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ABSTRACT

Snowfall and the subsequent evolution of the snowpack have a large effect on the surface energy balance and water
cycle of the Tibetan Plateau (TP). The effects of snow cover can be represented by the WRF coupled with a land surface
scheme.  The  widely  used  Noah  scheme  is  computationally  efficient,  but  its  poor  representation  of  albedo  needs
considerable  improvement.  In  this  study,  an  improved albedo scheme is  developed using  a  satellite-retrieved albedo that
takes  snow depth  and  age  into  account.  Numerical  experiments  were  then  conducted  to  simulate  a  severe  snow event  in
March  2017.  The  performance  of  the  coupled  WRF/Noah  model,  which  implemented  the  improved  albedo  scheme,  is
compared against the model’s performance using the default Noah albedo scheme and against the coupled WRF/CLM that
applied  CLM  albedo  scheme.  When  the  improved  albedo  scheme  is  implemented,  the  albedo  overestimation  in  the
southeastern TP is reduced, reducing the RMSE of the air temperature by 0.7°C. The improved albedo scheme also attains
the  highest  correlation  between  the  satellite-derived  and  the  model-estimated  albedo,  which  provides  for  a  realistic
representation of both the snow water equivalent (SWE) spatial distribution in the heavy snowbelt (SWE > 6 mm) and the
maximum  SWE  in  the  eastern  TP.  The  underestimated  albedo  in  the  coupled  WRF/CLM  leads  to  underestimating  the
regional  maximum  SWE  and  a  consequent  failure  to  estimate  SWE  in  the  heavy  snowbelt  accurately.  Our  study
demonstrates  the  feasibility  of  improving  the  Noah  albedo  scheme  and  provides  a  theoretical  reference  for  researchers
aiming to improve albedo schemes further.
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Article Highlights:

•  The improved albedo scheme reduces albedo overestimation and increases the correlation between satellite-derived and
model-estimated albedo.

•  Air  temperature  RMSE  is  reduced  by  0.7°C  when  applying  the  WRF  at  coarse  resolution  with  the  improved  albedo
scheme.
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•  The  improved  albedo  scheme  contributes  to  a  realistic  representation  of  the  SWE  spatial  distribution  in  the  heavy
snowbelt.

 

 
  

1.    Introduction

The  Tibetan  Plateau  (TP),  also  known  as  the  “Third
Pole” (Qiu, 2008), constitutes a unique geographical environ-
ment with an average elevation of more than 4000 m above
sea  level  and  an  area  of  approximately  2.57  ×  106 km2

(Zhang et al., 2002). Snow frequently falls over the TP and
is  a  vital  cryosphere  component,  linking  cryospheric  and
hydrospheric processes with important regional weather and
climate feedback. Snow on the TP is strongly linked to the
general atmospheric circulation and can affect the Asian sum-
mer  monsoon  (Zhang  et  al.,  2004; Seol  and  Hong,  2009;
Xiao and Duan, 2016; Li et al., 2018).

Snowfall and the subsequent evolution of the snowpack
influence  both  the  energy  budget  and  the  water  cycle
(Barnett  et  al.,  1988)  due  to  high  variability  in  the  surface
net radiation flux, snow water storage, and snow meltwater
release  (Liu  and  Qian,  2005).  As  a  key  factor  of  net  radi-
ation flux, albedo directly determines the absorption of solar
irradiance at the surface and is, therefore, an important para-
meter  for  land  surface  processes  (Sellers  et  al.,  1996).
Subtle  changes  in  albedo  affect  the  energy  balance  for  the
earth-atmosphere  system  and  amplify  climate  variability
(Bloch, 1964). Albedo is affected by snow density, water con-
tent, snow particle size, and impurity content (Green et al.,
2002; Painter  et  al.,  2003; Hansen  and  Nazarenko,  2004),
and is also related to ice and snow contamination or debris
deposition, temperature, and terrain, slope, and aspect (Jon-
sell et al., 2003). Atmospheric water content, turbidity, and
cloud cover change the amount and spectral properties of sur-
face irradiance, thus affecting surface albedo.

Many  parameterization  schemes  of  snow  albedo  have
been  developed  and  improved  upon.  Snow  particle  size,
age,  depth,  density and melt  rate,  and air  temperature have
been considered (Brock et al., 2000; Greuell, 2000; Klok et
al.,  2003; Malik et  al.,  2014).  Solar zenith angle and cloud
cover have been accounted for (Dickinson et al., 1986), and
snow  particle  size  and  depth,  and  impurity  content  have
been considered along with solar zenith angle in other mod-
els (Marshall and Warren, 1987; Marshall et al., 1999; Mar-
shall  et  al.,  2003).  Gardner  and  Sharp  (2010)  developed  a
new albedo parameterization scheme that considers the car-
bon  concentration  on  the  snow surface,  solar  zenith  angle,
cloud optical thickness, snow depth (SD), and snow and ice
cover. Their parameterization provides an accurate representa-
tion of albedo over a wide range of snow and ice conditions.
Yang et al. (2016) evaluated four different albedo parameteriz-
ation schemes in various climate models. They proceeded to
develop a modified scheme that considered synoptic condi-
tions  and the  local  land  and sea-ice  surface  characteristics.
Zhong et al. (2017) improved a snow albedo scheme in the

Snow-Atmosphere-Soil  Transfer  model  by  considering  the
impacts of light-absorbing aerosols on snow, and better-repro-
duced  snow  albedo  and  SD,  particularly  during  the  period
of snow ablation.

Boundary  layer  conditions  in  a  coupled  land-atmo-
sphere  model  depend  on  the  applied  land  surface  schemes
where albedo is an extremely significant factor. Some short-
comings in calculating land surface albedo in current land sur-
face  models  (LSMs)  exist.  For  example,  the  community
Noah LSM employs four soil layers and a single snow layer
to  simulate  snow  accumulation,  melting,  sublimation,  and
energy  exchange  at  snow-atmosphere  and  snow-soil  inter-
faces  (Chen and Dudhia  2001; Ek et  al.,  2003).  This  LSM
appears  to  be  the  most  readily  available  snow  albedo
scheme for long-term climate modeling research, despite its
various  predetermined  constant  parameters  and  simplified
treatment  of  snow  (Rai  et  al.,  2019).  However,  the  albedo
scheme  in  Noah  LSM  only  considers  snow  cover  and  age
while ignoring snow thickness, known to be the most import-
ant  factor  influencing  the  albedo  variation  (Yang  et  al.,
2016). This omission leads to inaccuracies in the estimated
albedo  during  snowfall  and  the  subsequent  snowmelt  pro-
cesses  (Liu  et  al.,  2019).  In  the  Community  Land  Model
(CLM),  a  sophisticated  albedo  scheme  considers  multiple
snow properties, e.g., SD, snow cover, snow age, snow meta-
morphism, fresh snow content, liquid water content, effect-
ive ice grain size, and impurity content (Dai et al., 2003). Con-
sequently,  the  advanced  albedo  scheme  in  CLM  outper-
forms  the  Noah  albedo  scheme  in  modeling  albedo  and
snow-related  variables  (Liu  et  al.,  2019).  Its  inclusion
enables the Weather Research and Forecasting (WRF) air tem-
perature estimates to be more accurate when applying CLM
than the Noah LSM (Jin et al., 2010). Nevertheless, fast com-
putation  is  a  major  requirement  for  numerical  land-atmo-
sphere  models  with  high  spatial  and  temporal  resolutions,
and the CLM is much more computationally expensive than
the  Noah  LSM.  Therefore  we  chose  to  improve  upon  the
albedo scheme in the WRF coupled with the Noah LSM to
improve  the  model’s  performance  for  snow  event  simula-
tions.

In  our  study,  the  albedo  was  parameterized  as  a  func-
tion  of  SD,  snow  age,  fresh  snow  albedo,  and  snow-free
albedo  by  adapting  the  scheme  in  Oerlemans  and  Knap
(1998)  using  the  observed  snow-free  albedo.  The  applica-
tion of the Noah LSM to the WRF was confirmed to be able
to verify not only the observed values but also the spatial pat-
tern of SD at the meteorological stations (Liu et al.,  2019).
Therefore, apart from the Moderate Resolution Imaging Spec-
troradiometer (MODIS) albedo products and ground SD meas-
urements,  our  improved  albedo  scheme  also  applies  WRF
estimates of  SD. We repeated our earlier  (Liu et  al.,  2019)
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numerical experiments for the March 2017 snow event over
the whole TP to compare the performance of three model con-
figurations:  (1)  WRF + Noah LSM applying our  improved
albedo  scheme,  (2)  WRF  +  Noah  LSM,  and  (3)  WRF  +
CLM. The default albedo schemes are used in (2) and (3).

The remainder of this paper is organized as follows. Sec-
tion 2 describes the data, numerical experiments design and
methods  of  improving  albedo  scheme,  section  3  provides
the  results  about  near-surface  air  temperature,  albedo  and
snow, section 4 discusses the performance of our improved
albedo scheme and the influence of land surface parameters
on the boundary meteorological variables estimates and sec-
tion  5  concludes  our  findings  about  the  improved  albedo
scheme and its capacity on simulating the boundary meteoro-
logical variables. 

2.    Data and Methodology
 

2.1.     In situ observations and MODIS products

A severe snow event took place over a large fraction of
the TP in March 2017 with a maximum SD deeper than 70
cm in Nyalam County of the Tibetan Autonomous Region,
China.  This extreme event  featured ground observations of
SD  never  recorded  before  in  the  eastern  TP  (i.e.,  in
Minyang), and within the thickest 4th percentile in the east-
ern and southern TP —Nyalam and Songpan — by histor-
ical statistics of SD observations for more than 50 years. Vari-
able  snowfall  intensity  was  observed,  from  light  snow  in
some regions to heavy snow in the eastern, central, and south-
ern  edges  of  the  TP.  The  sensitivity  of  this  snow  event  to
the  applied  LSM  and  initial  and  boundary  conditions  was
investigated in our previous study (Liu et al., 2019).

