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ABSTRACT

m−2 yr−1

m−2 yr−1

The efficacy of vegetation dynamics simulations in offline land surface models (LSMs) largely depends on the quality
and  spatial  resolution  of  meteorological  forcing  data.  In  this  study,  the  Princeton  Global  Meteorological  Forcing  Data
(PMFD) and the high spatial resolution and upscaled China Meteorological Forcing Data (CMFD) were used to drive the
Simplified  Simple  Biosphere  model  version  4/Top-down  Representation  of  Interactive  Foliage  and  Flora  Including
Dynamics  (SSiB4/TRIFFID)  and  investigate  how meteorological  forcing  datasets  with  different  spatial  resolutions  affect
simulations over the Tibetan Plateau (TP), a region with complex topography and sparse observations. By comparing the
monthly Leaf Area Index (LAI) and Gross Primary Production (GPP) against observations, we found that SSiB4/TRIFFID
driven by upscaled CMFD improved the performance in simulating the spatial distributions of LAI and GPP over the TP,
reducing RMSEs by 24.3% and 20.5%, respectively. The multi-year averaged GPP decreased from 364.68 gC  to
241.21  gC  with  the  percentage  bias  dropping  from  50.2%  to –1.7%.  When  using  the  high  spatial  resolution
CMFD,  the  RMSEs  of  the  spatial  distributions  of  LAI  and  GPP  simulations  were  further  reduced  by  7.5%  and  9.5%,
respectively.  This  study  highlights  the  importance  of  more  realistic  and  high-resolution  forcing  data  in  simulating
vegetation growth and carbon exchange between the atmosphere and biosphere over the TP.
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Article Highlights:

•  Vegetation dynamics over the Tibetan Plateau (TP) were simulated and analyzed with a dynamic vegetation model.
•  Atmospheric forcing data significantly affected the simulations of Leaf Area Index (LAI) and Gross Primary Production

(GPP) over the TP.
•  China Meteorological Forcing Data (CMFD) largely improved vegetation growth and carbon exchange simulations over

the TP.
 

 
 

 

1.    Introduction

Vegetation growth strongly influences the surface radi-
ation  balance,  water,  energy,  and  carbon  cycles,  and  cli-
mate change on regional and global scales. Different vegeta-

tion types affect the absorption of solar shortwave radiation
and  emission  of  longwave  radiation  owing  to  altered  sur-
face albedos, which have a profound impact on regional and
global  surface  energy  budgets  (Giambelluca  et  al.,  1997).
The standing vegetation controls the drag coefficient, rough-
ness length, and displacement height, altering the exchange
of momentum and heat flux (Dong et al., 2001). In addition,
vegetation  transports  water  and  latent  and  sensible  heat
from the soil into the atmosphere through stomata (Goudri-
aan and Waggoner, 1972; Chen, 1984). Meanwhile, CO2 is
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assimilated from the atmosphere to plants through photosyn-
thesis, offsetting large amounts of anthropogenic carbon emis-
sions (Cox and Jones, 2008). Therefore, modern Land Sur-
face  Models  (LSMs)  and  Earth  System  Models  (ESMs)
must efficiently simulate biogeophysical and biochemical pro-
cesses to improve climate projections at various spatial and
temporal scales.

With an average elevation of more than 4000 m and a
total area of more than 2.5 million km2, the Tibetan Plateau
(TP) is known as the world’s “third pole”. It acts as a weak
heat sink in winter and a large heat source in summer, func-
tioning as a giant air pump to force air column descent and
ascent,  strongly  influencing  regional  atmospheric  circula-
tion and having significant impacts on climate change in the
Northern  Hemisphere  (Wu  et  al.,  2007).  Known  as  the
“Asian Water Tower”, the TP is the source of most of Asia’s
major  rivers  and  provides  water  to  over  1.4  billion  people
(Immerzeel et al., 2010). In recent decades, the TP has experi-
enced pronounced warming at a rate that is twice the global
average, making it highly vulnerable to climate change. Cur-
rent studies show that climate change influences vegetation
structure and its  ecological  functioning in the TP. Changes
in the length of the growing season and photosynthetic rates
significantly  impact  vegetation uptake (Jeong et  al.,  2011).
Changes  in  vegetation  variability  over  the  TP also  provide
feedback to the regional climate (Collatz et al., 2000; Shen
et  al.,  2015).  For  instance,  Shen  et  al.  (2015)  showed  that
increasing  seasonal  vegetation  activity  over  the  TP  could
attenuate surface warming by enhancing evapotranspiration.
Currently, most studies suggest that regional warming and pre-
cipitation changes play an important role in the variation of
vegetation over  the TP,  and it  is  widely agreed that  warm-
ing  is  the  dominant  factor  for  increasing  vegetation  in  the
TP (Zhong et al., 2019). The impact of precipitation on veget-
ation  changes  presents  a  complex  relationship  in  different
areas  and  seasons,  whereas  elevation  has  a  noticeable
impact on the effects of warming and precipitation on vegeta-
tion change (Liu et al., 2019b). The factors influencing vegeta-
tion change are complex and diverse, making LSMs import-
ant tools for studying vegetation dynamics in the TP.

Significant  progress  has  recently  been  made  concern-
ing  the  development  of  biophysical  and  biochemical  pro-
cesses in LSMs. Based on the “Big Leaf” model, Sellers et
al.  (1986) developed the Simple Biosphere Model  (SiB) to
mimic the flow of energy, water, and momentum in climate
between  vegetation  and  the  atmosphere.  Since  the  late
1980s,  global  climate  change  has  become  a  significant
issue. Many scientists have realized that carbon sinks from ter-
restrial ecosystems play a vital role in climate change; thus,
more  comprehensive  LSMs,  which  directly  couple  water
and carbon processes,  should have been developed.  Sellers
et  al.  (1996)  incorporated  the  photosynthesis-stomatal  con-
ductance model in SiB2, indicating which LSMs were more
realistic for connecting water, energy, and carbon fluxes sim-
ultaneously.  Efforts  have  been  made  to  improve  simula-
tions through land surface parameter development as the num-

