects of MTL and STL

Table 3 shows that for VIL nowcasting, M2DIR yields
a  CSI  of  0.277  and  ETS  of  0.252,  which  outperforms
S2DIR  (with  a  CSI  of  0.267  and  ETS  of  0.242).  Both
M2DIR and S2DIR slightly overpredict the weak and middle
VIL values. However, M2DIR and S2DIR both significantly
underpredict  at  large VIL thresholds,  e.g.,  M2DIR yields a

 

 

⩾ ⩾

⩾ ⩾

Fig. 4. CSI of time series of (a) VIL ( 3.53 kg m−2) and (b) lightning flash nowcasting [ 1
flash  (64  km−2)]  all  models,  respectively.  (c)  CSI  of  time  series  for  different  lightning
thresholds  [ 10  and 30  flash  (64  km−2)]  of  lightning  flash  nowcasting  all  models.
Persistence, M2DIR, M2DNR and S2DIR are the persistence model, the MUNet (multi-task
learning U-net) models with/without the inclusion of IRBTs as auxiliary input features, and
the SUNet (single-task learning U-net) model with the inclusion of IRBTs as auxiliary input
features, respectively. The skill  scores shown exceed the 95% confidence interval (obtained
by a bootstrapping method with 500 iterations).
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CSI of 0.119 and BIAS of 0.544, and S2DIR yields a CSI of
0.112  and  BIAS  of  0.333  when  VIL  >  12.14  kg  m−2.  The
M2DIR CSI scores are slightly better than S2DIR for all fore-
cast lead times (Fig. 4a).

The MUNet model (M2DIR) significantly outperformed
the lightning nowcasting of the SUNet model (S2DIR), with
the  CSI  increasing  by  0.039  and  ETS  by  0.041  (Table  3).
Moreover,  the  frequency  bias  of  M2DIR  was  closer  to  1,
which is better than that of S2DIR. Figures 4b and 4c show
that the skill metrics (CSI) of M2DIR were evidently superior
to those of S2DIR for all lead times.

In  summary,  the  deep  model  experimental  results
clearly  demonstrate  that  MTL significantly  improves  light-
ning  nowcasting  in  comparison  with  STL,  and  it  also
improves the VIL forecast to a certain extent. However, the
superiority  of  MTL tends to  diminish with  lead times over
60 min.  In the following section,  we explore the impact  of
adding satellite IRBTs data to the deep learning models.

 4.4.    Effects of IR brightness temperature

Satellite  IRBTs  contain  information  on  the  height  and
thermodynamic and microphysical  processes of deep moist
convection (Mecikalski et al., 2008; Rosenfeld et al., 2008).
Herein, the effect of IRBTs on VIL and lightning nowcasting
using  MUNet  models  is  analyzed. Table  3 shows  that  the
GOES-16 IRBTs have different effects on VIL and lightning
nowcasting.  IRBTs  have  little  effect  on  VIL  nowcasting
(Table  3),  and  for  intense  VIL,  the  forecast  is  slightly
degraded.  This  is  likely  because  IRBTs may be  dominated
by the cold cloud top temperature of the anvils for deep con-
vective  cloud  anvils  (Müller  et  al.,  2018),  which  contain
very  little  extra  information  about  VIL,  but  a  considerable
amount  of  less  relevant  information  about  the  ice  crystal
anvils that mask the VIL signals.

In contrast, IRBTs have a significant influence on light-
ning  forecasting  (Table  3 and Figs.  4b and c).  Lightning
occurrence  increases  as  the  brightness  temperature
decreases,  and  a  brightness  temperature  lower  than  217  K

Table  4.   Evaluation  of  lightning  nowcasting  with  the  Min-max  and  Log2Norm normalization  method  for  different  lightning  density
thresholds at lead time up to 90 min.