This study focuses on the same snow event but includes
an improved albedo parameterization and an updated set of
static  land  surface  parameters  in  WRF +  Noah  LSM,  such
as land cover and fractional vegetation cover (FVC). Observa-
tions of near-surface air temperature and snow water equival-
ent (SWE) were taken from 32 World Meteorological Organ-
ization  surface  synoptic  observation  (SYNOP)  stations  run
by  the  China  Meteorological  Administration  (CMA),  and
albedo observations were taken from six observatories oper-
ated by the Chinese Academy of Sciences (CAS). The geo-
graphic  information  and  distribution  of  in  situ  stations  are
shown in Table 1 and Fig. 1.

Due  to  the  sparse  and  uneven  distribution  of  the  few
CAS  observatories,  the  in  situ  observations  of  albedo  are
poorly representative of the TP. Spaceborne observations of
radiance  reflected  by  the  Earth-Atmosphere  system
provides an effective means to monitor land surface albedo
both  regionally  and  globally  (Li  and  Garand,  1994),  and
MODIS albedo products are more accurate than other satel-
lite  data  products  when  evaluated  against  in  situ  observa-
tions  (Liang  et  al.,  2002, 2005).  The  products  MOD09A1,
MOD09CMG, and MYD09CMG were used to calculate sur-
face albedo by converting narrowband reflectance to broad-
band  albedo  following  Liang  (2000).  The  product

MOD09A1 is a MODIS/Terra eight-day surface reflectance
product  with  a  spatial  resolution  of  500  m,  provided  on  a
sinusoidal  coordinate  grid.  The  product  MOD09CMG
(MYD09CMG) is a MODIS/Terra (MODIS/Aqua) daily sur-
face  reflectance  product  with  a  spatial  resolution  of  0.05°,
provided on the Climate  Modeling Grid (CMG).  The three
surface  reflectance  products  are  L3  data  products  and
provide surface reflectance in bands 1 to 7, from which broad-
band albedo can be estimated (Liang, 2000): 

αshort =0.160α1+0.291α2+0.243α3+0.116α4+

0.112α5+0.081α7−0.0015 , (1)

αshort α1−α7where  is the surface broadband albedo;  is the
surface reflectance in MODIS bands 1 to 7. The spectral cov-
erage  for  MODIS  bands  1  to  7  is  0.62–0.67,  0.84–0.87,
0.46–0.48,  0.54–0.56,  1.23–1.25,  1.63–1.65  and  2.11–2.15
μm respectively.

The dataset MCD12Q1 is the MODIS Terra + Aqua com-
bined  land  cover  product.  It  is  a  yearly  L3  level  product
with a spatial resolution of 500 m, provided on a sinusoidal
coordinate  grid.  It  contains  five  land  cover  classification
schemes  and  is  calculated  using  a  supervised  decision  tree
classification algorithm. The primary land cover scheme iden-
tifies 17 land cover classes defined by the International Geo-
sphere-Biosphere  Program  (IGBP).  Due  to  large  differ-
ences  in  reflected  radiation  for  different  land  cover  types,
the land cover 2017 product from MODIS was used to calcu-
late land surface albedo using the IGBP classification in this
study. 

2.2.     Noah  LSM  default  and  improved  albedo
parameterization schemes

The default  surface albedo parameterization scheme in
the  Noah  LSM  considers  snow  cover  and  age  (Ek  et  al.,
2003; Livneh  et  al.,  2010).  The  Noah  LSM default  albedo
scheme is described by: 

αs1 = αs0+Lv(0.85−αs0) , (2)
 

αs2 = αs1AtB , (3)
 

α = αbg+ fc(αs2−αbg) , (4)

Lv αs0

αbg fc

where  is  a  prescribed empirical  parameter;  is  a  pre-
scribed maximum albedo for  each land cover  type; t is  the
number  of  days  since  the  last  snowfall; A and B are  con-
stants set to 0.94 and 0.58, respectively for the snow accumu-
lation period, i.e., from October to February, and set to 0.82
and 0.46 otherwise;  is the background albedo, and  is
the  fractional  snow  cover.  Snow  cover  is  set  equal  to  1.0
when SWE meets or exceeds the prescribed threshold SWE.
Otherwise,  snow  cover  is  parameterized  using  the  follow-
ing equations: 

R0 = Seqv/Sup , (5)
 

fc = 1.0− [e(−P0×R0)−R0e(−p0)] , (6)

JULY 2022 LIU ET AL. 1081

 

  



S up

S eqv P0

where  is  a  prescribed  threshold  SWE  in  meters  that
implies  100  percent  snow  cover  for  each  land  cover  type;

 is  SWE  in  meters;  and  is  a  constant  shape  para-
meter of the distribution function of snow cover (set to 2.6
in the Noah default scheme).

The  Noah  LSM  default  albedo  scheme  (Livneh  et  al.,
2010)  imposes  a  seasonally-variable  decay  in  albedo  from
its initial fresh snow value. The decay is slower (faster) dur-
ing the accumulation (ablation) season [Eq. (3)], with an ini-
tial  maximum snow albedo  value  that  is  usually  very  high
[Eq. (2)]. Apart from snow surface albedo, this scheme also
includes the influence of ground surface albedo through the

S up

S up

fractional snow cover [Eq. (4)], which leads to some short-
comings. For example, snow cover in the Noah LSM is calcu-
lated  using  an  areal  depletion  threshold  ( ),  which
assumes  partial  snow  cover  when  SWE  is  below  the
threshold  [Eqs.  (5)  and  (6)].  Otherwise,  snow  cover  is  set
equal to 1.0. The parameter  for non-forest land cover is
fixed at 0.02 m. In summary, the areal snow cover fraction
remains at  1.0,  and the albedo is  only determined by snow
age  while  the  snow is  thicker  than  0.1  m (Ek  et  al.,  2003;
Livneh et al., 2010). This approach is independent of the influ-
ence of ground albedo. Therefore, regarding the greater sensit-
ivity to SD than snow cover for the snow accumulation and

Table 1.   Information of in situ China Meteorological Administration (CMA) and Chinese Academy of Sciences (CAS) stations.

Station Type Station number Name ID Latitude (°N) Longitude (°E) Elevation (m)

CMA 1 Mangya 51886 38.25 90.85 2945.0
2 Daqaidam 52713 37.85 95.37 3174.0
3 Gangca 52754 37.33 100.13 3302.0
4 Golmud 52818 36.42 94.90 2807.6
5 Doulan 52836 36.30 98.10 3189.0
6 Xining 52866 36.62 101.77 2295.2
7 Shiquanhe 55228 32.50 80.08 4278.6
8 Baingoin 55279 31.37 90.02 4700.0
9 Nagqu 55299 31.48 92.07 4507.0
10 Xainza 55472 30.95 88.63 4672.0
11 Xigaze 55578 29.25 88.88 3836.0
12 Lhasa 55591 29.67 91.13 3648.9
13 Tingri 55664 28.63 87.08 4300.0
14 Lhunze 55696 28.42 92.47 3860.0
15 Pagri 55773 27.73 89.08 4300.0
16 Tuotuohe 56004 34.22 92.43 4533.1
17 Zadoi 56018 32.90 95.30 4066.4
18 Qumarleb 56021 34.13 95.78 4175.0
19 Yushu 56029 33.00 96.97 3716.9
20 Madoi 56033 34.92 98.22 4272.3
21 Darlag 56046 33.75 99.65 3967.5
22 Zoige 56079 33.58 102.97 3441.4
23 sog 56106 31.88 93.78 4024.0
24 Dengqen 56116 31.42 95.60 3873.1
25 Qamdo 56137 31.15 97.17 3315.0
26 Sertar 56152 32.28 100.33 3894.0
27 Barkam 56172 31.90 102.23 2664.4
28 Songpan 56182 32.67 103.60 2850.7
29 Batang 56247 30.00 99.10 2589.2
30 Nyingchi 56312 29.57 94.47 2991.8
31 Deqen 56444 28.45 98.88 3319.0
32 Jiulong 56462 29.00 101.50 2925.0

CAS 33 QOMS 28.36 86.95 4276.0
34 SETS 29.77 94.73 3326.0
35 NASDE 33.39 79.70 4264.0
36 MASWE 38.41 75.05 3668.0
37 SHSEX 33.22 88.83 4947.0
38 MAQU 33.92 102.10 3440.0

Note: Qomolangma station (QOMS), Southeast Tibet station (SETS), Ngari station (NASDE), Muztagh Ata station (MASWE), ShuangHu station
(SHSEX), MAQU station (MAQU)
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ablation  periods,  considering  SD  explicitly  in  the  Noah
LSM albedo scheme may be a better choice.

To improve the Noah LSM albedo scheme, we used the
snow  albedo  parameterization  proposed  by  Oerlemans  and
Knap  (1998),  which  takes  into  account  SD  and  snow  age
explicitly, and includes an application specific to glaciers: 

α(i)
snow = αfirn+ (αfreshsnow−αfirn)e( s−i

t∗ ) , (7)
 

α(i) = α(i)
snow+ (αice−α(i)

snow)e( −d(i)
d∗ ) , (8)

 

d(i)−d(i−1) ⩾ 0.02 , (9)

αfirn

αfreshsnow αice

α(i)

where s is the last day with snowfall prior to day i, and s–i,
thus  giving  the  snow  age  in  days.  The  parameters ,

,  and  are  the  albedos  of  firn,  fresh  snow,  and
bare ice, respectively; d is SD in meters; t* and d* are scal-
ing parameters for the snow age and SD, respectively;  is
actual albedo on day i.  Equation (9) determines whether or
not snowfall has occurred.

αice

Land  cover  in  the  TP  is  fragmented  (Fig.  1)  and  the
snow-free  surface  albedo  depends  on  land  cover  and  loca-
tion.  Our  first  change to  the  albedo scheme was to  replace

 in Eq. (8) with the snow-free albedo appropriate to the
land cover at a given location. This change accounts for the
large  differences  in  reflected  radiance  between  different
land cover types (Dong and Li, 1994; Hu et al., 2019). For
example, the reflectance of a water body is much lower than
the  reflectance  of  bare  soil  or  a  sparsely  vegetated  surface
(Menenti et al., 1989). 