ber of coupled parameterization schemes has grown. Lü and
Ji (2002a, b) updated parameterization schemes for physiolo-
gical  processes  in  the  Atmosphere-Vegetation  Interaction
Model  (AVIM),  such  as  carbon  allocation  and  vegetation
phenology,  and  proceeded  to  simulate  the  spatial  distribu-
tion of LAI and NPP on the TP. Yu et al. (2011) improved
the seasonal variations of vegetation by optimizing the pheno-
logical scheme in the dynamic vegetation model. To assess
the  ability  of  vegetation  transpiration,  De  Kauwe  et  al.
(2015) used the plant functional type to constrain the the para-
meter  of  plant  water  use  strategy.  Zhang  et  al.  (2015)
tweaked the competition coefficients, the optimal temperat-
ure  for  photosynthesis,  and  leaf  drop  threshold  temperat-
ures  in  the  SSiB4/TRIFFID,  which  improved  the  simula-
tion of the distributions of dominant vegetation types, vegeta-
tion fraction, and leaf area index (LAI). Yang et al.  (2019)
and  Dan  et  al.  (2020)  introduced  nitrogen  dynamics  into
LSMs and improved simulations of carbon uptake in the ter-
restrial ecosystem. Various methods have been used to fur-
ther  optimize  land  surface  parameters  in  LSMs  (Li  et  al.,
2011; Bastrikov et al., 2018).

Despite improvements, LSMs are inaccurate when simu-
lating  biogeophysical  and  biochemical  processes.  Simpli-
fied  parameterization  approaches,  unrealistic  land  surface
characteristics,  and  meteorological  forcing  data  impact
model performance (Duan et al., 2006). Meteorological for-
cing data required by LSMs, includes precipitation, air tem-
perature at  two meters above the surface,  downward short-
wave radiation, downward longwave radiation, wind speed,
specific humidity, and pressure. Previous studies have sugges-
ted that the quality of LSM simulations varies with the qual-
ity of the meteorological forcing data. Jung et al. (2007) poin-
ted out that the choice of meteorological forcing data could
affect  the  magnitude  and  spatiotemporal  patterns  of  gross
primary  productivity  (GPP)  simulations.  Liu  et  al.  (2019a)
demonstrated  that  an  LSM  simulation  with  accurate
regional  atmospheric  forcing  data  could  better  simulate
regional-scale land surface hydrological processes.

Lacking  model  resolution  and  fine-scale  observations
have  been  found  as  a  source  of  cold  and  wet  biases  in
regional  and  global  climate  models  of  the  TP  (Su  et  al.,
2013; Meng et al., 2018). LSMs require realistic and high spa-
tial-resolution meteorological data, such as temperature and
precipitation, to improve the outcome. The CMFD has been
developed  as  the  first  high-resolution  meteorological  data-
set  (Yang et  al.,  2010; He et  al.,  2020).  The CMFD accur-
acy  has  increased  with  the  fusion  of  remote  sensing
products,  reanalysis  datasets,  and  in-situ  station  data.  The
data has been used to (i) improve simulations such as perma-
frost and soil moisture in LSMs (Chen et al., 2011; Guo and
Wang,  2013),  (ii)  improve  surface  parameters  (Sun  et  al.,
2016; Chen  et  al.,  2021),  and  (iii)  drive  the  land  assimila-
tion  systems  (Yang  et  al.,  2020).  For  example,  Chen  et  al.
(2011)  compared the  simulations  of  land surface  temperat-
ure with the Institute of Tibetan Plateau Research, Chinese
Academy of Sciences (ITPCAS), and the Global Land Data
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Assimilation System (GLADS) forcing data  in  LSM. They
found  that  the  land  surface  temperature  simulation  with
CMFD  cooled  by  more  than  2°C  Guo  and  Wang  (2013)
used  ITPCAS  forcing  data  to  model  more  detailed  perma-
frost and seasonally frozen ground states. More studies have
been  conducted  for  carbon  cycle  simulations  (Sun  et  al.,
2016),  hydrological  cycle  simulations  (Long  et  al.,  2018),
and energy and water budgets (Lan et al., 2021). A compar-
ison of CMFD with global coarse spatial resolution meteorolo-
gical  forcing  data  (Princeton  Global  Meteorological  For-
cing Data, PMFD) simulations of vegetation dynamics over
the TP was made.

In this study, two meteorological forcing datasets were
used  to  investigate  the  improvement  of  vegetation  dynam-
ics simulations with realistic and high-resolution meteorolo-
gical  forcing  data  over  the  TP  with  the  SSiB4/TRIFFID
land  surface  model  (Xue  et  al.,  1991; Zhan  et  al.,  2003;
Zhang et al., 2015). We chose LAI and GPP to evaluate the
simulations  because  of  their  importance  in  water,  energy,
and carbon exchanges between the atmosphere and the ter-
restrial  ecosystem.  Section  2  briefly  describes  the
SSiB4/TRIFFID,  meteorological  forcing  datasets,  valida-
tion data, evaluation metrics, and experimental design. In sec-
tion  3,  we  compared  and  assessed  the  three  simulations  of
LAI and GPP against the observations. Discussions and con-
clusions are presented in sections 4 and 5, respectively. 

2.    Model,  data,  evaluation  metrics,  and
experimental design

 

2.1.    Model description

C3 C4

The  Simplified  Simple  Biosphere  model  (SSiB)
(Sellers  et  al.,  1986)  simulates  the  exchange  of  surface
energy  balance  and  carbon  and  water  cycles  (Xue  et  al.,
1991). The second version of SSiB (SSiB2) estimates the car-
bon  cycle  after  implementing  a  photosynthesis  model  into
SSiB (Zhan et al., 2003). The TRIFFID dynamic global veget-
ation  model  (DGVM)  was  coupled  to  SSiB4  to  calculate
vegetation dynamics, including plant distribution and soil car-
bon.  Currently,  SSiB4  provides  estimates  of  plant  carbon
fluxes, including net plant photosynthesis assimilation rate,
autotrophic  respiration  rate,  and  other  surface  conditions,
such as soil moisture and canopy temperature for TRIFFID.
The  TRIFFID  model  can  then  calculate  LAI,  plant  height,
fractional  plant  coverage,  and  surface  aerodynamic  resist-
ance  for  SSiB4  based  on  the  new plant  state.  The  coupled
SSiB4/TRIFFID  analysis  is  able  to  divide  the  global  ter-
restrial  ecosystems  into  seven  PFTs,  including  evergreen
broadleaf  trees,  deciduous  broadleaf  trees,  needleleaf
broadleaf  trees,  grasses,  plants,  shrubs,  and  the  tun-
dra biome. 

