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ABSTRACT

Ensemble forecasting systems have become an important tool for estimating the uncertainties in initial conditions and
model formulations and they are receiving increased attention from various applications. The Regional Ensemble Prediction
System  (REPS),  which  has  operated  at  the  Beijing  Meteorological  Service  (BMS)  since  2017,  allows  for  probabilistic
forecasts. However, it still suffers from systematic deficiencies during the first couple of forecast hours. This paper presents
an integrated probabilistic nowcasting ensemble prediction system (NEPS) that is constructed by applying a mixed dynamic-
integrated method. It essentially combines the uncertainty information (i.e., ensemble variance) provided by the REPS with
the nowcasting method provided by the rapid-refresh deterministic nowcasting prediction system (NPS) that has operated at
the  Beijing  Meteorological  Service  (BMS)  since  2019.  The  NEPS  provides  hourly  updated  analyses  and  probabilistic
forecasts in the nowcasting and short range (0–6 h) with a spatial grid spacing of 500 m. It covers the three meteorological
parameters:  temperature,  wind,  and  precipitation.  The  outcome  of  an  evaluation  experiment  over  the  deterministic  and
probabilistic  forecasts  indicates  that  the  NEPS  outperforms  the  REPS  and  NPS  in  terms  of  surface  weather  variables.
Analysis  of  two  cases  demonstrates  the  superior  reliability  of  the  NEPS  and  suggests  that  the  NEPS  gives  more  details
about the spatial intensity and distribution of the meteorological parameters.
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Article Highlights:

•  The NEPS system provides hourly updated analyses and probabilistic forecasts in the nowcasting and short range (0–6 h)
with a grid spacing of 500 m.

•  The added value of the probabilistic forecast of the NEPS was attributed to the mixed dynamic-integrated method.
•  The  NEPS  is  needed  to  provide  end  users  with  more  details  about  the  spatial  intensity  and  distribution  of  the

meteorological parameters.
 

 
 

 1.    Introduction

Weather  forecasting is  a  key factor  that  supports  deci-
sion-making  in  various  applications.  Therefore,  the  public,
private sector, and other stakeholders have high requirements
for accurate weather forecasts. In operational weather forecast-
ing, assessing forecast uncertainty is a key and challenging
issue. At present, the primary means to achieve this goal is
through numerical weather forecasting. Numerical model out-

put  is  generated  based  on  complex  mathematics  and  the
input of many observations obtained by various conventional
and remote sensing technologies. However, influential factors
such as the uncertainty of the model’s initial field, dynamics,
and physical processes may cause a large deviation between
a single deterministic numerical forecast and actual weather,
which  also  limits  the  predictability  of  a  single  model
(Lorenz, 1965, 1969).

Over  the  past  ten  years,  ensemble  prediction  systems
(EPSs) have become the standard method of accounting for
uncertainties  in  initial  conditions  and  model  formulations.
The development of ensemble forecasts heralds the transition
from  deterministic  forecasts  to  probabilistic  forecasts,
which can provide users with more comprehensive and com-
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plete information. Therefore, ensemble forecasting technol-
ogy has played an important role in numerical weather fore-
casting  operations  in  various  countries  (Toth  and  Kalnay,
1993; Buizza  and  Palmer,  1995; Houtekamer  et  al.,  1996;
Molteni et al., 1996; Li and Chen, 2002; Buizza et al., 2005;
Chen et al., 2005; Chen and Shen, 2006).

The European Centre for Medium-Range Weather Fore-
casts (ECMWF; Molteni et al., 1996) and the National Centers
for  Environmental  Prediction  (NCEP; Toth  and  Kalnay,
1993)  successively  put  the  ensemble  forecast  system  into
operation.  Various  ensemble  perturbation  schemes  have
since been developed to address the uncertainties  in global
ensemble  prediction  systems  (GEPSs; Buizza  and  Palmer,
1995; Houtekamer et al., 1996; Buizza et al., 2005). A new
generation of numerical forecasting systems of the Meteoro-
logical Administration Global Assimilation Forecast System
(CMA-GFS,  formerly  GRAPES Global  Assimilation  Fore-
cast  System,  GRAPES-GFS)  in  China  was  independently
developed and officially put into operation in 2009 (Li and
Chen, 2002; Chen et al., 2005; Chen and Shen, 2006; Zhang
and Shen, 2008; Deng et al., 2010).

The development  of  regional  ensemble  prediction  lags
behind  that  of  global  ensemble  prediction.  However,  the
need for regional ensemble forecast systems (REPSs) to pro-
vide mesoscale weather  forecasts  is  obvious (Peralta  et  al.,
2012; Kühnlein et al., 2014; Kim and Kim, 2017; Kiktev et
al., 2017). Regional ensemble prediction is of great signifi-
cance for improving the forecast accuracy of severe weather,
and research on related technologies has received more atten-
tion in recent years. The Beijing Meteorological Service has
been routinely running a REPS since 2017. The REPS has a
better representation of the convective structure and proba-
bilistic precipitation forecasts than coarser models using con-
vective parameterizations (Clark et al., 2009; Johnson et al.,
2014).  However,  the system still  faces problems, such as a
lack of ensemble spread, obvious systematic bias, and imper-
fect prediction of mesoscale uncertainty (Zhang et al., 2014,
2017).  Therefore,  post-processing  methods  are  still  needed
to further correct system deviations and adjust dispersion.