2.3.     Model Configuration and Experiment Design

The  non-hydrostatic  WRF  model  (Skamarock  et  al.,
2008),  version  3.7.1  (released  August  2015),  was  used  for

this study with a horizontal resolution of 25 km. The WRF
experiments were configured for a single large domain, with
an  upper-right  boundary  at  46°N  and  110°E,  and  a  lower-
left  boundary  at  20°N  and  60°E,  to  fully  include  regions
important to the Indian monsoon and westerlies. We ran the
model for 10 days and 18 hours starting at 0800 Beijing Stand-
ard  Time  (LST)  on  5  March  2017,  which  was  at  least  one
day before  snowfall.  This  temporal  gap  allowed the  model
ample time to stabilize and rapidly converge against a physic-
ally  dynamic  balanced  state.  The  model  initial  and  bound-
ary  conditions  were  provided  by  the  European  Centre  for
Medium Range Weather Forecasts (ECMWF) reanalysis data-
set (ERA-Interim) provided at a 0.25° spatial resolution and
six-hour temporal resolution. The model was configured to
use the Noah LSM to describe all land-atmosphere interac-
tions; the Lin scheme to represent microphysical processes;
the RRTM scheme to describe longwave radiation; the Dud-
hia  scheme  to  represent  shortwave  radiation;  the  YSU
scheme  to  describe  the  planetary  boundary  layer,  and  the
Kain-Fritsch cumulus parameterization scheme for convect-
ive clouds.

αfirn

αfreshsnow t∗ d∗

Four experiments were carried out with WRF, each imple-
menting a different albedo parameterization scheme (Table 2).
The  default  Noah  LSM  albedo  scheme  [Eqs.  (2)−(4)]  was
implemented in the control experiment (EXP1), with hourly
model  output.  In  the  second  experiment  (EXP2),  the
improved albedo scheme [Eqs. (7)−(9)] was implemented in
WRF  +  Noah  LSM,  using  remote  sensing  products
(MOD09A1,  MOD09CMG,  and  MYD09CMG)  and  sparse
in  situ  observations  of  SD  to  accurately  estimate ,

, , , and bare ground albedo in the albedo paramet-
erization.  Although  the  WRF  model  simulation  has  model
errors  including  systematic  deviation  and  mode  integration
error  accumulation,  the  WRF  +  Noah  LSM  appears  to  be
able  to  verify  not  only  the  spatial  pattern  but  also  the

 

 

Fig. 1. Land cover types and in situ stations over the Tibetan Plateau and the surrounding regions; the legend number
indicates  the  land  cover  type  index,  with  the  associated  specific  description  to  the  right  of  each  index;  solid  red
circles represent the location of in situ stations with the station number near its position. For a description of station
numbers, see Table 1.
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observed values of SD at the sparse meteorological stations,
confirming the model’s performance of regional snow estim-
ates  (Liu  et  al.,  2019).  Therefore,  to  improve  WRF  model
albedo  estimates  during  the  snow  event,  the  modeled  SD
was  considered  to  generate  the  improved  albedo  scheme,
which  was  implemented  in  the  third  experiment  (EXP3).
The third experiment (EXP3) was similar to EXP2 but used
hourly estimates of SD from EXP1. Model results for EXP2
and EXP3 were output at six-hour intervals. To evaluate the
performance of the WRF + Noah LSM using the improved
albedo scheme, i.e., EXP2 and EXP3, we also considered res-
ults from our previous numerical experiments with WRF +
CLM, in which the more complex WRF + CLM albedo para-
meterization was used (Liu et al., 2019), referred to here as
EXP4. The first day was used for model spin-up.

Land cover and vegetation are important factors in the
snow event simulation through their influences on the estima-
tion  of  surface  albedo  and  the  interception  of  snowfall.  In
this study, the four experiments used the same default static
land surface products to define land cover and green vegeta-
tion  coverage.  The  default  land  cover  dataset  in  the  model
was  produced  by  the  United  States  Geological  Survey
(USGS),  using  multispectral  image  data  acquired  by  the
Advanced  Very  High  Resolution  Radiometer  (AVHRR)
from April 1992 to March 1993, and adopted the 24 classifica-
tion  categories  from  the  USGS.  The  default  green  vegeta-
tion  coverage  dataset  in  the  model  has  a  spatial  resolution
0.144°,  and  was  derived  by  Gutman  and  Ignatov  (1998)
using the AVHRR Normalized Difference Vegetation Index
(NDVI) from 1985 to 1990. 

2.4.     Estimation  of  parameters  for  the  improved  albedo
scheme

The albedo parameterization scheme is expanded to rep-
resent  albedo  as  a  function  of  SD,  snow  age,  snow-free
albedo, fresh snow albedo, firn albedo [Eqs. (7)−(9)]. Snow
depth (SD) and snow age were taken from ground observa-
tions  and  WRF  outputs.  Fresh  snow  albedo  and  snow-free
albedo  were  taken  from  data  retrieved  from  MODIS.  Firn
albedo and the scales for snow age and SD were estimated

from nonlinear fitting. Based on the WRF + Noah LSM, the
expanded albedo scheme was used in EXP2 and EXP3. 

2.4.1.     Estimation of snow free and fresh snow albedo

The  MOD09A1  and  MCD12Q1  products  from  2017
were  used  to  determine  snow-free  albedo  and  fresh  snow
albedo. More specifically, these data were used:

(1)  Broadband  albedo  was  calculated  from  the
MOD09A1 dataset and Eq. (1) for each pixel.

(2)  Pixels  with  MODIS  retrieved  albedo  greater  than
0.7 and lower than 0.3 were classed as fresh snow and snow
free,  respectively.  Thus  distributions  of  fresh  snow  and
snow-free albedo were assigned to each specific land cover
type,  assuming  land  cover  types  as  mapped  in  the
MCD12Q1 product.

αfreshsnow

αsnowfree

αice

(3)  The  third  quartile  of  the  distribution  of  MODIS
retrieved  fresh  snow  albedo,  selected  as  described  in  (2),
was  used  as  fresh  snow  albedo  [  in  Eq.  (7)]  for
each specific land cover type. Similarly, the third quartile of
the  distributions  of  snow-free  albedo  found  for  each  land
cover type in (b) was used for land cover specific ,
which we replaced with  in Eq. (8).

Taking  all  land  cover  types  together,  the  first  and  the
third  quartiles  of  the  fresh  snow albedo  are  0.71  and  0.84,
respectively (Fig. 2), and the first and third quartiles of the
snow-free albedo are 0.02 and 0.27, respectively. For simpli-
city,  the  third  quartile  values  for  the  two subsets  of  differ-
ent  land cover  types  were  averaged to  give  the  fresh  snow
albedo (0.79) and snow-free albedo (0.19), which were then
used  in  the  improved  albedo  parameterization  when it  was
implemented in the Noah LSM scheme. 

2.4.2.     Dependence of snow albedo on snow age

Surface  spectral  reflectance  from  the  MOD09CMG
product and hourly SD estimates from EXP1 were used to cal-
culate  the  parameters  needed  for  the  improved  albedo
scheme  [Eqs.  (7)  and  (8)]  in  EXP3.  The  in-band  reflect-
ances from the MODIS product were combined to estimate
the broadband albedo using Eq. (1). We combined the WRF
SD values with the albedo values calculated from the retriev-

Table 2.   Overview of the design of numerical experiments with the WRF.

Experiment
Land surface

physics Albedo parameterization

Data used to estimate
parameters in improved

albedo scheme
Land cover

type
Fractional vegetation

cover

EXP1 Noah Default Noah none default default
EXP2 Noah Improved albedo scheme Observed snow depth,

MOD09CMG and
MYD09CMG

default default

EXP3 Noah Improved albedo scheme Model snow depth and
MOD09CMG

default default

EXP4 CLM Default CLM none default default
EXP5 Noah Improved albedo scheme Model snow depth and

MOD09CMG
MCD12Q1 default

EXP6 Noah Improved albedo scheme Model snow depth and
MOD09CMG

MCD12Q1 CR algorithm (Carlson and
Ripley, 1997)

EXP7 Noah Improved albedo scheme Model snow depth and
MOD09CMG

MCD12Q1 GI algorithm (Gutman and
Ignatov, 1998)
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als  corresponding  to  the  time  closest  to  the  snowfall.  The
snowfall  time  was  extracted  from  the  hourly  WRF  output
for  EXP1.  As  SD  increases,  the  albedo  increases  for  shal-
low  snow  but  remains  constant  for  deep  snow  (where  the
albedo  is  already  high).  We  define  deep  snow  as  snow
where SD is at least 20 cm. Therefore, snow albedo is con-
sidered equal to the albedo retrieved from the MODIS data,
where the SD is at least 20 cm. The MODIS albedo for loca-
tions where the SD values from WRF (EXP1) are at least 20
cm  was  used  to  determine  and  ,  for  use  in  the  improved
albedo scheme in EXP3 [Eq. (7)].

αfirn

To determine the relationship between the ground obser-
vations of SD and albedo,  MODIS surface spectral  reflect-
ance  products  from  the  Terra  (MOD09CMG)  and  Aqua
(MYD09CMG) platforms were used in the improved albedo
scheme for EXP2. Similar to EXP3, where ground observa-
tions of SD are at least 20 cm, the albedo from MODIS was
used for  and t* in the improved albedo scheme [Eq. (7)]
for EXP2. 