2.1.1.    Leaf phenology

γlm

T θ
γlm γ0

Leaf mortality rates ( ) are assumed to be a function
of canopy temperature ( ) and soil moisture availability ( );

 increases linearly from a minimum value of  when the

leaf temperature and soil moisture availability drop below a
threshold value: 

γlm =

{
γ0, T > Toff and θ > θoff
γ0 (1+εdt (Toff −T )εdm(θoff − θ) , T ⩽Toff or θ⩽θoff

.

(1)

p)
L

γp)
γlm

Phenological status (  is introduced to describe the sea-
sonal  variability  of  actual  LAI  ( ).  When  the  daily  mean
value of leaf turnover, as given by Eq. 1, exceeds twice its
minimum value, leaves are dropped as a constant ( . Bud-
burst  occurs  at  the  same  rate  when  drops  back  below
this threshold, and “full leaf” is approached asymptotically
thereafter 

L = pLb , (2)
 

dp
dt
=

{−γp γlm > 2γ0

γp (1− p) γlm ⩽ 2γ0
. (3)

Lb)
Lb

Balanced  LAI  (  responds  to  changes  in  the  vegeta-
tion carbon, but  does not have an explicit seasonal cycle,
which is related to a high carbon density and canopy height 

Wc = awl(Lb)bwl , (4)
 

h =
Wc

awsηsl

(
awl

Wc

)1/bwl

. (5)
 

2.1.2.    Vegetation carbon fluxes

An−gs

An

gs

The calculations of  vegetation carbon fluxes are based
on  the  model,  which  is  developed  by  Collatz  et  al.
(1991). An additional direct soil moisture dependence is intro-
duced  to  describe  the  impacts  of  water  stress  (Cox  et  al.,
1998). The net leaf photosynthesis ( ) and stomatal conduct-
ance ( ) to water vapor are written as: 

An = β
gs

1.6
cc− ci

psf
, (6)

 

β =


1 θ > θc

θ− θw
θc− θw

θw < θ ⩽ θc

0 θ ⩽ θw

. (7)

Π)
Ac

The leaf to canopy scaling factor (  is  used to calcu-
late the net canopy photosynthesis ( ) 

Ac = AnΠ , (8)
 

Π =
VN(1− e−

kL
VN )

k
. (9)

The expression of gross primary productivity (GPP) is
written as: 
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GPP = 0.012
(
Ac+βRdc

)
. (10)

The  symbols  in  the  above  equations  are  listed  in
Appendix A. 

2.2.    Data
 

2.2.1.    Meteorological forcing data

In  this  study,  we  employed  two  separate  meteorolo-
gical forcing datasets created by different universities in our
simulations  over  the  TP.  Their  details  are  as  follows.  The
PMFD version 1 for the land surface model (Sheffield et al.,
2006)  combines  a  suite  of  global  observation-based  data-
sets from the National Center for Environmental Prediction
and the National Center for Atmospheric Research (NCEP-
NCAR) reanalysis data from 1948–2007. This dataset has a
spatial resolution of 1° × 1° and a temporal interval of 3 h.
These  data  have  been  widely  used  to  drive  models  of  ter-
restrial  hydrologic  and  ecological  processes  to  study  sea-
sonal and interannual variability.

The CMFD is the first high spatial-temporal resolution
gridded  near-surface  meteorological  dataset  over  China,
developed by the hydrometeorological research group at the
ITPCAS.  This  dataset  was  created  by  combining  ground-
based  observations  with  several  gridded  datasets  from
remote  sensing  and  reanalysis,  including  daily  site  data
from  the  China  Meteorological  Administration  (CMA),
China  Meteorological  Data  Service  Center  (CMDC),  sub-
daily site data from the National Oceanic and Atmospheric
Administration  (NOAA),  National  Centers  for  Environ-
mental Information (NCEI), TRMM 3B42 satellite precipita-
tion  data,  and  Global  Land  Data  Assimilation  System data
(GLDAS). The spatial resolution was 1° × 1°, and the tem-
poral interval was 3 h from 1979 to 2018. The CMFD data-
set  is  widely  used  forcing  data  for  land  surface  models
because of its high resolution and consistent quality.

In  addition,  a  multi-year  mean  climatology  with  a  3-h
interval  from 1 January to  31 December of  the PMFD and
CMFD was generated to drive the quasi-equilibrium simula-
tion. 

2.2.2.    Validation data

In  this  study,  we  used  the  Global  Land  Surface  Satel-
lite (GLASS) LAI (Xiao et al., 2014) to assess the spatial dis-
tribution  and  variation  of  simulated  LAI,  which  is  widely
used  because  of  its  reliability,  spatial  integrity,  and  tem-
poral  consistency  in  global  change  and  climate  studies
(Zhang et al., 2016; Liang et al., 2020). This dataset was gen-
erated  from  the  Moderate  Resolution  Imaging  Spectrora-
diometer  (MODIS)  reflectance  data  and  the  Advanced
Very-High-Resolution  Radiometer  (AVHRR)  reflectance
data and had a spatial resolution of 1 km and temporal resolu-
tion  of  eight  days.  We  resampled  the  GLASS  LAI  from
1982 to 2007 to a spatial resolution of 1° and monthly tem-
poral resolution intended to match the simulated LAI.

The  GPP  from  the  FLUXNET  model  tree  ensemble
(MTE) was used to evaluate the simulated GPP. This data-
set was upscaled to the observed carbon dioxide flux from a

global network of eddy covariance towers using a machine
learning  approach  MTEs,  programmed to  predict  site-level
GPP based on FLUXNET site data, remote sensing indices,
climate  and  meteorological  data,  and  land-use  information
(Jung et al., 2017). The dataset was created at a spatial resolu-
tion  of  0.5°,  and  a  monthly  temporal  resolution  from
1982–2011.  It  was  widely  used  to  evaluate  GPP  simula-
tions  from  LSMs,  notwithstanding  potential  errors  in  the
data  products  (Alemohammad  et  al.,  2017).  The
FLUXNET-MTE GPP was resampled to 1°, the same as the
GLASS LAI. In addition, we chose the monthly average air
temperature and precipitation at 21 observation stations loc-
ated in the TP to evaluate the quality of PMFD and CMFD. 

2.3.    evaluation metrics.