In  observation-based  or  nowcasting  forecasting,  the
emphasis has recently shifted from deterministic extrapola-
tion to the inclusion of probabilistic methods (Dance et al.,
2010). The NPS (Nowcasting Prediction System) mentioned
in the abstract is a multivariable analysis and nowcasting sys-
tem based on the core algorithm of the Integrated Nowcasting
through Comprehensive Analysis (INCA) system developed
by the Austrian Meteorological Bureau (Haiden et al., 2011).
It has operated at BMS since 2017. The basic concept of the
nowcasting  method  in  NPS  is  to  improve  upon  numerical
weather  prediction  (NWP)  model  output  by  downscaling
and  bias  correction,  using  the  latest  surface  observational
data  and  high-resolution  topographic  data  (Chen  et  al.,
2020; Cheng et al., 2019; Song et al., 2019a, b; Yang et al.,
2019, 2021, 2022).  Thus  the  advantages  of  the  system  are
mainly reflected during the nowcasting period as it directly
assimilates  and  incorporates  multi-source  observation  data,

which  contributes  to  a  forecast  performance  that  is  better
than  NWP  models  in  the  first  2–3  hours.  However,  this
method  does  not  take  into  account  uncertain  information
from  the  REPS.  At  longer  lead  times,  the  NWP  output  it
uses is affected by uncertainties due to improper distribution
of initial conditions and physical parameterizations. In addi-
tion, extreme weather has become more common and persis-
tent  over  the  past  decade.  However,  extreme  weather  is  a
low-probability event with great uncertainty in its develop-
ment, so it is far from enough to rely only on extrapolation
prediction and a single numerical model to make a determinis-
tic prediction (Gao et al., 2019).

This study aims to introduce a new integrated probabilis-
tic nowcasting ensemble system to quantify these uncertain-
ties and to provide reliable site-specific, probabilistic short-
range forecasts that cannot be provided by a single determinis-
tic  nowcasting  forecast.  More  specifically,  our  attention  is
focused on the evaluation of the NEPS (Nowcasting Ensem-
ble  Prediction  System)  to  see  if  the  forecast  of  the  NEPS
could add value to the forecast of the REPS and NPS that is
already available.

The  remainder  of  this  paper  is  organized  as  follows:
The REPS and NPS configuration are introduced in section
2; in section 3, a brief description of the method and imple-
mentation are demonstrated; section 4 demonstrates verifica-
tion data, methods, and results of a comparison of the NEPS
to the REPS and NPS. Two cases are given in section 5. A
conclusion and discussions are given in section 6.

 2.    System description

 2.1.    The regional ensemble prediction system

The regional  ensemble  prediction  products  we  used  in
this  paper  are  based  on  the  output  of  a  convective-scale
ensemble forecast system developed by the BMS (Zhang et
al.,  2017, 2019, 2022).  The  REPS  uses  the  Weather
Research and Forecast model (WRF version-4.1.2). The key
model physics configuration of all members are the same, i.
e., Thompson microphysics (Thompson et al., 2008), Kain-
Fritsch Cumulus parameterization (Kain and Fritsch, 1993),
Mellor-Yamada-Janjic  (MYJ)  planetary  boundary  layer
(PBL)  scheme  (Mellor  and  Yamada,  1982),  and  the
RRTMG  longwave  and  shortwave  radiation  schemes
(Iacono  et  al.,  2008).  The  domain  and  topography  of  the
REPS are shown in Fig. 1a. The REPS is run with a grid spac-
ing of 3 km, with 550 and 423 grid points in the x-  and y-
directions,  respectively.  The  REPS  is  run  twice  daily  at
0000 and 1200 UTC, up to a lead time of 48 h. It consists of
one control forecast and 20 perturbed members running on a
large domain that covers most areas of North China.

The  system  process  framework  is  shown  in Fig.  1b.
First, initial conditions are obtained by the dynamical down-
scaling  (Weidle  et  al.,  2016)  of  the  12-h  forecast  field  of
GEFS. For example, the initial field at 0000 UTC on 2 July
2021  is  obtained  from,  the  dynamical  downscaling  of  the
12-h  forecast  field  of  GEFS at  1200 UTC on 1  July  2021.
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The  dynamical  downscaling  approach  obtains  the  regional
ensemble initial condition perturbations by interpolating an
ensemble  of  global  initial  conditions  to  the  regional  model
domain and grid spacing (Kühnlein et al., 2014). It is an effec-
tive way to extract local-scale information by regional models
with coarse global data used as boundary conditions (Cannon
and Whitfield, 2002).

There  are  many  kinds  of  observation  data  in  North
China, which can be used to carry out three-dimensional varia-
tion  (3DVAR)  based  on  the  GEFS  forecast  product  to
improve  the  quality  of  initial  conditions.  Thus,  the  initial
uncertainty is provided by the Ensemble Data Assimilation
(EDA) method based on 3DVAR algorithms from the WRF
data assimilation (WRFDA, version-4.1.2)  system and per-
turbed sets of observations (Zhang et al., 2022). The ensemble
members of the REPS assimilate various kinds of observa-
tions, including land-based synoptic reports (SYNOP), avia-
tion routine weather reports (METAR), radiosondes, aircraft
reports, and ship and buoy reports over the sea. In the EDA
process, different ensemble members are updated using differ-
ent  sets  of  perturbed  observations  (Houtekamer  and
Mitchell,  1998).  This  process  is  carried  out  at  the  forecast
time and started twice daily (cold-started) at 0000 and 1200
UTC, respectively. In the REPS, the background error covari-
ance  is  estimated  by  the  National  Meteorological  Center
(NMC,  USA)  method  (Parrish  and  Derber,  1992).  Pairs  of
forecast differences valid for the same time but at different
lengths  for  three  months  yield  samples  to  estimate  back-
ground error covariance. Model uncertainties due to physical
parameterizations are simulated using a stochastic perturba-
tion  of  physics  tendencies  (SPPT)  scheme  (Buizza  et  al.,
1999; Bouttier et al., 2012), and the side boundary uncertainty
is  provided  by  downscaling  the  GEFS  global  background
field.