Method Thresholds POD FAR BIAS CSI ETS

Min-max 1 0.302 0.644 0.989 0.164 0.150
5 0.079 0.426 0.250 0.055 0.054

10 0.030 0.261 0.093 0.025 0.024
15 0.018 0.175 0.056 0.015 0.015
30 0.001 0.041 0.003 0.001 0.001

Log2Norm 1 0.142 0.496 0.316 0.114 0.107
5 0.054 0.459 0.207 0.041 0.039

10 0.027 0.334 0.134 0.022 0.021
15 0.018 0.294 0.135 0.014 0.014
30 0.006 0.207 0.223 0.005 0.005

 

10-1

10-2

10-3

10-4

 

Fig. 5. CSI time series for lightning nowcasting at different lightning density
thresholds [5, 10, and 15 flashes (64 km−2)] using the SUNet model, and the
lightning  data  normalized  by  the  Min-max  (red  line)  and  Log2Norm  (blue
line) normalization method, separately.
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can be used as a proxy for the presence of lightning (Katsanos
et al., 2007). Thus, IRBTs contain rich information regarding
the occurrence of lightning. When IRBTs were included as
auxiliary  input  features  (Fig.  4b),  the  MUNet  model  with
IRBTs achieved the best performance for lightning nowcast-
ing,  although  it  slightly  overpredicted  lightning  more  than
the MUNet model without IRBTs.

The  overprediction  of  the  density  of  lightning  flashes
with  the  MUNet  model  that  includes  IRBTs  is  likely
because  the  model  slightly  overestimates  the  relationship
between lightning flash occurrence and lower brightness tem-
perature. A brightness temperature lower than 217 K can be
used as  a  proxy for  lightning flash occurrence;  however,  it
is not a sufficient condition for lightning occurrence. A light-
ning  discharge  is  a  combination  of  complex  dynamic  and
microphysical  processes  (Mostajabi  et  al.,  2019).  In-cloud
mixed-phase  microphysics  driven  by  the  presence  of  a
strong updraft (e.g., > 6 m s−1 in the mean, Zipser and Lutz,
1994) in the lower- to mid- level is necessary to facilitate sig-
nificant  cloud  electrification  and  the  strong  electric  fields
required  to  initiate  lightning  (Carey  and  Rutledge,  1996;
Petersen et al., 1996; Deierling and Petersen, 2008). Further-
more,  low IRBTs may occur after  vigorous convection has
dissipated.

 4.5.    Organized versus isolated convective storms

 4.5.1.    Overall results

Organized  convection  evolves  more  continuously  than
scattered  isolated  convective  storms.  The  latter  involves
more cells that initiate or disperse, and thus, are more difficult
to  forecast.  To  obtain  a  visual  perception  of  the  impact  of
the different neural network models on the VIL and lightning
nowcasting of convection events of different types, the perfor-
mance  of  nowcasting  of  two  categories  of  convection  and
lightning events— organized convective storms and isolated
convective cells—each composed of 50 cases selected from
the testing datasets,  are  summarized in Table 5 and Fig.  6.

The statistical verification of the experiments was consistent
with the earlier discussions. The MUNet model outperformed
the SUNet model in terms of both VIL and lightning nowcast-
ing. Both the MUNet and SUNet models achieve better VIL
and  lightning  nowcasting  for  the  organized  convective
storms than isolated convective cells, especially for the long
nowcasting lead times (Fig. 6).

For  VIL  nowcasting,  M2DNR  appears  to  be  superior
for  forecasting  organized  convective  storms;  however,  the
skill scores (CSI and ETS) for M2DIR are better than those
of  M2DNR  for  isolated  convective  cells  (Table  5),  which
demonstrates that IRBTs provide useful information for iso-
lated  convective  cell  nowcasting. Figure  6a shows  that  the
neural network models clearly overpredict for organized con-
vective storms with all  lead times for  VIL nowcasting,  but
its frequency bias shows almost unbiased scores for isolated
convective cells. As illustrated in Fig. 6b, the skill score of
M2DIR  was  better  than  that  of  M2DNR  and  S2DIR.
M2DNR  and  S2DIR  slightly  underpredicted  and  overpre-
dicted  the  lightnings  of  both  organized  convective  storms
and isolated convective cells, respectively.