The root-mean-square error (RMSE) and correlation coef-
ficient (R) are the metrics used to evaluate the simulated res-
ults, which are calculated as follows: 

R =
∑N

i=1(Mi−M)(Oi−O)√∑N
i=1(Mi−M)

2
√∑N

i=1(Oi−O)
2
, (11)

 

RMSE =

√∑N
i=1(Mi−Oi)

2

N
, (12)

Mi Oi

M O
where  and  are the simulation and observation values,
respectively, and  and  are the means of the simulation
and observation values, respectively. 

2.4.    Experimental design
 

2.4.1.    Equilibrium simulations

CO2

Quasi-equilibrium simulation runs are needed prior to a
realistic simulation run to obtain a stable vegetation state in
the dynamic vegetation model  (DVM) (Table  1).  To simu-
late  the  spatial  distribution  of  vegetation  on  the  TP  accur-
ately, we updated the SSiB vegetation map and table with a
multi-source  integrated  Chinese  land  cover  (MICLCover)
map (Ran et al., 2012), which is resampled to the correspond-
ing  spatial  resolution.  In  addition,  climatological  forcing
data and 1979 atmospheric  concentrations were used to
drive SSiB4/TRIFFID for 100 years to get a stable vegeta-
tion state in a quasi-equilibrium. The quasi-equilibrium run
initialized  the  vegetation  conditions  for  subsequent  model
runs. 

2.4.2.    Realistic simulations

We conducted three experiments with SSiB4/TRIFFID
to assess the performance of realistic and high-resolution met-
eorological  forcing  data  on  the  LAI  and  GPP  simulations
and  used  the  vegetation  conditions  produced  by  the  quasi-
equilibrium  runs  and  updated  atmospheric  CO2 concentra-
tions. We used the PMFD and the upscaled CMFD to drive
the model, labeled “PMFD 1D” and “CMFD 1D”, to investig-
ate the performance of the two meteorological forcing data-
sets.  They have the same spatial  resolution of  1° × 1°.  We
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also  used  the  high  spatial  resolution  CMFD  to  drive
SSiB4/TRIFFID, labeled “CMFD 0.1D”, and explored how
different spatial resolutions would affect the vegetation simu-
lation.  Two historical  meteorological  forcing  datasets  were
used  to  drive  SSiB4/TRIFFID  to  simulate  the  1979–2007
period. 

3.    Results and analyses
 

3.1.    Intercomparison  and  evaluation  of  the  two
atmospheric forcing datasets

Land  Surface  Models  (LSMs)  are  driven  by  atmo-
spheric  forcing  data.  Air  temperature,  precipitation,  and
solar radiation play important roles in simulating the vegeta-
tion growth in  the model  (Ren et  al.,  2021).  Therefore,  we
compared these three atmospheric forcing variables between
PMFD and CMFD. Figure S1(in the electronic supplement-
ary  materials,  ESM)  shows  the  spatial  patterns  of  down-
ward  shortwave  radiation  averaged  over  1979–2007  from
PMFD  and  CMFD  in  the  TP.  It  is  evident  that  the  spatial
patterns of shortwave radiation were similar for the two data-
sets. The multi-year averaged values of shortwave radiation
from  CMFD  and  PMFD  were  216.72  W  m–2 and
207.81 W m–2, respectively. In addition, the seasonal cycles
of  shortwave  radiation  agreed  well  between  CMFD  and
PMFD,  although  the  values  of  CMFD  were  higher  from
April to September (Fig. S2 in the ESM).

The spatial patterns and seasonal air temperature cycles
were in good agreement between CMFD and PMFD (Figs.
S3 and S4 in the ESM). We also compared the air temperat-
ure of CMFD and PMFD against the observations from 21
sites over the TP (Fig. S5). The statistical metrics (Table S1
in  the  ESM)  show  that  both  datasets  are  close  to  the  site-
observed data. However, the RMSE and R2 were improved
for the CMFD air temperature.

mm month−1

Figure  1 shows  the  spatial  patterns  of  monthly  aver-
aged precipitation over 1979–2007. Spatial patterns of precip-
itation of CMFD and PMFD were different from each other.
The precipitation of CMFD increased from southeast to north-
east,  which  was  consistent  with  the  distribution  of  vegeta-
tion. However, the precipitation of PMFD was much higher
in the southwestern TP. From the perspective of seasonal cyc-
ling, the precipitation of PMFD was much higher than that
of  CMFD in  summer  (Fig.  S6  in  the  ESM).  We  evaluated
the precipitation of PMFD and CMFD based on the in-situ sta-
tion  data.  The  statistical  metrics  show  that  monthly-aver-
aged  precipitation  of  PMFD  was  overestimated  by  more
than  10  in  19  of  the  21  sites.  However,  the
biases  were  significantly  reduced  for  CMFD,  with  a  lower
RMSE and a higher R2 for CMFD precipitation. 

3.2.    Influence  of  different  atmospheric  forcing  datasets
on simulations of vegetation dynamics

 

3.2.1.    Spatial patterns of LAI

LAI is defined as half the total green leaf area per unit
of horizontal  ground surface area.  As a measure of canopy
foliage, LAI is related to a range of biochemical processes,
such  as  photosynthesis,  transpiration,  and  energy
exchanges.

We  evaluated  the  spatial  patterns  of  the  averaged-sea-
sonal  and  annual  LAI  from  1982–2007  over  the  TP.  The
mean annual  GLASS LAI shows that  large LAI values are
found  over  the  southeastern  and  eastern  TP,  where  forests
and  alpine  meadows  dominate  the  vegetation;  smaller  LAI
values  are  found  over  northwestern  and  western  TP  (c1  in
Fig. 2).  Large seasonal variations of LAI in the eastern TP
are apparent, with the area of large LAI values (greater than
1.5) ranging from 15.3% (summer) to 6.8% (spring). In con-
trast,  the  LAI in  the  southern  TP varies  little  with  the  sea-
sons (c2–c4 in Fig. 2). The two simulations with SSiB4/TRIF-

Table 1.   Experimental Design.