 2.2.    The deterministic nowcasting prediction system

The  analysis  and  forecasting  methodology  in  the  NPS

has also been described elsewhere (Chen et al., 2018; Yang
et al., 2021), so only a short summary is given here. It was
developed primarily as a means of providing modified numeri-
cal  forecast  products,  such as temperature,  humidity,  wind,
precipitation, and precipitation type, by using high-resolution
topographic data and real-time multi-source observations in
the nowcasting range. Outside the nowcasting range, the now-
casts are blended into downscaled NWP forecasts. The NPS
system  provides  frequently  updated  analyses  and  forecasts
for  a  domain  covering  the  Jing-Jin-Ji  (Beijing-Tianjin-
Hebei) area, the horizontal grid spacing is 500 m, and the fore-
cast range is 24 h. The domain, topography (color shading),
locations  of  surface  observation  stations  (black  dots),  and
radar stations (red circles) used in the blending are shown in
Fig. 2. The topography used in the NPS system is constructed
using  a  bilinear  interpolation  of  the  30-m  global  terrain
height data onto the 500-m NPS grid.

Figure 3 briefly introduces the input, the primary fields,
their sources for the analysis and forecast fields, and the now-
casting and blending method in NPS. The main nowcasting
methods  of  the  system  include  the  blending  algorithm  of
multi-source  data  extrapolated  prediction  with  NWP,  the
bias  correction  algorithm,  and  the  downscaling  algorithm
under  complex  terrain  (Haiden  et  al.,  2011; Cheng  et  al.,
2019; Song et al., 2019a, b; Yang et al., 2019, 2021, 2022;
Chen et al., 2020). The analysis fields at 10-minute intervals
on a 500 m × 500 m grid are generated from a combination
of  NWP  model  output,  observation  data,  radar  data,  and
high-resolution topographic data. In the current version, the
NWP model output is taken from the deterministic CMA-BJ
model  (formerly  known  as  RMAPS-ST)  (He  et  al.,  2019;
Xie  et  al.,  2019),  which  has  a  horizontal  grid  spacing  of  3
km. The domain of the deterministic CMA-BJ model is the
same as the REPS in Fig. 1. Surface observations are provided
by 4323 real-time automatic weather stations (Fig. 2). Radar
data are taken from ten S-band radars and one C-band radar
in North China (Fig. 2).

 

(a) (b)

 

Fig. 1. (a) The domain and topography of the REPS (color shading shows terrain height; units: m) and (b) the process framework of
the regional ensemble prediction system.
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The NPS system has proven to be valuable compared to
NWP. On the one hand, the NWP data are topographically
downscaled  onto  a  500  m  grid  spacing  using  the  30  m
global terrain height data. A more realistic simulation of topo-
graphic downscaling is crucial for wind and temperature, at

least in mountainous regions. On the other hand, the system-
atic errors of NWP can be greatly reduced by the NPS algo-
rithm with  the  assimilation  and  incorporation  of  additional
multi-source observations, especially in the nowcasting and
short range (Haiden et al., 2011; Yang et al., 2019; Chen et

 

 

Fig. 2. The domain and topography of the NPS, locations of surface observation stations and
radar  stations  participating  in  the  blending  (black  dots  and  red  circles  indicate  observation
and radar stations, respectively; color shading shows terrain height; units: m).

 

 

Fig.  3. A  flowchart  showing  the  input,  the  primary  fields,  their  sources  for  the  analysis  and  forecast  fields,  and  the
nowcasting and blending method in the deterministic nowcasting prediction system.
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al., 2020). The primary fields include surface meteorological
parameters like temperature, humidity, wind, and precipita-
tion. However, there is limited interdependency between the
fields and it cannot be used as the initial field for other mod-
els. Besides, considering the requirements of operational effi-
ciency  and  computational  expense,  the  system  focuses
mainly on the forecast of surface weather variables.

In the case of temperature, the NWP forecast for the tem-
perature  at  each  pressure  level  from CMA-BJ is  trilinearly
interpolated  to  the  three-dimensional  NPS  500-m  grid  and
used as the first guess. In the next step, the first guess is cor-
rected  according  to  the  differences  between  the  observed
data  and  the  NWP  forecast  at  each  station.  The  difference
field  obtained  by  interpolating  the  observed  increments  is
added  to  the  analysis  field  (0  h),  and  the  nowcasting  is
based  on  the  trend  given  by  the  NWP  model  to  the  latest
NPS analysis. At a lead time of several hours, the trend ex-
trapolation  is  smoothly  blended  into  the  downscaled  NWP
forecast according to the weight function. The actual nowcast-
ing limit of temperature varies between 3 and 12 h, depending
on  the  stability  of  the  valley  atmosphere  (Haiden  et  al.,
2011).

In the case of wind forecast, a basic bias correction algo-
rithm is also an integral part (Yang et al., 2022) of the NPS.
The  10-m  wind  field  of  NWP  forecasts  from  CMA-BJ  is
first  downscaled  and  interpolated  to  the  two-dimensional
NPS 500-m grid and taken as a first guess of NPS. Then the
downscaled  10-m wind  field  with  a  500-m grid  spacing  is
modified  by  multiplying  the  bias  correction  coefficient  to
eliminate systematic errors. Next, it will be corrected based
on  the  differences  in  the u and v components  between  the
model and the observations (Yang et al., 2019). In the first 6-
h lead times,  the wind forecast  is  based on the trend given
by the NWP model to the NPS analysis,  and the weight of
the NWP model increases with time. At a longer lead time,
the wind forecast is purely the downscaled NWP 10-m wind
forecast with the systematic errors eliminated.