2.4.3.     Dependence of albedo on SD

Spatial  variability  in  SD  and  fragmentation  of  snow
cover  immediately  after  snowfall  are  both  high  for  this
snow event. The modeled SD and MODIS retrieved albedo
during the modeled snowfall are shown in Fig. 3. It is clear
that  albedo  is  less  than  0.7  for  a  large  range  of  SD estim-
ates  (values  from WRF),  with  a  wide  range  of  values.  For
example, albedo corresponding to a SD greater than 100 cm
varies between 0.1 and 0.75 at higher elevations in the Him-
alayas,  which  illustrates  that  the  modeled  snowfall  is  actu-
ally  a  snowmelt  process  in  this  complex  terrain  region
(Fig. 3). In these conditions, the difference may be attribut-
able  to  the  difference  in  spatial  resolution  between  the
MODIS (500 m × 500 m) and WRF (25 km × 25 km) data,

from which the albedo and SD were taken. The different resol-
utions mean that the highly variable surface types and eleva-
tion are captured to different degrees in the two datasets. It
is concluded that the coarse grid resolution WRF generally
overestimates SD for the high elevations in the Himalayas.
We,  therefore,  used  SD  values  from  WRF  only  where  the
estimates were less than 100 cm to determine d* for use in
the  improved  albedo  scheme  [Eq.  (8)]  in  EXP3.  We  con-
sidered snow albedo equal to the fresh snow albedo during
the  snowfall  event.  The  ground  observed  SD  values  were
used to estimate d* in the improved albedo scheme [Eq. (8)]
in EXP2 during snowfall.

αfreshsnow αsnowfree αfirn

The steps to estimate the albedo-dependent parameters
(i.e., , , , t*,  and d*)  in  the  improved
albedo parameterization scheme are shown in Fig. 4. The val-
ues used for these parameters in EXP2 and EXP3 are listed
in Table 3. Our value for firn albedo in EXP2 is 0.51, which
is  similar  to  values  from other  studies,  e.g.,  0.53  in  Oerle-
mans and Knap (1998) and 0.5 in Yang et al. (2013), but is
different than that used in EXP3 (Table 3). 

2.5.     Evaluation of the Model’s Performance

To assess the performance of the WRF when applying
various  albedo  parameterization  schemes,  we  compared
field observations of near-surface air temperatures and SWE
from 32 CMA stations, albedo values from 6 CAS stations,
and  MODIS  retrieval  products  with  the  model’s  estimated
values.  At  local  solar  noon  in  Lhasa  (1400  LST,  LST  =
UTC + 8 h), the observed albedo value is closer to the Lam-
bertian albedo described by the WRF model when coupled
with LSMs. Thus, we used albedo observations at 1400 LST
to  evaluate  the  model  estimated  albedo.  The  root  mean
square error (RMSE), mean absolute deviation (MAD), tem-
poral correlation coefficient (CC), spatial correlation coeffi-

 

 

Fig. 2. Box plot of broadband albedo higher than 0.7 and lower than 0.3 in various land cover indexes (LU index),
the first and third quartile values are marked beside each box.
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δcient (SCC), and relative difference ( ) were used to evalu-
ate the model’s performance [Eqs. (10)−(13)]. The calcula-
tion  of  the  SCC  follows  that  of  the  CC,  but  areas  are
weighted by the sine of the latitude. Weighting is also per-
formed appropriately  for  unequally  spaced grids.  The SCC
was  calculated  in  the  region  from  65°E  to  106.8°E,  and
from 25°N to 40.8°N, for 10752 grids in total. Specifically:
 

RMSW =

√
1
N

∑N

j=1

(
X( j)

p −X( j)
o

)2
, (10)

 

MAD =
1
N

∑N

j=1

∣∣∣∣X( j)
p −X( j)

o

∣∣∣∣ , (11)
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(
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o −Xo

) (
X( j)

p −Xp

)
√∑N

j=1

(
X( j)

o −Xo

)2∑N

j=1

(
X( j)

p −Xp

)2
, (12)

 

δ( j) =
X( j)

p −X( j)
o

X( j)
o

×100 , (13)

X( j)
p X( j)

o

Xp Xo

δ( j)

where N is  the  total  number  of  observed or  simulated  data
(N = 10 when evaluating the performance of albedo estim-
ates at one station, and N = 40 when evaluating the perform-
ance  of  near-surface  air  temperature  estimates  at  one  sta-
tion);  and  are the modeled and observed values at
timestep j,  respectively;  and  are  the  mean  of  the
modeled and observed values, respectively;  is the relat-
ive difference at timestep j in units of percentage. 

3.    Results
 

3.1.     Near-surface air temperature

We assessed the air temperature calculated by the WRF
using the different albedo parameterization schemes by com-
paring  it  against  CMA observations  (Fig.  5).  Compared  to
the ground observations, the air temperature in EXP1 has a
high RMSE. The highest RMSE for air temperature is from

 

 

Fig. 3. (a) Scatterplot of snow depth (SD) from EXP1 estimates and Terra MODIS albedo and (b)
spatial distribution of SD estimates from EXP1 during snowfall.

1086 AN IMPROVED SNOW ALBEDO PARAMETERIZATION SCHEME VOLUME 39

 

  



EXP2, 0.6°C higher than the RMSE for EXP1, and the CC
between  the  model  calculated  air  temperature  and  the
ground observations is also lower for EXP2 than for EXP1
(CC = 0.66 for EXP2). The RMSE for EXP3 is 0.7°C lower
than for EXP1, with a CC value of 0.71. The lowest RMSE
corresponds  to  EXP4,  0.2°C  lower  than  for  EXP3,  which
also  has  the  highest  CC  (0.75).  The  MAD  for  all  experi-
ments (Fig. 5) shows similar results. For EXP1, the MAD is
8.2°C,  while  the  MAD  is  0.4°C  higher  for  EXP2  than  for
EXP1. The MAD for EXP3 and EXP4 is lower than EXP1
by 0.7°C and 0.9°C, respectively.

Albedo is the main determining factor for the net radi-
ation flux; thus, an overestimated albedo leads to an underes-
timated net radiation flux, which may contribute to the large
cold  bias  in  modeled  near-surface  air  temperatures  for  the
TP. The relatively simple representation of albedo in Noah
LSM leads to a strong cold air temperature bias of –8°C in
EXP1, while the improved albedo scheme in the Noah LSM
in  EXP3  and  the  CLM  (applying  the  very  complex  and
advanced albedo scheme in EXP4) reduces the cold air tem-
perature  bias  by  1°C.  These  results  illustrate  that  the  best-
modeled air  temperature estimates  may correspond to real-

Table 3.   Optimal values for parameters in the improved albedo parameterization scheme.

Experiments Fresh snow albedo Snow-free albedo Firn albedo d* (m) t* (d)

EXP2 0.79 0.19 0.51 0.023 0.42
EXP3 0.79 0.19 0.13 0.11   1.38

 

 

Fig. 4. Flowchart illustrating the steps to estimate the parameters for the improved albedo parameterization scheme
in EXP2 and EXP3 using MODIS albedo products and snow depth (SD).
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istic  albedo  estimates,  in  agreement  with  Meng  et  al.
(2018),  who  reduced  a  cold  near-surface  air  temperature
bias by 1.8°C in the WRF by updating the lower boundary
conditions  using  the  MODIS  time-varying  albedo.  The
improved albedo parameterization based on the Noah LSM
and MODIS albedo products was implemented in EXP2 and
EXP3. In EXP2, in situ observations of SD were used, and
the hourly SD calculated by EXP1 was used in EXP3. The
accuracy of the near-surface air  temperature calculations is
weakest in EXP2 because of the sparse and uneven distribu-
tion  of  in  situ  stations,  which  are  especially  sparse  in  the
northwestern  TP,  and  also  because  the  spatial  locations  of
the ground observations do not coincide with the WRF grid
locations  for  the  SD  calculations.  The  spatial  matching
between SD estimates in EXP1 and the albedo calculations
in EXP3 results in reasonably accurate model performance.
However,  the  method  assumes  that  the  SD  calculated  in
EXP1 is accurate. This improved performance in EXP3, relat-
ive  to  EXP1,  is  evident  by  the  much  lower  RMSE  and
MAD;  additionally,  the  cold  bias  in  EXP3  is  greatly
reduced,  indicating  a  comparable  performance  with  the
CLM. 

3.2.    Albedo

The albedo estimated at  1400 LST in  our  four  numer-
ical  experiments  was  evaluated  against  the  MODIS albedo
product by calculating the SCC (Fig. 6) and the relative differ-
ence (Fig. 7) between them. The MODIS albedo data (Fig. 6a)
shows  that  albedo  exceeded  0.5  for  a  large  fraction  of  the
TP, i.e., most of the TP is covered with snow with a snow-
belt  evident  in  the  southern  TP.  Fresh  snow  with  higher
albedo coexists with melting snow in the eastern and north-
western  TP.  Old  snow  with  lower  albedo  is  melting  along
the northern boundary of the TP, with sparse snow cover in
the  southeastern  TP.  The  difference  in  albedo  between  the
EXP1, EXP2, and EXP3 estimates and the MODIS retriev-
als show these experiments (EXP1, EXP2, and EXP3) overes-
timate  the  relatively  high  (low)  albedo  in  the  northwestern
(southeastern) TP, with local relative differences exceeding
80%.  At  the  same  time,  they  underestimate  the  relatively
high albedo in the snowbelt in the southern TP (Figs. 6b–d,

Figs.  7a–c).  Experiments  EXP1  and  EXP2  overestimate
albedo at the northern boundary of the TP, but this overestima-
tion  is  greatly  reduced  in  EXP3.  The  albedo  for  a  250  km
long  belt  centered  on  Namco  Lake  is  overestimated  in
EXP2,  with  the  mean  relative  difference  being  less  than
40%. The albedo in EXP4 is underestimated over nearly the
whole TP by 60% but is overestimated by more than 80% in
small regions in the southeastern TP and the southern Him-
alayas (Figs. 6e and 7d).