100-year equilibrium simulation Realistic simulation

CO2
concentration

Initial
vegetation
condition

Atmospheric
forcing

CO2
concentration

Initial
vegetation
condition

Atmospheric
forcing

PMFD
1D

Fixed CO2 con-
centration at
1979 level

Updating vegeta-
tion mapwith
Chinese vegeta-
tion map

3-hourly climato-
logical Prin-
ceton atmo-
sphericforcing
data from 1979
to 2007, 1
degree

Transient CO2 for
the period of
1979–2007

The vegetation
Condition-
sreproduced by
the 100-year
equilibrium
runs

Transient 3-hourly
Princeton atmo-
spheric forcing
data from 1979
to 2007, 1
degree

CMFD
1D

3-hourly climato-
logical CMFD
from 1979 to
2007, 1 degree

Transient 3-hourly
CMFD from
1979 to 2007, 1
degree

CMFD
0.1D

3-hourly climato-
logical CMFD
from 1979 to
2007, 0.1
degree

Transient 3-hourly
CMFD from
1979 to 2007,
0.1 degree
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FID forced by the  PMFD and upscaled CMFD reproduced
similar spatial patterns and seasonal variations of LAI over
the TP with GLASS LAI (a1–a4, b1–b4 in Fig. 2).  In con-
trast, there was an overestimation of simulated LAIs against
the  GLASS  LAI. Figure  3 shows  the  differences  in  mean
annual  and  seasonal  LAIs  differences  between  PMFD  1D,
CMFD  1D,  and  GLASS.  LAI  simulations  in  PMFD  1D
were overestimated (up to 60% in summer) in most regions
of the TP. Substantial improvements were seen with CMFD
1D with reduced LAI, especially in the western and eastern
regions  of  the  TP.  The  annual  averaged  LAI  bias  over  the
entire TP reduced from 0.39 to 0.15, and the RMSE reduced
by  24.3%  (from  0.70  to  0.53).  The  seasonal  average  LAI
decreased  substantially,  with  the  bias  decreasing  by

52.1%–71.3% (Table 2). Thus, the LAI over TP can be simu-
lated more reasonably by upscaled CMFD at the same spa-
tial resolution. 

3.2.2.    Spatial patterns of GPP

Gross primary production (GPP) is an important flux vari-
able describing land-atmosphere carbon exchange. In this sub-
section,  GPP  simulations  from  1982  to  2007  were  com-
pared and evaluated using observation-based GPP data over
the TP.

Figure  4 displays  the  spatial  patterns  of  the  multi-year
averaged  annual  and  seasonal  GPP  of  the  PMFD  1D
(a1–a4), CMFD 1D (b1–b4), and observation (c1–c4) from
1982  to  2007.  Large  spatial  variabilities  of  annual  mean

 

 

Fig.  1. Spatial  patterns  of  multi-year  averaged  annual  and  seasonal  (MAM,  JJA,  SON)  precipitation  during
1979–2007. (a1–a4) PMFD, (b1–b4) CMFD; Units: mm month–1.
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m−2 month−1

m−2 month−1

m−2 month−1

m−2 month−1

m−2 month−1)

m−2 month−1)

GPP were  found  in  the  FLUXNET-MTE datasets,  with  an
increasing  gradient  from  the  northwest  to  the  southeast
(c1  in Fig.  4).  The  mean  annual  GPP  is  higher  than
90 gC  in  the  southern TP region.  In  contrast,
the  mean  annual  GPP  was  generally  lower  than  10  gC

 in  the  northwestern  areas,  dominated  by
desert,  bare  soil,  and  sparsely  vegetated  alpine  steppe.
Strong  seasonal  fluctuations  of  FLUXNET-MTE  GPP  are
quite  obvious  in  the  eastern  and  southeastern  regions  of
the TP. The area where GPP values were greater than 30 gC

 ranges from 7.9% (in spring) to 37.5% (in sum-
mer). Figure 5 (a1) shows unrealistic mean annual GPP val-
ues exist in the southwestern region in the PMFD 1D (ran-
ging from 30 to 50 gC ) where the vegetation is
very  sparse,  contrary  to  its  observed  value  (lower  than  10
gC . The mean seasonal GPP has consistent res-
ults,  and  the  overestimation  is  much  higher  (over  65  gC

 in the summer (a3 in Fig. 5). The overestima-

m−2 month−1

m−2 month−1

m−2 month−1

m−2 month−1)

tion  is  reduced  to  some  extent  on  the  southwestern  TP  in
CMFD 1D (b1–b4 in Fig. 5). However, the decrease in simu-
lated GPP in CMFD 1D on the eastern TP is excessive, and
the GPP simulation is underestimated. Table 3 shows the com-
parisons  between  the  simulated  GPP  and  FLUXNET  GPP
data.  The  bias  of  annual-averaged  monthly  GPP  simula-
tions in the CMFD 1D is –0.34 gC , which is sig-
nificantly  lower  than  that  in  the  PMFD  1D  (9.95  gC

), a reduction of 50.4% on percentage bias. The
RMSE of annual-averaged monthly GPP simulations in the
CMFD 1D decreased by 20.5% (from 19.7 gC 
to  15.66 gC .  In  addition,  the  spatial  correla-
tion coefficient (SCC) of the GPP simulation with upscaled
CMFD increased by 4.8%. The improvement of GPP simula-
tions  with  upscaled  CMFD  is  more  significant  on  the  sea-
sonal  scale,  with  a  reduction  in  RMSE  by  35.4%  (in
autumn) and an increase in SCC by 16.7% (in summer).
 

 

 

Fig.  2. Spatial  patterns  of  multi-year  averaged  annual  and  seasonal  (MAM,  JJA,  SON)  LAI  during  1982–2007.  (a1–a4)
PMFD 1D, (b1–b4) CMFD 1D, (c1–c4) GALSS LAI; Units: m2 m−2.
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3.2.3.    Temporal patterns of LAI and GPP

The climate change-related regional warming and precip-
itation  increases  influence  the  vegetation  growth  and  pro-

ductivity  on  the  spatial  scale  (Zhu  et  al.,  2016).  This  sec-
tion  evaluates  the  efficacy  of  different  meteorological  for-
cing datasets to predict LAI and GPP variability trends.

Table 2.   Seasonal and annual averaged LAI statistics for the comparison between the model simulations and observation.

m2 m−2)LAI (

MAM (Spring) JJA (Summer) SON (Autumn) ANN (Annual)

MEAN BIAS RMSE SCC MEAN BIAS RMSE SCC MEAN BIAS RMSE SCC MEAN BIAS RMSE SCC

GLASS 0.33 − − − 0.71 − − − 0.45 − − − 0.44 − − −

PMFD
1D

0.54 0.21
(63.6%)

0.53 0.65* 1.42 0.71
(100%)

1.16 0.70* 1.07 0.62
(137.8%)

0.96 0.68* 0.83 0.39
(88.6%)

0.70 0.77*

CMFD
1D

0.36 0.03
(9.1%)

0.44 0.59* 1.05 0.34
(47.9%)

0.81 0.75* 0.75 0.30
(66.7%)

0.67 0.71* 0.59 0.15
(34.1%)

0.53 0.77*

CMFD
0.1D

0.38 0.05
(15.2%)

0.41 0.78* 1.03 0.32
(45.1%)

0.72 0.81* 0.75 0.30
(66.7%)

0.64 0.74* 0.60 0.16
(36.1%)

0.49 0.81*

* indicates significant values, p < 0.05, in Student-t test. MAM, JJA, SON, ANN represent spring, summer, autumn, and annual, respectively. RMSE and
SCC represent root-mean-square error and spatial correlation coefficient.