In  the  case  of  precipitation,  the  analysis  field  is  based
on the weighted fusion of observational rain gauge data and
radar  quantitative  precipitation  estimation  (Cheng  et  al.,
2019; Song et al., 2019a, b). The rain gauge and maxCAPPI
product  are  first  bilinearly  interpolated  onto  the  NPS  grid.
To eliminate  the  systematic  errors  of  the  maxCAPPI prod-
ucts, a climatological scaling factor has been calculated for
each month (Song et al., 2019a) by using the accumulated pre-
cipitation obtained from radar and station observations. The
rescaled  radar  field  and  the  observational  rain  gauge  data
are finally aggregated to accumulated precipitation amounts.
In the first 2-h lead time, the precipitation forecast is based
on  a  correlation-based  extrapolation  with  motion  vectors.
Between 3–6 h, the precipitation forecast is obtained by blend-
ing  the  NWP  output  and  correlation-based  extrapolation
results.  At  longer  lead  times,  the  precipitation  forecast  is
purely the downscaled NWP precipitation forecast.

 3.    Methodology

The main goal of this research work is to create a new
integrated probabilistic nowcasting ensemble prediction sys-
tem by applying a blending dynamical-integrated approach.
The main approach is to blend the ensemble variance informa-
tion  from the  REPS with  the  nowcasting  methods  in  NPS.
The  output  forecast  of  the  21  members  from  the  REPS  is
used as a background for creating the probabilistic forecast.
The nowcasting and blending methods of NPS are used for
creating the nowcasting forecast.

A general overview of the technical route of the NEPS
is shown in Fig. 4. The NEPS meteorological (temperature/
wind/precipitation) analysis and forecast start with the meteo-
rological forecast of the 21 members of the REPS from the
two  cycles  at  0000  and  1200  UTC  as  a  first-guess  field,
which  is  different  from  NPS  with  the  single  initial  field.
Then, the meteorological fields from the 21 members of the
REPS  are  topographically  downscaled  onto  a  grid  with

 

 

Fig.  4. A  general  overview of  the  technical  route  of  the  probabilistic  nowcasting  ensemble
prediction system.
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500-m spacing using the 30-m global terrain height data, con-
sistent with the NPS. In the next step, applying nowcasting
methods  like  multi-source  data  (Observations  from  radar
and AWS) blending, bias correction algorithm, and extrapola-
tion  with  vector  motions  are  applied  to  the  21  downscaled
first-guess  fields.  This  leads  to  a  variety  of  nowcasts  that
combines  the  advantages  of  the  two  systems:  on  the  one
hand, the observation basis on nowcasting is at very high reso-
lution; on the other hand, the probabilistic short-range fore-
casting is based on the REPS.

Because  of  current  computational  limitations,  the
update frequency of the NEPS is set to 1 hour instead of 10
min. The domain and topography of the NEPS (Fig. 2) are
the same as in the NPS. For every hour, the latest observation
and radar data are used to modify the first guess field provided
by the REPS. The NEPS provides the 1-h updated analyses
and the  probabilistic  forecasting  in  the  short  range  (0–6 h)
at a spatial grid spacing of 500 m in the Jing-Jin-Ji area. The
products include the precipitation, wind, and temperature out-
put of 21 different members, as well as the probabilistic fore-
casts  and probability-matched (PM) mean forecasts  (Clark,
2017).

 4.    Verification data, methods, and results

To  evaluate  the  improved  performance  of  the  NEPS
and the extent to which it can further add application value
to  weather  forecast  services  in  comparison  with  the  NPS
and REPS, a more comprehensive evaluation of the perfor-
mance  of  the  NEPS  was  done  based  on  an  almost  one-
month  period  from  1  July  2021  to  25  July  2021.  The
sourced forecasts  from the NEPS and REPS have different
temporal  resolutions  and  spatial  grid  spacings.  The  REPS
runs start at 0000 and 1200 UTC to generate a forecast with
1-hourly output with a grid spacing of 3 km. The NEPS and
NPS, which have a grid spacing of 500 m, are run once an
hour  to  generate  a  forecast  with  1-hourly  output.  For  a
proper comparison, the REPS forecast was bilinearly interpo-
lated  to  the  NEPS  domain  and  500-m  grid  spacing.  Since
hourly  initializations  (0000,  0100,  …,  2300  UTC)  of  the
NEPS are both from the two cycles at 0000 and 1200 UTC
of  the  REPS,  our  primary  interest  is  to  evaluate  the  added
value brought by the NPS. Therefore,  hourly initializations
of the NEPS and NPS were all considered and combined for
each of the 6-h forecast lead times to compare the NEPS to
the REPS and NPS.

Since the NEPS is mainly concerned with forecasting sur-
face weather variables, we verified the 2-m temperature, 10-
m wind, and precipitation from deterministic and probabilistic
comparative tests, respectively. There are about 4000 auto-
matic stations in the verification domain, including national
and regional  automatic  stations,  marked with  black  dots  in
Fig. 2. The automatic stations cover most of the topographic
elevation  range  from  0  to  2194  m.  The  observation  is
matched to the nearest grid point, and observation uncertain-
ties are not considered.

For  the  deterministic  forecast  of  the  2-m  temperature
and  10-m  wind,  we  compared  the  ensemble  mean  product
of  the  NEPS  with  the  NPS.  The  root-mean-square  error
(RMSE, Yang et al., 2019) was calculated for 2-m tempera-
ture and 10-m wind. Deterministic forecasts of precipitation
in  the  NEPS  were  obtained  by  using  the  PM  technique
(Clark, 2017). To test the forecast skill of precipitation and
how  well  the  areal  coverage  of  precipitation  matched  the
observations, the neighborhood-based equitable threat score
(ETS, Wang  and  Yan,  2007; Clark  et  al.,  2010)  and  bias
score (BIAS, Wilks, 2006) were calculated for precipitation
using  accumulation  thresholds  of  0.1  mm  h–1,  1  mm  h–1,
5 mm h–1 and 10 mm h–1.