During  the  severe  snow  event,  the  SCC  between  the
EXP1  albedo  estimates  and  the  MODIS  data  is  between
0.31 and 0.46, significantly higher than EXP4. During the con-
tinued snowfall after 11 March, EXP2 and EXP3 featured a
higher  SCC  than  EXP1.  The  maximum  SCC  values  occur
on  13  March  and  are  0.53  and  0.5  for  EXP2  and  EXP3,
respectively.  On the  same day,  the  SCC for  EXP1 is  0.46,
and for EXP4, the SCC is less than 0.3. The SCC for EXP1,
EXP2, and EXP3 increases slightly through the snow event,
while  it  decreases  for  EXP4 (Fig.  6f).  Thus,  WRF simula-
tions  using  the  improved  albedo  scheme  lead  to  improved
estimates of albedo over the whole TP. In contrast, the config-
uration  of  WRF  +  CLM  significantly  underestimates  the
albedo evidenced by an SCC less than 0.4.

The observed albedo at  1400 LST at  six  CAS stations
was  used  to  evaluate  the  modeled  albedo  at  specific  grid
points (Fig. 8). The model performs differently at CAS sta-
tions characterized by different land cover and terrain (Fig.
8a).  At  NASDE  and  SETS,  where  no  snowfall  occurred,
EXP1,  EXP2,  and  EXP3  result  in  a  high  RMSE  (>  0.5),
while  for  EXP4,  the  RMSE  =  0.25.  However,  the  CC  for
EXP4 is  comparable with EXP3 and was much lower than
EXP1  and  EXP2  at  NASDE.  All  experiments  result  in  a
large, negative CC at SETS. Snowfall occurred at MASWE,
QOMS, SHSEX, and MAQU, where  the  RMSE is  low for
all  experiments,  except for MASWE. A relatively high CC
is  achieved  for  all  experiments  at  SHSEX and  MAQU.  At
MASWE,  the  RMSE  for  the  control  experiment,  EXP1,  is
slightly lower than the other experiments. The model configur-
ations using the improved albedo scheme (EXP2, EXP3) res-
ult in a slightly lower RMSE and a significantly higher CC,
showing  a  positive  correlation.  The  lowest  RMSE  at

 

 

Fig.  5. (a)  RMSE (units:  °C),  temporal  correlation coefficient  (CC) and (b) mean absolute deviation (MAD, units:
°C)  for  near-surface  air  temperature,  comparing  model  estimates  from  EXP1,  EXP2,  EXP3,  EXP4,  and  ground
observations.
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Fig.  6. (a)  MODIS  surface  albedo  product  and  albedo  difference  between  numerical  estimates  and  the  MODIS
product on 11 March. (b) EXP1 – MODIS, (c) EXP2 – MODIS, (d) EXP3 – MODIS, and (e) EXP4 – MODIS; (f)
the  spatial  correlation  coefficient  (SCC)  between  model  estimates  and  MODIS  albedo  during  the  severe  snow
event (X-axis denotes the day in March 2017).

 

 

Fig.  7. The  relative  difference  between  the  albedo  calculated  in  the  model  experiments  and  the  MODIS  albedo
product on 11 March for (a) EXP1; (b) EXP2; (c) EXP3; (d) EXP4.
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MASWE  is  observed  in  EXP  4  but  with  a  large,  negative
CC. At QOMS, EXP3 results in the most accurate albedo, hav-
ing the lowest RMSE, and is the only experiment that corres-
ponds to a positive CC. At SHSEX, EXP2 and EXP3 result
in  an  RMSE that  is  slightly  lower  than  the  control  experi-
ment,  EXP1,  and  all  three  share  similarly  high  CC  values
(0.76–0.83).  The  least  accurate  albedo  at  SHSEX is  calcu-
lated  using  WRF +  CLM (EXP4),  for  which  the  RMSE is
high, and the correlation is negative. At MAQU, EXP3 per-
forms well and gives albedo estimates comparable to the con-
trol  experiment,  EXP1  (with  a  similar  RMSE  and  CC),
while EXP2 results in a higher RMSE than in EXP1 along
with a slightly higher CC. In general, EXP3 performs well,
i.e.,  with  a  lower  RMSE and a  higher  CC than  the  control
experiment, EXP1. The highest RMSE (0.37) and CC (0.32)
are  from  EXP2.  The  lowest  RMSE  (0.25)  is  obtained  for
EXP4 but with a CC of nearly zero (Fig. 8b). 

3.3.    Snow water equivalent (SWE)

The  SD is  a  good  indicator  of  the  magnitude  of  snow
events,  but  it  is  dependent  on  snow  density  and  is  easily
affected  by  snow  compaction.  The  SWE  is  the  product  of
snow density multiplied by SD and is a more accurate indic-
ator of snow quantity. Snow water equivalent (SWE) observa-
tions at the CMA stations on the TP (Fig. 9) and in surround-
ing  regions  were  used  to  evaluate  the  accuracy  of  model
SWE estimates from 11–13 March 2017.

The snow event was captured in a large fraction of the
TP,  with  a  heavy snowbelt  (SWE > 6 mm) clearly  evident
and oriented in the NE – SW direction, with the most severe
snowfall  occurring  in  the  southern  TP  on  11  March.  The
snowfall moved north on 12 March and was observed over
a  large  area.  On  12  March,  daily  SWE  observations  show
that  the  intensity  and  extent  of  snowfall  decreased  sharply
in  the  southern  TP,  remained  reasonably  unchanged  in  the

 

 

Fig.  8. The  RMSE and temporal  correlation  coefficient  (CC)  between model  estimated  albedo from EXP1,  EXP2,  EXP3,
EXP4 and observations at each station (a) NASDE; (b) SETS; (c) MASWE; (d) QOMS; (e) SHSEX; (f) MAQU), and (g) its
average.
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central TP, and increased in the eastern TP, where the max-
imum SWE increased by 8 mm. On 13 March, the snowfall
continued to move north, and the intensity decreased in the
eastern and northeastern TP, where the observed daily SWE
was less than 3 mm.

The  SWE  estimates  from  EXP1  to  EXP4  (Fig.  10)
show  that  all  four  experiments  successfully  simulated  the
characteristics of the snowfall event, particularly the north-
ward movement from 11–13 March. The extent of the snow-
fall in the eastern, central, and southern TP was estimated suc-
cessfully over this period. However, all experiments overes-
timate the intensity and extent of the snowfall in the southeast-
ern  TP.  Compared  with  SWE  estimates  from  the  control
experiment  (EXP1)  (Fig.  10a),  EXP2  simulates  a  smaller
extent  for  the  snowfall  on  12−13  March,  although  larger
than that calculated for 11 March, with even heavier snow-
fall,  SWE  >  6  mm,  on  12  March  in  the  southeastern  TP
(Fig.  10b).  Experiment  three  (EXP3)  calculates  less  snow-
fall  than  EXP1,  except  in  the  northwestern  TP,  and  calcu-
lates a higher snowfall intensity in the heavy snowbelt, a smal-
ler  extent  for  the  snowfall  in  the  southeastern  TP,  and  a
higher  snowfall  intensity  in  the  eastern  TP  on  12  March
(Fig. 10c). A snowfall extent and SWE, similar to EXP3, is
calculated  for  EXP4  (see  section  2.3),  but  the  snowfall
extent in the southeastern TP is overestimated, and the SWE
is underestimated in  the  heavy snowbelt  area  on 11 March
(Fig. 10d). Compared with the SWE observations, EXP3 res-
ults  in  the  most  accurate  estimates  of  SWE  and  snowfall
extent for 11 March, including in the heavy snowbelt,  pos-
sibly due to the improved albedo scheme (Figs. 9 and 10).

A  deeper  analysis  of  the  four  experiments  requires  a
more  detailed  analysis  of  SWE  observations  from  11–13
March 2017 (Fig.  11a).  The maximum observed SWE was
53.3 mm in the southern TP and 48.5 mm in the eastern TP,
while the SWE was only 8.8 mm in the central TP. The sta-

tions  collecting  SWE  observations  on  the  TP  were  sparse
and unevenly distributed. To mitigate the impact of this spa-
tial  distribution  on  our  analyses,  we  defined  three  subre-
gions: East (E), with 105 stations, Middle (M), with 19 sta-
tions, and South (S), with 20 stations (Fig. 11a). Heavy snow-
fall occurred on 11–12 March, and we evaluated our model
experiments based on the maximum and mean SWE values
by subregion (Figs. 11b−c).

As shown in Fig. 11b, the maximum observed SWE is
51 mm on 11 March in the southern region and 26.9 mm on
12 March in the eastern region. In the middle region, the max-
imum observed SWE was less than 7 mm. The EXP1 estim-
ates of maximum SWE in the M and E regions were reason-
ably  close  to  observations.  The  relative  differences  were
34.6%  on  11  March  and  12.3%  on  12  March  in  the  M
region, 22 % on 11 March, and 22.6% on 12 March in the E
region. Differences were lower in the E region on 12 March
for EXP2 (4.5%) and EXP3 (12.5%) but were much larger
in the M region. Due to the improved albedo scheme, EXP3
gave the best estimate of the maximum SWE in the E region
on  11  March.  The  maximum SWE was  underestimated  by
only 0.16 mm, corresponding to a relative difference of less
than  1%.  These  results  provide  additional  evidence  of  the
advantages of implementing the improved albedo parameteriz-
ation.  In  the  E  region,  EXP4  significantly  underestimated
the maximum SWE on 11 March but overestimated it on 12
March, while it slightly underestimated the maximum SWE
(by  less  than  1.5  mm)  in  the  M  region.  All  four  experi-
ments  largely  underestimated  the  maximum SWE in  the  S
region. One possible explanation is that the modeled snow-
fall  area  is  displaced  relative  to  the  observations  (Figs.  9
and 10).