 4.5.2.    A case of convective storms

Figure  7 shows  the  distribution  of  VIL  observations
and forecasts of the three models at different lead times for
a  typical  case  taken  from  the  testing  dataset  with  multiple
small isolated convective cells and an organized convective
storm. The MUNet model is more capable of capturing con-
vective storm development and merging within the white rect-
angles  B  in Fig.  7 than  the  SUNet  model.  Compared  to
M2DNR and S2DIR, M2DIR produces less overestimation
of  intense  convective  cores.  Nevertheless,  the  MUNet
model  still  significantly  underestimates  the  multiple  small
and  isolated  convection  cells  and  the  convection  intensity
and  misses  some  cells  completely  (e.g.,  those  within  the
white rectangle area A in Fig. 7). Finally, our models failed
to  capture  the  convection  initiation  (white  rectangles  A  in
Fig. 7). This may be due to the current input data not contain-

≥ ≥
Table  5.   The  verification  metrics  for  the  two  categories  of  convection  (organized  convective  storms  and  isolated  convective  cells
referred to as C1 and C2, respectively) VIL ( 3.53 kg m−2) and lightning ( 1 flash 64 km−2) nowcasting using the MUNet model with/
without including IRBTs (i.e., M2DIR and M2DNR, respectively) and the SUNet model including IRBTs (i.e., S2DIR). The bold black
notifies the best skill scores.

Target Types Experiments POD FAR BIAS CSI ETS

VIL C1 S2DIR 0.753 0.530 1.639 0.405 0.332
M2DIR 0.751 0.518 1.590 0.413 0.342
M2DNR 0.802 0.535 1.768 0.418 0.343

C2 S2DIR 0.369 0.585 0.893 0.238 0.220
M2DIR 0.406 0.599 1.022 0.249 0.231
M2DNR 0.390 0.581 0.978 0.241 0.223

Lightning C1 S2DIR 0.495 0.594 1.244 0.291 0.253
M2DIR 0.477 0.520 0.999 0.316 0.283
M2DNR 0.454 0.520 0.936 0.307 0.274

C2 S2DIR 0.362 0.732 1.327 0.182 0.161
M2DIR 0.387 0.650 1.104 0.221 0.202
M2DNR 0.369 0.645 1.044 0.218 0.199
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ing sufficient information for convection initiation, such as
boundary layer convergence and atmospheric instability.

For  this  case,  although  the  neural  network  models

tended to underestimate the lightning activities of the isolated
convective cells within region A, the MUNet model in particu-
lar accurately captures the overall evolution of lightning activ-

 

 

⩾
⩾

Fig. 6. The performance diagram of (a) VIL ( 3.53 km m−2) and (b) lightning
( 1  flash  64  km−2)  nowcasting  for  different  lead  times  for  organized
convective storms (C1, red line) and isolated convective cells (C2, blue line)
using the MUNet model with/without IRBTs (i.e., M2DIR and M2DNR) and
the SUNet model with IRBTs (i.e., S2DIR).

 

 

Fig. 7. VIL (kg m−2) nowcasting and observation (384 km × 384 km) from 19 August 2019 at (a) 15-min, (b) 30-min, (c) 45-
min,  (d)  60-min,  and (e)  90-min using the MUNet model with/without including IRBTs as auxiliary input  features,  which
refer to M2DIR and M2DNR, respectively, and the SUNet model including IRBTs, which refer to S2DIR. White rectangles
A  indicate  multiple  isolated  and  small  convective  cells.  White  rectangles  B  indicate  organized  convective  storms
development and merging.
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ities of the organized convective storms within region B for
all lead times (Fig. 8).