The  formulation  of  a  neighborhood-based  ETS  is
described  by  Clark  et  al.  (2010).  In  this  study,  we  set  the
neighborhood radius (r) to 5 km so that if a given precipita-
tion threshold (q) that is observed at a grid point is met, it is
considered  a  hit  if  the  event  is  forecast  at  any  grid  point
within the neighborhood radius (r).  If  an event is  observed
or forecasted at a grid point, but no grid points within radius
(r)  forecast  or observe the event,  it  is  considered as a miss
or  false  alarm.  Correct  negatives  are  calculated  when  an
event  is  neither  observed  nor  forecasted  at  a  single  point.
Then, the neighborhood-based ETS can be computed accord-
ing  to  the  hits,  misses,  false  alarms,  and  correct  negatives.
Using  these  elements,  a  neighborhood-based  ETS  is
expressed as: 

ETS =
hits− chance

hits+misses+ false alarms− chance
, (1)

 

chance =
(hits+misses)(hits+ false alarms)

hits+misses+ correctnegatives+ false alarms
.

(2)

Similarly, BIAS can be calculated as follows: 

BIAS =
hits+misses

hits+ false alarms
. (3)

The  spatial  representation  of  the  PM  product  is  given
by the ensemble mean and the rainfall amounts are given by
the  90-th  percentile  value  in  the  distribution  of  ensemble
member  quantitative  precipitation  forecasts  (QPFs).  We
chose the 90% value in the distribution of ensemble member
QPFs because it is the best frequency distribution of rainfall
amount  according  to  the  neighborhood-based  ETS  and
BIAS score.

To  verify  the  probabilistic  forecast,  we  compared  the
probabilistic forecast results of the NEPS and REPS. The Rel-
ative Operating Characteristic (ROC) measures the combined
effect of the Probability Of Detection (POD) and the False
Alarm Rate (FAR). The area under the ROC curve (AROC,
Zhong et al., 2017) is often calculated to determine whether
the forecast is skillful, and forecasting systems with a ROC
area greater than 0.7 are considered useful (Stensrud and Yus-
souf, 2007).
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The  RMSE,  the  proper  continuous  ranked  probability
score  (CRPS, Gneiting  and  Raftery,  2007),  the  percentage
of outliers (OUTLIERS, Suklitsch et al., 2015), and the Tala-
grand histogram (Talagrand et al., 1997; Hamill, 2001) were
used  to  assess  the  probabilistic  2-m  temperature  and  10-m
wind products.

The CRPS score measures the probabilistic skill of the
ensemble  forecasting  system,  and  it  measures  the  overall
ensemble forecast performance compared to the observations
(Hersbach,  2000).  A  zero  value  of  CRPS  translates  to  the
best forecast. The higher the CRPS score, the worse the per-
formance of the ensemble forecasting system. The Talagrand
histogram is a tool for testing the reliability of the ensemble
forecast system. If the ensemble forecast is reliable, the pre-
dicted and the observed values of the ensemble forecast mem-
ber at a given point should be regarded as a random sample
subject  to  the  same  probability  distribution.  Furthermore,
the Talagrand histogram indicates bias, with an L-shaped (U-
shaped) rank histogram indicating a  tendency for  members
to over-forecast (under-forecast) the variable being examined
(Hamill, 2001). The percentage of outliers is the sum of the
probabilities  at  the  two  ends  of  the  Talagrand  histogram.
The percentage of outliers shows how many observed values
lie outside the full forecasted range. The smaller the outliers,
the better the reliability of the ensemble forecasting system.

 4.1.    Validation results

 4.1.1.    Comparative verification of deterministic products

Table 1 shows the 1–6 h aggregate neighborhood-based
ETS and BIAS scores of the NEPS and NPS using different
accumulation thresholds of 0.1 mm h–1, 1 mm h–1, 5 mm h–1,
and 10 mm h-1 and the improvement percentage of the ETS
scores of the NEPS compared to NPS for the period of 1 to
25 July 2021. In addition, Fig. 5 presents the neighborhood-
based ETS and BIAS scores for various hourly fixed preci-
pitation thresholds of the NEPS and NPS.

It can be seen from Table 1 and Fig. 5 that the NEPS pro-
duces more skillful  forecasts  at  the 0.1 mm h–1,  1  mm h–1,
and 5 mm h–1 thresholds and that the improvements persist
through the 6-h validation period. The improvement rates of
ETS scores  were  respectively  123%,  55%,  and  122%.  The
ETS score of the NEPS PM product at the 0.1 and 1 mm h–1

threshold were about  0.7 and 0.45,  respectively,  within the
6-h  forecast  lead  time,  which  was  better  than  that  of  the

NPS (about 0.3). The ETS score of the NEPS at the 5 mm h–1

threshold was about 0.27 within the 6-h forecast lead time,
slightly better than the NPS (about 0.12), and there was not
much difference in the BIAS score. At the 10 mm h–1 thresh-
old,  the  NPS performed better  and had higher  ETS values.
The BIAS score of the NEPS was close to 1 at the 0.1 and
1 mm h–1 thresholds through the 6-h forecast period, while
the BIAS score of the NEP increased with increasing precipi-
tation threshold. The BIAS was about 2 at the 5 mm h–1 and
10 mm h–1 thresholds for forecast lead times of 2–6 h. The
NEPS  overpredicted  moderate  and  heavy  precipitation
amounts, especially at the 10 mm h–1 threshold.

The  NPS appeared  to  have  lower  ETS scores  than  the
NEPS, indicating that most of the skill comes from ensemble
variance information from the REPS. The PM product repre-
sents  an  improvement  relative  to  the  deterministic  forecast
in the NPS. The problem with the NPS is that light precipita-
tion  amounts  are  overpredicted,  whereas  the  BIAS  of  the
NEPS is closer to 1, and the areal coverage of precipitation
at  the  0.1  mm  h–1 and  1  mm  h–1 thresholds  match  better
with the observations. However, very little skill is obtained
for the NEPS at the 10 mm h–1 accumulation threshold, and
the ETS scores of the NEPS are higher than the NPS in the
first two hours while they are lower than the NPS in the fol-
lowing forecast hours.