The  mean  SWE  was  overestimated  in  all  four  experi-
ments  in  the  E  and  M  regions  (Fig.  11c),  although  EXP4
underestimated the mean SWE by ~50% on 12 March in the
M region. Compared with the simple albedo scheme in the
control  experiment,  the  improved  albedo  scheme  has  the
potential to give higher estimates of daily snowfall amount
(see the discussion section for  further  details)  in  the E and
M regions. In the S region, the mean SWE was underestim-
ated  by  more  than  50%  on  12  March  in  all  four  experi-
ments  when the observed mean SWE was less  than 1 mm.
Snowfall in the S region is a rare event for this time of year,
but the model successfully captured the general spatial pat-
tern.  There are  differences in  the spatial  distribution of  the
snowfall  in  comparison  with  observations  from the  20  sta-
tions, which likely explains the difference in SWE between
the model and observations. Compared with the other experi-
ments,  EXP4  gave  the  largest  underestimation  of  mean
SWE (by 2.2 mm), with a relative difference that exceeded
35% on 11 March.

Overall,  the  improved  albedo  scheme  in  EXP3  calcu-
lates the spatial distribution of SWE similar to that in EXP4,
where the CLM advanced albedo scheme was applied. In addi-
tion, the calculations of SWE by EXP3 in the heavy snow-
belt,  and the maximum SWE values for the E region, were

 

Fig. 9. Daily ground observations of SWE.
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more accurate than those from EXP4. All four experiments
generally  underestimated  the  maximum and  mean  SWE in
the S region where the snowfall was severe. This result may
be attributed to the combined effect of differences between
the observed and modeled snowfall pattern and the scarcity
and sparseness of the 20 stations in the large and rugged S
region. 

4.    Discussion
 

4.1.    The performance of the improved albedo scheme

Near-surface air temperature, which drives snow accumu-
lation and melt, is a diagnostic in WRF that is largely con-
trolled  by  the  land  surface  temperature,  which  is  determ-
ined by the net radiation flux. It has been shown that air tem-
peratures from both model simulations, as well as from reana-
lysis datasets, are much lower than ground observed air tem-
peratures  in  the  TP  (Frauenfeld  et  al.,  2005; Gao  et  al.,

2011; Wang and Zeng, 2012; Ji  and Kang, 2013; Su et al.,
2013; Chen and Frauenfeld, 2014; Hua et al., 2014; Chen et
al., 2017). According to Chen and Frauenfeld (2014), the sig-
nificant  cold bias in near-surface air  temperature in the TP
could  be  due  to  poor  model  estimates  of  snow  cover  and,
therefore,  poor  representation  of  the  albedo  feedback.  To
improve the accuracy of land-atmosphere interaction estim-
ates,  Bao  and  Lyu  (2009)  added  solar  zenith  angles  to  the
albedo  scheme,  which  led  to  a  temperature  increase  of
1.2°C,  which  considerably  reduced  the  cold  bias  and
improved  the  representation  of  diurnal  ground  temperature
changes. Malik et al. (2014) pointed out that the Noah LSM
overestimated  snow  albedo  during  springtime  and  that  an
alternative albedo scheme improved the estimates of albedo,
SD, and snowmelt  rate  further  by considering the shape of
the  variogram  for  optically  thick  snowpacks.  This  new
scheme  from  Malik  et  al.  (2014)  yields  a  0.105  albedo
RMSE  when  applying  the  default  Noah  albedo  scheme,
which  is  reduced  to  0.088  when  applying  the  alternative

 

 

Fig. 10. Daily SWE estimates from numerical experiments (a) EXP1; (b) EXP2; (c) EXP3; (d) EXP4.
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albedo  scheme (a  relative  improvement  of  16%).  Park  and
Park (2016) improved the winter albedo estimates by includ-
ing vegetation information, i.e., leaf and stem indices in the
albedo scheme, which decreased the albedo RMSE by 69%.
However,  in  our  work,  the  optimally  improved  albedo
scheme  reduces  the  RMSE  for  the  albedo  from  0.35  with
the default Noah scheme to 0.33 with the improved scheme,
a  relative  improvement  of  only  6%,  leading  to  a  temperat-
ure  RMSE  decrease  of  0.7°C.  Such  a  large  albedo  RMSE
and a small improvement in albedo and temperature estim-
ates in this study are closely related to the WRF model config-
uration’s  coarse  grid  resolution  (25  km),  leading  to  large
uncertainties compared with in situ observations on the topo-
graphically complex TP. In addition, apart from systematic
model deviations, the modeled temperature bias is related to
initial temperature errors and the integrated accumulation of
errors from the associated physics schemes. In the WRF, the
near-surface air temperature is diagnosed from ground temper-
ature,  which,  in  turn,  is  determined  by  the  surface  energy
budget.  This  budget  is  influenced  by  atmospheric  condi-
tions and weather conditions generated from shortwave and
longwave radiation, convective, microphysics, and land sur-
face parameterization schemes. The substantial temperature
bias  is  only  partially  reduced  by  the  LSM  changes.  The
remaining  temperature  bias  may  be  associated  with  the
model  initialization,  systematic  deviation,  and  integrated

error accumulation from shortwave and longwave radiation,
convective,  and  microphysics  schemes  that  cannot  be
excluded from coupled experiments. Therefore, in future stud-
ies,  offline  Noah LSM experiments  forced by observations
are  needed  to  accurately  quantify  the  simulation  error
caused  by  the  incomplete  snow  albedo  parameterization
scheme. Nevertheless, our improved albedo scheme outper-
forms the Noah default albedo scheme and presents compar-
able performance with the CLM in terms of air temperature,
albedo,  and  snow  estimates.  These  results  demonstrate  the
improved albedo scheme’s potential for modeling land-atmo-
sphere interaction during snow events.

Computational efficiency is an important consideration
in operational numerical weather prediction research. The cal-
culation  of  surface  parameters  in  Noah  LSM  is  aided  by
simple parameterization schemes, enabling fast calculations
and  low  computational  cost,  justifying  the  widespread  use
of the Noah LSM in current mainstream operational numer-
ical  weather  prediction  models  such  as  WRF  (Liu  et  al.,
2020; Thiruvengadam et al., 2020). In our study, we were sur-
prised  to  find  that  the  computational  efficiency  of  WRF
with  the  default  Noah  LSM  (EXP1)  was  5.5  times  that  of
the WRF with CLM (EXP4), despite the desirable outcome
that the CLM performs much better in land-atmosphere inter-
action  estimates.  The  high  computational  efficiency  is  a
strong  motivating  factor  to  pursue  improving  the  perform-

 

 

Fig.  11. (a)  Observations  of  total  SWE  from  11  through  13  March  2017  in  E  (East),  M  (Middle),  and  S  (South)
regions,  (b)  regional  maximum  SWE,  and  (c)  regional  mean  SWE  from  11–12  March  2017  in  East,  Middle,  and
South regions.
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ance of WRF by applying Noah LSM. The performance of
the WRF coupled with  the  Noah LSM is  greatly  improved
by applying an improved albedo scheme which additionally
considers snow depth and the satellite-retrieved albedo; this
approach shares similar high computational efficiency with
the  default  Noah  LSM and  comparable  modeling  accuracy
to that of the CLM.

This  study  focuses  on  the  methodology  needed  to
develop  an  advanced  albedo  parameterization  scheme,  to
improve the performance of the WRF for severe snow estima-
tion.  The development of  an advanced albedo scheme can-
not  be  separated  from  the  input  of  snow-related  variables,
e.g., snow age and depth, acquired from WRF’s land-atmo-
sphere coupling during just one snow event. Therefore, the
methodology is  based on only one severe snow event  over
the  TP.  Our  preliminary  results  demonstrate  that  the
improved  albedo  scheme  greatly  outperforms  the  default
Noah  LSM scheme  and  show its  strong  application  poten-
tial across the TP region. However, the performance improve-
ments  from  the  modified  albedo  scheme  are  not  universal
across  the  TP,  and should be studied further.  The intensity
of  snowfall  and  snowmelt  rate  over  the  TP  widely  varies
depending on the complex terrain and heterogeneous underly-
ing surfaces. These results justify the need for more coarse
(25 km) and nested fine (1–5 km) resolution trials,  applied
to more snow events over the TP, to assess the potential of
the  modified  scheme  to  downscale  simulations  character-
ized  by  different  snowfall  intensities  and  snowmelt  pro-
cesses. 

4.2.     Impact  of  real-time  land  and  vegetation  cover  on
the model’s performance

 

4.2.1.    Updating  land  cover  and  fractional  vegetation
coverage

Land  cover  has  significant  and  diverse  impacts  on
model performance. Some land surface properties, e.g., leaf
area index, surface albedo, roughness length, and FVC, are
closely  related  to  land  cover  and  are  assigned  in  the  WRF
based on land cover type. Changes in land cover bring about
changes in surface albedo, thus driving changes in the sur-
face energy budget that can affect the general circulation at
local  and  synoptic  scales.  Charney  (1975)  and  Charney  et
al. (1977) proposed an important biosphere-geophysics feed-
back mechanism. They demonstrated that overgrazing in the
sub-Saharan  belt  destroyed  surface  vegetation,  leading  to
higher surface albedo, ultimately leading to changes in the sur-
face energy balance and an apparent radiative heat sink. The
large  and  rapid  changes  in  albedo  during  snowfall  (snow-
melt cycles may have similar effects) are investigated here.
Kumar  et  al.  (2013)  noted  that  realistic  satellite-derived
FVC might  improve forecast  model  skills  for  air  temperat-
ure  and precipitation.  Yin et  al.  (2016)  used near-real-time
FVC  and  surface  albedo  to  improve  the  accuracy  of  the
Noah  LSM.  Zhang  et  al.  (2017)  noted  that  actual  FVC
affected air temperature calculations and suggested that the
actual land cover and FVC should be used in WRF.