 5.    Summary and discussions

In  this  study,  a  multi-task  learning  (MTL)  encoder-
decoder U-net with models was constructed to forecast VIL
and lightning (0−90 min) and compared to the traditional sin-
gle-task  learning  (STL)  model.  The  input  data  included
GOES-16 geostationary satellite IR brightness temperatures
(6.9 μm and 10.7 μm channels) with high temporal and spatial
resolutions (2 km grid resolution and 5-min intervals), VIL
derived from NEXRAD data, and gridded lightning flashes
obtained  from satellite  GLM.  Given  the  extremely  skewed
nature of the lightning distribution, a log-transform normaliza-
tion method was used to normalize the lightning data for light-
ning  nowcasting.  To  alleviate  the  decay  of  lightning  and
VIL nowcasting skill with increasing forecast lead time, a spa-
tiotemporal  exponent-weighted  loss  function  was  intro-
duced. Furthermore, the effects of GOES-16 IRBTs on light-
ning  and  VIL  nowcasting  were  also  investigated  using  the
MTL  model.  By  performing  the  experiments  with  various
training models and training data, we arrived at the following
conclusions:

1) The MUNet and SUNet models significantly outper-
formed the persistence and optical flow models for both light-
ning and VIL nowcasting beyond ~5−10 min lead time. As
the  lightning  density  tends  to  have  smaller  scale  structures
and  behaves  more  randomly  than  VIL,  neither  the  MUNet
nor  the  SUNet  models  can  beat  the  persistence  model  at
very short lead times (0−15 min, depending on the intensity
of lightning).

2) Applying a log-transform normalization for lightning
density  data  dramatically  improves  the  nowcasting  of
intense lightning at all lead times in comparison to the min-
max  normalization  method,  although  the  latter  shows  a
slight advantage for weak lightning.

3)  M2DIR  evidently  outperforms  S2DIR  for  lightning
and VIL nowcasting, particularly for those with intense light-
ning thresholds. However, the superiority of M2DIR gradu-
ally decays with lead time.

4)  Including  IRBTs  as  auxiliary  input  features  signifi-
cantly improves lightning nowcasting, although it has only a
small influence on VIL nowcasting. This is because IRBTs
contain important proxy (ice particle) information of lightning
occurrences  but  little  more  about  convection  features  than
the  VIL  itself.  Furthermore,  IRBTs  may  be  dominated  by
lumpy ice particle anvils, which may mask important signals
relevant to VIL.

5)  Neural  network  models,  particularly  the  MUNet
model, are more capable of nowcasting the VIL and lightning
of organized convective storms than those with isolated con-
vective cells.

This  study  demonstrates  that  the  lightning  and  VIL
MTL approach for joint lightning and VIL optimization can
improve  the  accuracy  and  generalization  of  the  neural  net-
work model for lightning and VIL nowcasting. The MTL sig-
nificantly improved lightning nowcasting. This research com-
plements previous work by Mostajabi et al. (2019), Zhou et
al. (2020), and Shrestha et al. (2021) for 30- and 60- min light-
ning nowcasting. The models presented herein extended the
lightning nowcasting to 90 min with appreciable skill.

In addition to lightning, heavy rainfall, hail, and damag-
ing  winds  are  also  produced  by  severe  convective  storms.
We are currently expanding our research on the nowcasting
of these weather phenomena by considering longer forecast
lead times (up to 6 h) and using more data sources, including
rapid  update  NWP  model  outputs  and  dual  polarization
radar  observations,  which  are  advantageous  for  improving
convection initiation (Pan et al., 2021) and lightning initiation
(Katuzienski,  2019)  forecasting.  Data  pre-processing  and
manipulation  of  the  learning  parameters  are  crucial  to
account for those data with extremely skewed distributions,
as was done with lightning in this study. Learning multiple
objectives  at  once  is  a  difficult  optimization  problem
(Parisotto et al., 2016), and more effective optimization meth-
ods, such as gradient surgery (Yu et al., 2020) and weighting
schemes  of  the  multi-task  loss  function  (Liu  et  al.,  2019),
should be explored for the model training.
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Fig. 8. Same as Fig. 7, but for lightning (flash 64 km−2) observation and nowcasting (384 km × 384 km).
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