Table 2 presents the 1–6 h aggregate RMSE of the 2-m
temperature  and  10-m  wind  field  for  the  NEPS  and  NPS
and  the  RMSE reduction  rate  of  the  NEPS compared  with
the NPS. In addition, Fig. 6 shows the RMSE and the reduc-
tion rate of the NEPS compared with the NPS for different
lead  times. Table  2 and Fig.  6 show  that  the  deterministic
forecasts of 2-m temperature and 10-m wind speed computed
from  the  ensemble  mean  of  the  NEPS  perform  better  than
the NPS, especially for the 10-m wind speed. The NEPS’ fore-
casts  of  2-m  temperature  (Fig.  6a)  are  more  skillful  than
those of the NPS, whose forecast errors are slightly smaller
than the NEPS. The NPS showed an RMSE of around 1.7°C,
which was reduced to about 1.62°C in the NEPS the first six
hours.  The  RMSE  of  the  NEPS  for  the  10-m  wind  field
(Fig.  6b)  was  lower  compared  to  NPS.  The  RMSE  of  the
10-m wind field was reduced from 1.2 m s–1 to 1.0 m s–1.

The RMSE of the ensemble mean describes the correct-
ness of the average estimate from the ensemble. The RMSE
reduction rate for the 2-m temperature and 10-m wind speed
was 4.25% and 19.02%, respectively. The NEPS and NPS sys-

Table 1.   1–6 h aggregate neighborhood-based ETS and BIAS scores at different precipitation thresholds for the NEPS and NPS and the
improvement rates of ETS scores of the NEPS compared with the NPS for the period of 1 to 25 July 2021. Deterministic forecasts of
precipitation in the NEPS were obtained from the PM technique.

Precipitation thresholds

1–6 h aggregate ETS score 1–6 h aggregate BIAS score

NEPS NPS Improvement rates of ETS scores NEPS NPS

0.1 mm h–1 0.70 0.32 123% 0.96 1.79
1 mm h–1 0.48 0.31 55% 1.2 1.60
5 mm h–1 0.32 0.14 122% 1.53 1.42
10 mm h–1 0.09 0.10 –13% 1.60 1.04
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tems use the same underlying topography and observational
data.  The  underperformance  of  the  NPS data  in  estimating
the  2-m  temperature  and  10-m  wind  field  may  be  largely
due to the improper distribution of initial conditions and phys-
ical  parameterizations  from  a  single  numerical  model.  So

the  added  value  of  deterministic  products  comes  from  the
ensemble  mean  product  of  the  REPS  system,  which
describes  the  central  estimate  produced  by  the  ensemble,
and the most uncertain aspects of the individual member fore-
cast are filtered out by computing the ensemble mean (Leith,
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Fig. 5. Neighborhood-based ETS and BIAS scores of the NEPS and NPS, plotted as a function of lead time for the
different accumulation thresholds of 0.1 mm h–1, 1 mm h–1, 5 mm h–1, and 10 mm h–1, aggregated for the period of 1
to  25  July  2021.  The  columns  and  the  lines  denote  the  corresponding  ETS  and  BIAS  of  the  NEPS  and  NPS,
respectively (refer to the legend at the top of the figure). Deterministic forecasts of precipitation in the NEPS were
obtained from the PM technique.

 

-4

-2

0

2

4

6

8

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6

R
M

S
E

 （
℃

）

Lead time （hours）

Reduction rate

NPS
NEPS

R
e
d
u
c
ti
o
n
 r

a
te

s
 o

f 
R

M
S

E
（

%
）

0

5

10

15

20

25

30

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6

R
M

S
E

 （
m

/s
）

Lead time （hours）

Reduction rate

NPS

NEPS

R
e
d
u
c
ti
o
n
 r

a
te

s
 o

f 
R

M
S

E
（

%
）

(a) (b)

 

Fig. 6. RMSE of 2-m temperature (a) and 10-m wind field (b) for 1–25 July 2021 of 6-hour forecasts with the NEPS
(dashed line) and NPS (solid line),  the grey histogram represents the RMSE reduction rate of the NEPS compared
with the NPS. Deterministic forecasts of the 2-m temperature and 10-m wind field in the NEPS were obtained from
the ensemble mean product.

Table 2.   1–6 h aggregate RMSE of the 2-m temperature and 10-m wind field for the NEPS and NPS and the RMSE reduction rate of the
NEPS compared with NPS for the period of 1 to 25 July 2021. Deterministic forecasts of 2-m temperature and 10-m wind field in the
NEPS were obtained from the ensemble mean product.

Verification variables

1–6 h aggregate RMSE

NEPS NPS RMSE reduction rate

2-m temperature (°C) 1.62 1.70 4.25%
10-m wind field (m s–1) 0.99 1.24 19.02%
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1974; Holton, 2004).

 4.1.2.    Comparative verification of probabilistic products

Figure  7 compares  the  aggregate  AROC  for  various
1–6  h  hourly  fixed  precipitation  thresholds  for  the  REPS
and  NEPS.  The  REPS  generally  has  lower  AROC  scores
than the NEPS for each precipitation threshold. Thus, most
of  the  increase  in  the  AROC  is  realized  from  the  NPS.
Using a ROC area of 0.7 as a threshold to determine forecast
skill, the REPS could not produce useful forecasts when the
precipitation threshold was equal to 5 mm h–1,  10 mm h–1,
and 25 mm h–1. However, the NEPS provided useful informa-
tion at all thresholds except 25 mm h–1. This finding indicates
that the NEPS can improve the skill of probabilistic precipita-

tion forecasts and yield an added value over the REPS fore-
casts in predicting the hourly rainfall.