The  default  land  cover  dataset  in  WRF  version  3.7.1
adopts the 24 classification categories of the USGS. This data-
set was produced using AVHRR multispectral images from
April  1992  to  March  1993.  To  facilitate  the  comparison
between the 24 categories of the USGS and the 17 categor-
ies of the MODIS IGBP, the default land cover dataset was
reclassified to 17 categories according to the land cover classi-
fication of IGBP (Fig. 12a). The default FVC dataset in the
WRF  is  produced  using  the  AVHRR  NDVI  from  1985  to
1990  (Fig.  12b).  In  recent  decades,  the  spatial  distribution
of green vegetation has changed over the TP in response to
climate variability. The TP goes through serious desertifica-
tion  in  the  north  and  northwest;  in  contrast,  green  vegeta-
tion expanded to the southeast due to the advection of warm
and moist air. These trends can be seen by comparing Fig. 1
and Fig.12.  Therefore,  the  WRF  default  land  cover  and
FVC dataset are out of date for this region and do not cap-
ture the current conditions. To investigate the effect of land
cover and FVC on the accuracy of the snow cover extent cal-
culated in WRF for the TP, three additional numerical experi-
ments,  EXP5,  EXP6,  and  EXP7,  were  carried  out  using
EXP3 as a starting point. An overview of parameters for all
experiments  is  listed  in Table  2.  In  EXP5,  we  updated  the
land cover product in WRF using MCD12Q1 in 2017 (Fig. 1).
In  EXP6,  we  used  the  same  land  cover  as  EXP5  and
updated  the  FVC using  the  high  spatial  resolution  MODIS
NDVI product (MOD13A3) in March 2017. Fractional vege-
tation coverage (FVC) was estimated by applying a simple
radiative transfer  model  and a  semi-empirical  formula [CR
algorithm, Eq. (14); Carlson and Ripley, 1997]. The frame-
work of EXP7 was similar to EXP6, but the FVC was estim-
ated using a pixel dichotomy model, assuming a linear rela-
tionship  between  NDVI  and  FVC [GI  algorithm,  Eq.  (15);
Gutman and Ignatov, 1998]. The two algorithms that estim-
ate FVC are: 

σ f 1 =

(
NDVI−NDVImin

NDVImax−NDVImin

)2

, (14)
 

σ f 2 =
NDVI−NDVImin

NDVImax−NDVImin
, (15)

σ f 1 σ f 2

NDVImax NDVImin

where  is the FVC estimated by CR algorithm;  is the
FVC estimated by GI algorithm;  and  are
the regional maximum and minimum NDVI, respectively.

Land cover and FVC affect the surface albedo and, there-
fore, affect the surface energy budget, influencing the quant-
ity  and  intensity  of  snow  events.  Large  differences  in  the
FVC  between  the  outdated  data  currently  implemented  in
the default WRF configuration and the updated CR and GI
retrievals  can  be  seen  in  the  TP  and  surrounding  regions
(Fig.  12).  The  mean  FVC  in  the  outdated  dataset  is  about
10% in the E and M regions and 15% in the S region. Using
the GI algorithm, the mean FVC is increased by more than
11% in the E and S regions and 7% in the M region. Using
the  CR  algorithm,  the  mean  FVC  is  decreased  by  about

1094 AN IMPROVED SNOW ALBEDO PARAMETERIZATION SCHEME VOLUME 39

 

  



3%–5% in the E, M, and S regions. It should be noted that
the CR algorithm is considered to be more accurate than the
GI algorithm for FVC retrieval (Jiang et al., 2006). Hong et
al. (2009) believed that it was still controversial which FVC
algorithm was most suitable for WRF. 

4.2.2.    Near-surface air temperature

Due to the significance of land use and FVC in coupled
land-atmosphere  interactions,  significant  increases  in  the
accuracy  of  near-surface  air  temperatures  calculated  in  the
WRF  were  obtained  when  updated  land  use  and  FVC
products  were  used  (Sertel  et  al.,  2010; De  Meij  and
Vinuesa, 2014; Schicker et al., 2016; Li et al., 2020; Yan et
al.,  2020).  The  RMSE,  temporal  CC,  and  MAD  between
ground observations and model estimations that applied the
real-time land and vegetation cover  data  are  shown in Fig.
13.  Compared with EXP3, EXP5 results  in air  temperature
estimates  of  similar  accuracy,  and EXP6 results  in  slightly
increased model skill, as evidenced by the lower air temperat-
ure,  RMSE,  MAD,  and  similar  CC  values.  The  results  of
EXP7 demonstrate a lower model skill than EXP3, which is
attributed  to  higher  RMSEs  of  air  temperature  and  MAD
and a lower CC value (Fig. 13). In recent decades, changes
in land cover have been limited. Still, changes in FVC have
been large in the east and southeast of the TP where CMA sta-
tions  are  denser,  causing  differences  in  the  accuracy  of  air

temperature  calculated  by  the  different  model  configura-
tions in EXP3, EXP6, and EXP7, and also explaining the sim-
ilar performance of EXP3 and EXP5. These differences are
also  related  to  the  different  algorithms:  the  CR  algorithm
appears to be the most appropriate to WRF with a potential
for accurate estimates of air  temperature in the eastern and
southeastern TP, possibly because the FVC error caused by
the  CR  algorithm  is  less  than  that  introduced  by  GI
algorithm (Jiang et al., 2006). 

4.2.3.     Albedo

The experiments using the updated land surface paramet-
ers result in spatial albedo patterns with similar accuracy to
those simulated in EXP3 and calculate reasonable albedo val-
ues for the heavy snowbelt. These experiments generally over-
estimate albedo in the snow-free case relative to the albedo
retrieved  from  satellite  data,  which  is  very  low,  for
example, less than 0.4 in the southeastern TP. The SCC for
the  model  calculated  and  satellite-derived  albedo  is  about
0.5 during snowfall events, slightly higher than during peri-
ods of no snowfall.

The default and updated land cover types are similar at
the  six  CAS stations,  except  at  NASDE,  where  the  default
land  cover  type  is  mixed  shrubs  and  grassland,  which  was
updated  to  the  bare  soil  or  sparse  vegetation  type.  The
default  FVC at  the  six  CAS stations  is  very  different  from

 

 

Fig. 12. (a) The distribution of default land cover types from April 1992 to March 1993 and (b) fractional vegetation
coverage from 1985 to 1990 in WRF, (c) real-time fractional vegetation coverage calculated using the CR algorithm,
and (d) using the GI algorithm.

JULY 2022 LIU ET AL. 1095

 

  



that in the updated datasets. The performance of WRF using
the  real-time  updated  land  and  vegetation  cover  data  was
investigated by calculating the albedo RMSE and temporal
CC  between  ground  observations  and  experimental  estim-
ates  (Fig.  14).  Compared  with  EXP3,  the  model  experi-
ments  using  real-time  updated  land  and  vegetation  cover
data  (i.e.,  EXP5,  EXP6,  and  EXP7)  result  in  no  improve-
ment  in  the  albedo  calculated  at  the  NASDE,  SETS,  and
MASWE stations (Fig. 14a–c), where poor model perform-
ance  was  discussed  earlier  regarding  our  previous  experi-
ments.  Also,  no  improvement  in  albedo  estimates  is  pro-
duced  at  the  QOMS station  by  using  the  updated  land  and
vegetation  cover  data  in  the  model,  although  EXP5  and
EXP6 reduced the albedo RMSE (Fig. 14d). Coarse model res-
olution, i.e., a 25 km simulation, is a potential reason for mis-
representing  the  underlying  heterogeneous  surface  condi-
tions. The results of EXP7, which used the updated land sur-
face  type  and  FVC  retrieved  with  the  GI  algorithm,  have
albedo estimates that are slightly more accurate than EXP3,
EXP5,  and  EXP6  at  the  SHSEX  station  (Fig.  14e).  This
means  that  the  real-time  land  and  vegetation  cover  is
equally  important  in  the  WRF model  to  estimate  albedo at
the  SHSEX  station.  The  experiments  EXP5,  EXP6,  and
EXP7,  reduce  the  RMSE  for  albedo  by  4%–13%  and
increase  the  positive  correlation  between the  model  albedo
estimates  and  observations  at  the  MAQU  station.  The  CC
increases  by  0.16  with  a  relative  improvement  of  36%  in
EXP7 and  by  0.24  with  a  relative  improvement  of  53% in
EXP5  and  EXP6  at  the  MAQU  station  (Fig.  14f).  In  gen-
eral, the improved land surface type and FVC data are neces-
sary  input  data  for  accurate  albedo  estimates  during  the
snow  event  using  the  WRF  model.  The  updated  land  sur-
face  parameters,  i.e.,  land  cover  and  FVC,  improve  the
model  skill  for  albedo  estimation,  reducing  the  RMSE  by
1%–4%. In general, the updated land cover data contributes
more to these improvements than the updated FVC through
CR or GI algorithm (Fig. 14g). 

4.2.4.     Snow water equivalent (SWE)

The updated land cover and FVC substantially mitigate
the  overestimation  of  SWE  in  the  southeastern  TP  seen  in

the experiments using the default land cover types and FVC
(Figs. 10c and 15). The narrow snowbelt is successfully simu-
lated in EXP7, while a relatively wide and sparsely covered
snowbelt  is  estimated  in  EXP5 and  EXP6.  Compared  with
EXP3,  the  experiments  using  the  updated  land  cover  and
FVC data perform better and mitigate the overestimation of
regional  mean SWE in  the  E region.  The  fifth  experiment,
(EXP5), which applied the updated land cover data, had the
most accurately modeled SWE results in the E region, redu-
cing the overestimation of mean SWE by 35% on 11 March
and by 4% on 12 March,  relative  to  the  experiments  using
the  default  land  cover  data  (Figs.  10c and 15).  The  model
skill for estimating mean SWE in the M region increases by
4%–6% in EXP7 but decreases by 25%–43% in EXP5 and
EXP6,  compared  to  EXP3.  Using  the  updated  land  cover
data and FVC does not result in more accurate estimates of
mean SWE in the S region during the severe snowfall event.
EXP7 performs better than EXP3, EXP5, and EXP6 in estim-
ating the maximum SWE in the E and S regions during peri-
ods of heavy snowfall. In the M region where the observed
maximum SWE is 6.3 mm, EXP5 and EXP6 reduce overes-
timation of the maximum SWE by 36%–41% on 11 March,
and EXP7 similarly  reduces the overestimation by 4.1 mm
(33% relative improvement) on 12 March, relative to EXP3
(Figs.  10c and 15).  In  general,  the  updated  land  cover  and
FVC  data  contribute  to  improvements  in  model  perform-
ance for SWE estimates. Still, it is unclear which is the best
approach and which is  the most  appropriate dataset  to best
optimize  the  simulation  of  land  surface  properties  in  the
WRF (see also Hong et al., 2009). 