 

 

Fig. 3. Differences in multi-year averaged annual and seasonal LAI between 1982–2007. (a1–a4) PMFD 1D minus GLASS,
(b1–b2) CMFD 1D minus GLASS, (c1–c4) CMFD 1D minus PMFD 1D; units: m2 m2.
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Figure  6 shows  the  comparison  of  annual  mean  LAI
between  the  simulations  and  satellite  data  from  1982  to
2007.  Both  PMFD  1D  and  CMFD  1D  captured  the  vari-
ations of LAI. The simulation with upscaled CMFD is close
to the observed value, with a 56.4% decrease in RMSE and
a  5.9%  increase  in  the  temporal  correlation  coefficient
(TCC) (Table 4). In addition, both simulated LAIs show a sig-
nificant greening trend on the TP. However, there is an obvi-
ous difference between simulated and satellite-derived LAI
trends. The CMFD 1D has the largest trend of LAI, with an
annual  increase  of  0.01.  The  right-hand  column  in Fig.  6
gives  the  mean  seasonal  cycle  of  simulated  and  satellite-
derived LAI. The simulation of LAI in CMFD 1D shows a
lower amplitude in summer, which is closer to the GLASS
LAI. To further investigate the improvement of temporal sim-
ulation with upscaled CMFD, we made a scatterplot compar-
ison between the  monthly  simulated LAI and GLASS LAI
(Fig. 7). The simulation of LAI in CMFD showed improve-
ment, evidenced by an RMSE and bias that were reduced by

46.2% and 61.5%, respectively.

gC m−2 yr−2

We also compared the simulated and observation-based
annual GPP time series over the TP. Figure 8 shows the tem-
poral  patterns  of  annual  monthly  mean  GPP  from
1982–2007.  The  trend  and  the  annual  average  values  of
GPP simulations with different meteorological forcing data-
sets  have  noticeable  differences.  The  CMFD 1D improved
upon the performance of the GPP simulation by a large mar-
gin, with a reduction of RMSE by 81.6% and an increase in
TCC by 21.1%. Both simulated GPPs suggest that the ecosys-
tems' ability to fix carbon is increasing. The trend of simu-
lated  GPP  in  the  CMFD  1D  is  3.21  which  is
the larger  among the two simulations and FLUXNET GPP
data (Table 4). The comparison of the mean seasonal cycle
of simulated GPP to the observation-based GPP (right-hand
side  of Fig.  8)  reveals  that  the  CMFD  1D  decreased  the
GPP  in  the  simulation  excessively  in  the  summer,  which
may be directly influenced by the variation in LAI. Besides,
the  CMFD  1D  largely  reduces  the  GPP  estimates  from

 

 

gC m−2 month−1
Fig.  4. Spatial  patterns  of  multi-year  averaged  annual  and  seasonal  (MAM,  JJA,  SON)  GPP  during  1982–2007.  (a1–a4)
PMFD 1D , (b1–b4) CMFD 1D, (c1–c4) FLUXNET-MTE; Units: .
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m−2 yr−1

m−2 yr−1
364.7  to  241.2  gC ,  which  is  much  closer  to  the
observed value (245.31 gC ). The scatterplot compar-
isons of monthly simulated GPP and FLUXNET-MTE GPP

(Fig. 9) confirm a good performance of the GPP simulation
with an upscaled CMFD on a monthly timescale. Generally,
a  more  realistic  CMFD  improves  the  simulations  of  LAI

Table 3.   Seasonal and annual averaged GPP statistics for the comparison between the model simulations and observation.

(gC m−2month−1)GPP 

MAM (Spring) JJA (Summer) SON (Autumn) ANN (Annual)

MEAN BIAS RMSE SCC MEAN BIAS RMSE SCC MEAN BIAS RMSE SCC MEAN BIAS RMSE SCC

FLUXNET
MTE

12.09 − − − 48.34 − − − 17.59 − − − 20.44 − − −

PMFD
1D

19.25 7.16
(59.2%)

13.39 0.79* 61.08 12.74
(26.4%)

44.85
0.72* 33.04 15.45

(87.8%)
23.36 0.75* 30.39 9.95

(48.7%)
19.70 0.83*

CMFD
1D

11.58 −0.51
(4.2%)

12.86 0.81* 42.16 −6.18
(−12.8%)

36.30 0.84* 21.73 4.14
(23.5%)

15.09 0.80* 20.10 −0.34
(−1.7%)

15.66 0.87*

CMFD
0.1D

11.89 −0.20
(−1.7%)

11.27 0.91* 39.84 −8.50
(−17.6%)

34.38 0.88* 20.92 3.33
(18.9%)

13.08 0.84* 19.41 −1.03
(−5.0%)

14.17 0.90*

As in Table 2 except for GPP.

 

 

gC m−2 month−1
Fig.  5. Difference  between  multi-year  averaged  annual  and  seasonal  GPP  during  1982–2007.  (a1–a4)  PMFD  1D  minus
FLUXNET, (b1–b2) CMFD 1D minus GLASS, (c1–c4) CMFD 1D minus PMFD 1D; units: .
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and  GPP  over  the  TP,  regardless  of  spatial  or  temporal
scales. 

3.3.    Influence  of  the  improved  spatial  resolution  on
simulations of vegetation dynamics

The spatial resolution of atmospheric forcing data is an
important  factor  that  affects  the  performance  of  simulation
in LSMs (Zhao and Li, 2015). To explore the influence of spa-
tial  resolution  of  atmospheric  forcing  data  on  the  simula-
tions of LAI and GPP, we forced the SSiB4/TRIFFID with
high  spatial  resolution  CMFD  (0.1°  ×  0.1°),  referred  to  as
CMFD 0.1D. 