For the 2-m temperature (Fig. 8a), the REPS and NEPS
had a very similar U-shaped rank histogram, with both ensem-
bles  exhibiting  a  lack  of  variability.  However,  it  appeared
that the probability of ensemble forecast members falling out-
side  the  maximum and  minimum values  of  the  NEPS  was
slightly lower than that of the REPS, as indicated by a flatter
rank histogram in the NEPS compared to the REPS. In the
case  of  a  10-m  wind,  it  was  found  that  the  REPS  had  a
greater overestimated bias for wind speed than the NEPS by
comparing the Talagrand histogram of the REPS and NEPS.
The REPS results showed an L-shaped distribution (Fig. 8b),
indicating  that  the  ensemble  forecasts  were  systemically
large  for  wind  speed.  The  distribution  probability  of  the
NEPS  system  was  relatively  flat  (Fig.  8b),  indicating  that
the systematic bias was recalibrated to some extent with the
NEPS  system,  thus  achieving  improved  probabilistic  fore-
casts. The added value of probabilistic forecasts comes from
the increased horizontal resolution of the underlying topogra-
phy, the blending of multi-source observation data, and the
integrated nowcasting methods. However, the probability of
the  observation  point  appearing  in  the  last  box  is  slightly
higher than the others, showing a slightly inverse L-shaped
distribution.  It  also  provides  information  that  may  be  used
in the future to recalibrate ensemble forecasts through ensem-
ble post-processing methods.

The  lines  in Fig.  9 show  the  CRPS  values,  and  the
columns represent the percentage of outliers for the 2-m tem-
perature and 10-m wind. Evidently, the additional skill in 2-
m temperature and 10-m wind of the NEPS compared with
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Fig.  8. Talagrand diagrams using data  aggregated for  1  to  25 July 2021 for  the (a)  2-m temperature  and (b)  10-m
wind for the REPS and the NEPS.

 

 

Fig. 9. Continuous Ranked Probability Score (CRPS; lines) for the (a) 2-m temperature and (b) 10-m wind with the
REPS (solid line) and the NEPS (dashed line), and the percentage of outliers (columns) using data aggregated from 1
to 25 July 2021 for the (a) 2-m temperature and (b) 10-m wind in the REPS and NEPS.
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the REPS corresponds to lower CRPS scores. In the case of
temperature, the CRPS score decreased from 1.2°C to 1.0°C
in the nowcasting ranges of up to 6 h. For 10-m wind, there
was a considerable improvement by the NEPS, as the CRPS
score  was  reduced  from  1.1  m  s–1 to  0.7  m  s–1.  Still,  the
NEPS  had  smaller  outliers  in  both  parameters  for  the  first
six hours. The percentage of outliers was reduced from 0.47
(REPS) to about 0.3 (NEPS) for temperature;  for the 10-m
wind, it was reduced from 0.5 (REPS) to 0.38 (NEPS).

This result shows that the integrated probabilistic now-
casting system of the NEPS can improve the skill of ensemble
forecasts, providing probabilistic nowcasting with high spa-
tial and temporal resolution. Deterministic ensemble mean val-
ues  over  long  periods  of  time  could  also  be  improved  and
add value to the NPS and the coarser REPS forecasts.

 5.    Two case studies

 5.1.    Case 1: 11–13 July 2021

A large-scale  rainstorm affected  most  areas  of  Beijing
from 11 to 13 July 2021. The maximum total accumulation
precipitation  in  this  event  exceeded  200  mm.  As  shown in
the observed 6-h accumulated precipitation fields (Figs. 10a,

d),  the  precipitation  range  of  this  case  is  relatively  large.
The  area  with  6-h  cumulative  precipitation  exceeding  25
mm is mainly concentrated in most areas of Beijing except
urban  areas.  The  6-h  mean  accumulated  precipitation  with
the REPS (Fig. 10b) corresponded well in southwest Beijing
and the area with a probability greater than 80% (Fig. 10e)
covered the southwest part of Beijing. However, only a few
members showed signs of precipitation exceeding 25 mm in
the north and northeast of Beijing, culminating in a < 10%
chance for such an event (Fig. 10e); therefore, heavy precipita-
tion was not indicated in the 6-h mean accumulated precipita-
tion in the REPS, as seen in Fig. 10b.

Compared with the REPS, the NEPS contained the latest
observation and live radar data; thus, the NEPS was able to
provide more information about the development of the pre-
cipitation event. The 6-h mean accumulated precipitation out-
put  from  the  NEPS  (Fig.  10c)  corresponded  well  with  the
observations,  especially  in  northeastern  Beijing,  showing
the precipitation intensity exceeding 50 mm. The probability
of precipitation greater than or equal to 25 mm for the same
period  in  the  NEPS (Fig.  10f)  exceeded  90% in  the  corre-
sponding area,  which was consistent  with the spatial  struc-
tures of the observed precipitation.

Similar to Fig. 10, Fig. 11 showed the observation and

 

 