3.3.1.    Leaf area index

Figure 10 shows the comparisons of the annual and sea-
sonal  multi-year  averages  of  LAI  between  CMFD  0.1D,
CMFD 1D, and the observations during 1982–2007. The spa-
tial patterns of annual and seasonal LAI bias in CMFD 0.1D
were  similar  to  those  in  CMFD  1D.  The  difference  in
annual and seasonal LAI simulations between CMFD 0.1D
and CMFD 1D are shown in Fig. 10 (b1–b4). Compared to
CMFD  1D,  the  RMSE  of  annual  LAI  in  CMFD  0.1D  is
reduced  by  7.5%  (from  0.53  to  0.49),  and  the  SCC
increased  by  5.2% (from 0.77  to  0.81).  The  improvements
in  LAI  simulation  with  high  spatial  resolution  CMFD  are
focused on the southwestern and eastern regions of the TP,
with an area covering 21.5%. Improvement in LAI simula-
tion  during  summer  is  quite  obvious,  with  a  0.09  (11.1%)
decrease in RMSE and 0.06 (8.0%) in SCC.

A Taylor diagram can quantify the performance of each
run  in  simulating  the  annual-  and  seasonal-averaged  LAI.
Figure  11a gives  multiple  statistics  of  the  simulated  LAI.
Higher values of SCC and decreased RMSE indicate a large

improvement in a simulated LAI simulation using a high-spa-
tial-resolution CMFD. The improvements in an LAI simula-
tion  due  to  the  improved  spatial  resolution  of  meteorolo-
gical forcing data are secondary. 

3.3.2.    Gross primary production

We  compared  the  spatial  patterns  of  the  multi-year
averaged  annual  and  seasonal  GPP  between  CMFD  0.1D,
CMFD  1D,  and  the  observations  from  1982  to  2007
(Fig. 12). The simulation in CMFD 0.1D underestimated the
GPP in the eastern and southeastern regions and overestim-

Table 4.   Statistics for the comparison between simulated and observation-based LAI and GPP.

LAI (m2 m−2) GPP (gC m−2 yr−1)

Trend (yr−1) RMSE (m2 m−2) TCC Trend (gC m−2 yr−2) RMSE (gC m−2 yr−1) TCC

OBS 0.002* − − 0.73* − −

PMFD 1D 0.005* 0.39 0.51* 1.78* 120.27 0.51*

CMFD 1D 0.010* 0.17 0.54* 3.21* 22.10 0.62*

 

 

Fig.  6. Comparison  of  time  series  of  LAI  between  simulations  and  observation.  The  right-hand  column  shows  the
corresponding multi-year mean seasonal cycle and the monthly average.

 

Fig.  7. Scatterplot  comparison  at  a  monthly  scale  between
GLASS LAI and simulated LAI.
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m−2 month−1

ated GPP in the southwestern regions over the TP, which is
similar to CMFD 1D. The difference in the annual GPP simu-
lation  between  CMFD  0.1D  and  CMFD  1D  shows  that
CMFD 0.1D improves in regions where CMFD 1D has a sim-
ulated  deviation.  Compared  to  CMFD  1D,  the  RMSE  was
reduced  by  9.5%  (from  15.66  to  14.17  gC )
and  the  SCC  was  increased  by  3.4%  (from  0.87  to  0.90).
The improvement in the RMSE (SCC) of the seasonal GPP
simulation ranges from 5.3% in summer (4.8% in summer)
to 13.3% in autumn (12.3% in spring).

The  Taylor  diagram  (Fig.  11b)  assessed  the  perform-
ance  of  each  run  by  simulating  annual  and  mean  seasonal
GPP. The GPP simulations in CMFD 0.1D performed best
with  a  large  SCC and  low RMSE.  The  improvement  from
PMFD 1D to CMFD 1D is more obvious than from CMFD
1D to CMFD 0.1D, which indicates that the improvement of
the GPP simulation brought about by realistic atmospheric for-
cing  data  is  larger  than  the  improved  spatial  resolution  of
the atmospheric forcing data. 

4.    Discussion

Due to its unique geographical location, the vegetation
on the TP is extremely sensitive to air temperature and precip-
itation during the growing season. According to previous stud-
ies, precipitation has been suggested to exert a larger impact
on alpine meadow growth in the central-eastern TP (Zhang
et  al.,  2018).  Furthermore,  it  is  revealed  that  the  precipita-
tion  of  the  two  datasets  differs  from  one  another  (Fig.  1).
The  evaluation  of  precipitation  from  PMFD  and  CMFD
against  in-situ  station  data  suggests  a  significant  reduction
in biases in the CMFD precipitation relative to PMFD precip-
itation,  especially  in  the  central-southwestern  region of  the
TP.  By  comparing  the  precipitation  differences  and  simu-
lated  vegetation  dynamics  between CMFD and PMFD,  we
found that the LAI and GPP simulations improved signific-
antly in the areas with better precipitation forcing.

γlm

Soil moisture (SM) availability controls the seasonal vari-
ability of LAI by changing the leaf mortality rates (( ) in
Eq. 1), which determines the start and end of the growing sea-
son.  In  addition,  the  availability  of  soil  moisture  also
impacts  leaf  photosynthesis,  as  is  shown  in  Eq.  7.  There-
fore, SM is a crucial variable for the simulations of vegeta-
tion  dynamics.  We  compared  the  simulated  SM  in  the
CMFD 0.1D and PMFD 1D runs with validation SM, estab-
lished through a land data assimilation system (LDAS). Cov-
ering the period from 2002 to 2011, the LDAS-derived SM
was produced by assimilating satellite brightness temperat-
ure data into an LSM and has been proven to be more accur-
ate in the TP (Yang et al., 2020). Figure 13 (a1, b1, c1) dis-
plays the spatial patterns of simulated and validated SM aver-
aged from 2003 to 2007. The LDAS-derived SM had a spa-
tial  pattern  gradually  decreasing  from southeast  to  northw-
est on the TP, which was consistent with the vegetation distri-
bution of the TP. However, the simulated SM of PMFD 1D
run  was  higher  than  LDAS on  the  entire  TP,  especially  in
the southwestern region of the TP. Compared to the PMFD
1D run, the CMFD run performed better in simulating the spa-
tial distribution of SM, evidenced by an SCC that increased
by 29% (from 0.62 to 0.80) and an RMSE that was lowered
by 36.5% (from 0.074 to 0.047).  The latent  heat  flux (LH)

 

 

Fig.  8. Comparison  of  time  series  of  GPP  between  simulations  and  observation.  The  right-hand  column  shows  the
corresponding multi-year mean seasonal cycle and the monthly average.

 

Fig.  9. Scatterplot  comparison  at  a  monthly  scale  between
FLUXNET-MTE GPP and simulated GPP.
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Fig.  10. (a1–a4) The difference between the multi-year averaged annual and seasonal  LAI at
0.1-degree spatial resolution during 1982–2007. (b1–b4) The difference between the multi-year
averaged  annual  and  seasonal  LAI  simulations  in  CMFD  0.1D.  Positive  values  represent
improvement. Units: m2 m−2.

 

 

Fig.  11. Taylor  diagram  of  the  multi-year  averaged  annual  and  seasonal  (a)  LAI  and  (b)  GPP
simulations  against  the  observed  data  over  the  TP.  The  annual,  spring,  summer,  and  autumn
simulations are indicated by 1–4, respectively; the red, blue, and green marks denote the simulations
from PMFD 1D, CMFD 1D, CMFD 0.1D, respectively.
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simulation  driven  by  CMFD  also  significantly  improved
(Figs.13  a2, b2, c2).  Compared  to  FLUXNET-MTE  data,
the LH simulation driven by CMFD has a higher SCC and a
lower  RMSE  compared  to  that  of  PMFD,  with  the  SCC
increasing  from  0.18  to  0.84  and  the  RMSE  decreasing  to
6.1 from 11.6 . We also analyzed the spatial patterns
of  the  two  values  of  simulated  sensible  heat  flux  (SH)
against FLUXNET-MTE (Figs.13 a3, b3, c3). Compared to
PMFD, the SH simulations driven by CMFD also improved,
with an RMSE reduction of 33.6%.

For the alpine grassland ecosystems of the TP, the SM
plays an essential role in modeling leaf phenology and vegeta-

tion carbon fluxes. The improvement of precipitation in the
CMFD improves  the  accuracy  of  the  soil  moisture  simula-
tion, and soil moisture further affects vegetation growth and
ecosystem carbon fluxes by participating in the progression
of leaf phenology and photosynthesis. Consequently, the cor-
rection of precipitation in the CMFD plays an essential role
in the improvement of vegetation dynamics in SSiB4/TRIF-
FID model over the TP.

Additionally, the importance of moisture was also veri-
fied in the AVIM model. Lü and Ji (2002a) pointed out that
the change in the dynamics and spatial distribution of NPP
and LAI on the TP was controlled by both the moisture and

 

 

gC m−2 month−1

Fig. 12. (a1–a4) Difference between multi-year averaged annual and seasonal GPP at a 0.5-degree spatial resolution
during 1982–2007. (b1–b4) The change in the multi-year averaged annual and seasonal GPP simulations in CMFD
0.1D. Positive values represent improvement. Units: .
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thermal conditions, which is consistent with our results.
Currently,  the observations from CMA stations,  which

are  the  most  important  merging  datasets  for  CMFD,  are
sparse in the northwestern TP and are consequently subject
to  a  large  uncertainty  of  CMFD over  this  region (Li  et  al.,
2018).  With  the  advancement  of  observation  methods  for
TP, the Third Tibetan Plateau Atmospheric Scientific Experi-
ment  (TIPEX-III)  and  the  Second  Tibetan  Plateau  Sci-
entific Expedition and Research (STEP) constitute an observa-
tion system that integrates ground-, air-, and space-based plat-
forms  to  promote  meteorological  observations.  It  is  likely
that the atmospheric forcing data on TP would be more accur-
ate  in  the  future,  further  improving  simulations  of  vegeta-
tion dynamics on the TP. 

5.    Conclusions

Vegetation dynamics are vital to water, energy, and car-
bon exchanges between terrestrial ecosystems and the atmo-
sphere.  The  quality  of  simulations  of  vegetation  dynamics
simulations  in  offline  land  surface  models  (LSMs)  largely

depends on the quality and spatial resolution of the meteorolo-
gical  forcing  data.  In  this  study,  three  meteorological  for-
cing datasets were used to drive SSiB4/TRIFFID to explore
how  accurate  and  high-spatial-resolution  forcing  data
impact the simulations of vegetation dynamics over the TP.
Our main conclusions are as follows.

All three LAI simulations reproduced the spatial distribu-
tion  and  seasonal  variability.  However,  the  CMFD 1D run
reduces  the  biases  of  the  spatial  distribution  of  LAI,  espe-
cially  in  the  western  and  southwestern  regions  of  the  TP.
The results show that the LAI simulation in the CMFD 1D
decreases  the  positive  biases  by  54.5% annually,  54.5% in
the spring, 52.1% in the summer, and 71.1% in the autumn,
and  has  a  larger  SCC  and  lower  RMSE.  The  Taylor  dia-
gram indicated that LAI simulation in the CMFD 0.1D per-
formed  best,  and  the  simulation  in  the  PMFD 1D run  was
the  worst.  All  three  simulations  reproduced  the  greening
trend  on  the  TP.  In  addition,  the  LAI  simulation  with  a
higher resolution CMFD (CMFD 0.1D) performed better in
terms of spatial distribution.

Regarding  the  spatial  patterns  of  GPP  simulation,

 

 

Fig.  13. Spatial  patterns  of  the  multi-year  averaged annual  soil  moisture  during 2003–07,  and the  latent  and sensible  heat
flux  during  1982–2007;  (a1–a3)  PMFD,  (b1–b3),  (c1)  CMFD 0.1D,  LDAS soil  moisture,  (c2–c3)  FLUXNET-MTE latent
and sensible heat flux.
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SSiB4/TRIFFID forced by an upscaled CMFD reduced the
positive biases in the southwest,  decreased the RMSE, and
increased the SCC on the TP. The multi-year averaged-GPP
biases in the PMFD 1D run can be largely reduced by adopt-
ing  more  realistic  forcing  data  in  the  CMFD  1D  run.  The
GPP simulation in CMFD 0.1D further reduced the RMSE
and increased the SCC. All the simulations simulated a posit-
ive  trend,  which  indicated  that  carbon  fixation  on  the  TP
gradually increased.

This  study  highlights  the  importance  of  incorporating
more  realistic  forcing  data  of  higher  resolution  in  simulat-
ing  LAI  and  GPP  in  the  LSMs  over  the  complex  topo-
graphy and sparse observations common to the TP.
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