Fig. 10. (a) The observed 6-h accumulated precipitation fields, (b) the 6-h mean accumulated precipitation with the REPS and NEPS,
(c) the observed 6-h accumulated precipitation fields exceeding 25 mm, and (d) the corresponding heavy precipitation probability for
6-h accumulated precipitation with the (e) REPS and (f) NEPS from 1800 UTC 11 July to 0000 UTC 12 July 2021. Color-shaded
areas in panels (b) and (c) represent the 6-h mean accumulated precipitation with the NEPS and REPS, respectively. Color-shaded
areas  in  panels  (e)  and  (f)  present  the  probability  of  6-h  accumulated  precipitation  over  25  mm  with  the  REPS  and  NEPS,
respectively.
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forecast  results  with  the  REPS  and  NEPS  from  2000  to
2100 UTC for 11 July 2021. It should be noted that REPS is
updated twice daily at 0000 and 1200 UTC, while the NEPS
is updated every hour from 0000 UTC to 2300 UTC. Specifi-
cally,  we  compared  the  forecast  products  updated  by  the
REPS at 1200 UTC and those updated by the NEPS at 1800
UTC. From the observed 1-h accumulated precipitation, we
can  see  that  the  precipitation  in  most  parts  of  Beijing  was
below 10  mm,  except  for  a  few stations  in  the  Miyun  dis-
trict, where the precipitation exceeded 25 mm. The 1-h accu-
mulated precipitation amounts of the REPS were all  below
10 mm, further noting that the forecast skill  was very poor
in  the  Miyun  district  of  Beijing.  Although  the  location  of
the heavy precipitation output from the NEPS was predicted
to  the  southwest  of  the  observation,  it  was  still  possible  to
track the evolution of the precipitation field with the aid of
the NEPS products. At this event, these products showed a
high probability of precipitation greater than or equal to 25
mm (Fig. 11f) in the Miyun district. The probability informa-
tion  indicated  that  the  highest  impact  of  the  storm  was
expected  to  be  in  the  northeast  part  of  Beijing,  consistent
with where it was actually observed.

 5.2.    Case2: 21–22 November 2021

An estimate of the high wind probability is vitally impor-

tant  to  many  end  users. Figure  12 illustrates  the  impact  of
the REPS and NEPS for the case of 21–22 November 2021.
This case was characterized by a strong northerly flow leading
to pronounced windy weather in Beijing.

The comparison of the 10-m wind speed output (Fig. 12b)
from  the  REPS  with  the  observational  data  (Fig.  12a)
reveals  significantly  higher  wind  speeds  in  the  case  of  the
REPS, especially in the western areas of Beijing. The NEPS
was able to simulate the complex local wind situation in this
area,  especially  the  10-m  wind  speed  forecasted  3  h  in
advance  by  the  NEPS  (Fig.  12c),  much  more  realistically
because of better orographic representation and observation-
based  nowcasting  techniques.  Though  the  NEPS  did  not
catch the pattern in its entirety, it still delivered a better fore-
cast for this case.

 6.    Conclusion

In this study, an integrated probabilistic nowcasting sys-
tem (NEPS) was introduced by combining the high-resolution
deterministic nowcasting approach of the NPS system with
the uncertainty information provided by the REPS ensemble
prediction system in North China. Here, the NEPS system pro-
vides the 1-hour updated analyses and the probabilistic fore-
casts in the nowcasting and short range (0–6 h) with a grid

 

 

Fig. 11. (a) The observed 1-h accumulated precipitation, (b and c) the 1-h mean accumulated precipitation with the REPS and NEPS,
respectively,  and  (d)  the  observed  1-h  accumulated  precipitation  exceeding  25  mm  and  the  corresponding  heavy  precipitation
probability for 1-h accumulated precipitation with the (e) REPS and (f) NEPS from 2000 UTC to 2100 UTC 11 July 2021. Color-
shaded areas in panels (b) and (c) represent the 6-h mean accumulated precipitation with the NEPS and REPS, respectively. Color-
shaded  areas  in  panels  (e)  and  (f)  present  the  probability  of  6-h  accumulated  precipitation  exceeding  25  mm with  the  REPS  and
NEPS, respectively.
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spacing of 500 m. It forecasts three parameters: temperature,
wind, and precipitation. The comparison was made between
the NEPS and NPS/REPS for the period of 1–25 July 2021.
The  evaluation  results  presented  in  this  study  showed  that
the NEPS performed quite favorably on surface weather vari-
ables  compared  to  the  REPS  and  NPS.  The  important
results are summarized as follows:

The RMSE of mean values of wind and temperature of
the NEPS were lower than those of the NPS model; the ETS
and  BIAS  scores  of  precipitation  demonstrated  notable
improvement with the NEPS. The added value of determinis-
tic verification in the short range (0–6 h) may be attributed
to the ensemble mean products, which describes the correct-
ness of the ensemble mean estimate. Probabilistic comparison
results  showed  that  the  mixed  dynamic-integrated  method
improved the skill of the raw probabilistic forecast from the

REPS. The CRPS and the percentage of outliers of aggregat-
ing  wind  speed  and  temperature  were  lower  than  those  of
the REPS system, and the AROC score of precipitation was
greatly improved.

Finally, it was found that a subjective comparison of fore-
cast  quality  in  the  NEPS and  REPS for  two selected  cases
also indicates that the NEPS forecasts were better than those
of the REPS, as was generally evident by the differences in
forecast quality implied by the ETS, CRPS, and other evalua-
tion indicators. The probabilistic information can help in the
estimation of extremes.

Generally, the role of the NEPS is to give more details
about spatial intensity and distribution of the meteorological
parameters. The results from this study are encouraging for
the  probabilistic  forecast  products  of  the  NEPS  system,  as
well as for the mean values of the deterministic forecast. In

 

 

Fig. 12. (a) Observations, (b) the 10-m wind speed output from REPS 6 h in advance for 0600 UTC 21 November 2021, and the 10-
m wind speed output for the NEPS (c) 3 h in advance, and (d) 6 h in advance for 0600 UTC 21 November 2021.
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an area with complex terrain, like Beijing, such an integrated
probabilistic  nowcasting  system  is  needed  to  provide  end
users with high spatial and temporal resolution weather fore-
casts  and  the  corresponding  forecast  uncertainties.  The
improved mean value and probability information can help
in planning and decision-making regarding civil protection.

In the future, the accuracy of the NEPS could be further
improved  with  a  combination  of  post-processing  methods
like the neighborhood method or Bayesian model averaging,
reducing  the  impact  of  systematic  model  errors.  Besides
improving the forecast skill of the NEPS, it is also of urgent
concern to effectively translate and adapt the probability infor-
mation to the end user requirements.
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