4.3.    The  link  between  land  surface  parameters  and
estimation of boundary meteorological variables

Land  surface  parameters  in  the  WRF  +  Noah  LSM
affect the model simulation of snow events since they affect
the  net  radiation  flux  and  the  land-atmosphere  interaction
(Fig. 16). Albedo, an important factor for calculating net radi-
ation flux, dramatically changes during snowfall and snow-
melt.  Albedo  is  more  sensitive  to  SD  than  to  snow  cover.
Therefore, considering SD explicitly in the improved albedo
scheme is a better choice for improving the model’s perform-

 

 

Fig. 13. (a) RMSE (units: °C), temporal correlation coefficient (CC) and (b) mean absolute deviation (MAD, units:
°C)  for  near-surface  air  temperature,  comparing  model  estimates  from  EXP3,  EXP5,  EXP6,  EXP7  and  ground
observations.
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ance  in  estimating  albedo  and  air  temperature.  The
improved albedo scheme [Eqs. (7)–(9)] imposes a variation
in  albedo  from  fresh  snow  to  bare  ground,  revealing  that
albedo  decreases  with  snow  age  because  snow  meltwater
absorbs a proportion of the shortwave radiation. In contrast,
albedo strongly increases with SD over shallow snow but var-
ies only slightly over deep snow. The merit of the improved
albedo scheme for albedo estimates has been demonstrated
in the previous analysis.

Albedo is more accurately estimated in numerical experi-
ments where the improved albedo parameterization scheme
was applied. As a significant driver of land-atmosphere inter-
actions,  the  net  radiation  flux  determines  the  energy  and
water vapor exchange at the land-atmosphere interface. The
net  radiation  flux  drives  snowmelt  and  changes  the  snow-
melt  rate,  affecting  snow  age  and  SD  estimates.  However,
the  net  radiation  flux  also  influences  ground  temperature,

thus  impacting  near-surface  air  temperature.  The  near-sur-
face air  temperature is  diagnosed from ground temperature
and is one of the rain and snow discrimination factors in the
Noah  LSM.  Consequently,  numerical  experiments  where
the improved albedo parameterization is implemented have
the potential to provide improved estimates of albedo, near-
surface air temperature, and solid precipitation. Changes in
solid precipitation rates lead to changes in SD, thus contribut-
ing  to  improved  albedo  parameterization.  This  represents
potential feedback between albedo estimates made using the
improved albedo scheme and the SD estimates.

The  snowmelt  rate  affects  snow cover,  and  both  snow
cover  and depth  (SD) affect  surface  roughness  and surface
emissivity, leading to changes in the effectiveness of latent
heat  transport  through  air  turbulence.  This  interaction
impacts  the  net  radiation  flux  and  the  energy  partitioning
between latent  and sensible  heat  fluxes (Bowen ratio),  fur-

 

 

Fig. 14. The RMSE and temporal correlation coefficient (CC) between model estimated albedo from EXP3, EXP5, EXP6,
EXP7, and observations at each station (a) NASDE; (b) SETS; (c) MASWE; (d) QOMS; (e) SHSEX; (f) MAQU and (g) its
average.
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ther affecting energy and water vapor exchanges at the land-
atmosphere interface, thus affecting the accuracy of near-sur-
face air temperature and solid precipitation simulated in the
model.

Updating the land cover type and green vegetation frac-
tion leads to changes in surface characteristics such as sur-
face  roughness  and  emissivity,  and  background  surface
albedo (Gao et al., 2008), which affect the estimation of the
land  surface  energy  budget  and  the  partitioning  of  energy
into latent and sensible heat fluxes (Bounoua et al., 2002; Mat-
sui  et  al.,  2005; Bonan,  2008).  This  effect  further  impacts
the  surface  energy  balance  and  water  cycle.  For  example,
empirical evidence shows that a change from pasture land to
greenhouse  farming  leads  to  increased  albedo,  resulting  in
strong  negative  radiation  forcing  and  cooling  for  the
changed  area  throughout  the  year,  while  surrounding  areas
may  be  warming  (Campra  et  al.,  2008).  Fishman  et  al.
(1994) investigated the cooling effect of high albedo sandy
surfaces  and found a  difference in  daytime air  temperature
between sandy surfaces and their surroundings of 1°C–2°C,
associated  with  an  albedo  difference  of  approximately  0.4.
Nair  et  al.  (2007)  further  noted  that  shortwave  radiation
fluxes are higher after clearing native vegetation for agricul-
tural purposes.

Green  vegetation  is  a  key  factor  for  calculating  snow
redistribution  because  it  can  alter  the  near-surface  wind
speed (Li et al., 2000). The characteristics and spatial distribu-
tion of  green vegetation determine the evolution of  the SD
spatial  distribution (Essery and Pomeroy,  2004; Yan et  al.,
2019).  Near  real-time changes  in  FVC affect  the  evolution
of radiation transfer between the vegetation and the ground,
changing the estimated net radiation flux. Therefore, updat-
ing the land cover type and FVC affects the accuracy of the
near-surface air temperature, albedo, and solid precipitation
simulated in the model during the snow event. 

5.    Conclusions

The  albedo  parameterization  scheme  implemented  in
WRF + Noah LSM was investigated by simulating a severe
snow  event  in  March  2017  in  the  TP.  The  default  albedo
scheme in Noah LSM considers snow cover and snow age.
We  developed  and  evaluated  an  alternate  parameterization
that  considers  SD,  representing  the  improved  albedo
scheme presented  in  this  study.  We used  the  observed  and
modeled  SD,  MODIS  surface  reflectance,  and  albedo
products  to  retrieve  the  parameters  required  for  the
improved albedo scheme.  In our study,  the performance of

 

 

Fig. 15. SWE estimates in EXP5 (a, d), EXP6 (b, e), and EXP7 (c, f); The left column shows SWE estimates on 11
March, and the right column shows SWE estimates on 12 March.
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the  WRF +  Noah  LSM,  with  the  improved  albedo  scheme
was  implemented  and  was  compared  with  that  of  WRF  +
CLM  and  that  of  WRF  +  Noah  LSM,  with  the  default
albedo scheme implemented. The default land surface para-
meters  (land  cover  and  FVC)  are  out  of  date  in  the  WRF,
and these parameters have a significant effect on the model
calculations  of  albedo.  Additional  experiments  were  there-
fore  carried  out,  which  updated  the  land  cover  and  FVC
data that  were used,  and the impact  on the accuracy of  the
modeled air temperature, albedo, and SWE was discussed.

The spatial pattern of air temperature is successfully sim-
ulated,  although  air  temperature  is  generally  underestim-
ated, potentially attributable to the simplified representation
of  albedo  in  the  model.  Using  the  WRF  with  the  default
Noah  LSM  albedo  parameterization,  the  accuracy  of  the
modeled  air  temperature  is  much  lower,  and  the  mean
albedo is  greatly  overestimated in  the E and SE regions of
the  TP.  The  complex  advanced  albedo  parameterization  in
the  CLM,  which  considers  solar  zenith  angle,  effective  ice
grain size, and pollutants, increases the model skill in estimat-
ing albedo, resulting in the lowest RMSE and MAD for air
temperature  across  all  experiments.  The  improved  albedo
scheme, using model estimates for SD, mitigates the overes-
timation  of  mean  albedo  in  the  E  and  SE  region  and
increases  the  albedo  CC  and  SCC,  thereby  reducing  the
RMSE and MAD for air temperature by 0.7°C. The scheme
strongly  reduces  the  cold  bias  (by  1°C)  in  air  temperature
estimates,  achieving  comparable  accuracy  to  that  of  the
WRF + CLM. The improved scheme, using modeled SD, res-
ults in a higher CC and SCC for albedo than was achieved
using the WRF + CLM. The sparse and uneven distribution
of ground stations and differences between the observed SD
spatial  patterns  and  those  simulated  by  the  model  means

that the improved albedo scheme, when implemented using
the observed SD, results in inaccurate estimations for air tem-
perature and albedo.

The  WRF  +  Noah  LSM,  with  the  improved  albedo
scheme  implemented,  results  in  a  higher  CC  and  SCC
between  model  estimates  and  satellite  retrievals  of  albedo,
leading to an accurate spatial distribution of model SWE in
the heavy snowbelt (SWE > 6 mm) and also to accurate estim-
ates of  maximum SWE in the E region.  The WRF + CLM
underestimates albedo for a large fraction of the TP, includ-
ing the heavy snowbelt, and underestimates the regional max-
imum  SWE  but  reasonably  estimates  regional  mean  SWE.
The  maximum  SWE  in  the  S  region  during  periods  of
severe  snowfall  is  generally  underestimated  in  all  experi-
ments  because  of  the  sparse  and  uneven  distribution  of
ground stations in the southern TP and differences between
the  spatial  patterns  in  the  observed  and  modeled  snow
cover.

The default land cover and FVC data in WRF are out of
date, but these data significantly impact model estimates of
air  temperature,  albedo,  and  SWE.  Using  updated  land
cover and FVC data improves model performance in simulat-
ing  the  severe  snow  event,  reducing  the  albedo  RMSE  by
1%–4%.  Using  the  updated  land  cover  data  has  a  larger
impact  on  albedo  estimates  than  using  updated  FVC  data,
and  the  choice  of  FVC  retrieval  algorithm  has  a  large
impact on the accuracy of the retrieved FVC data. The CR
algorithm outperforms the GI algorithm in the WRF model
on  air  temperature  estimates.  The  optimum  choice  of  an
FVC retrieval algorithm to retrieve data for inclusion in simu-
lations  is  unclear  in  terms  of  the  accuracy  of  air  temperat-
ure, albedo, and SWE estimates in the TP.

 

 

Fig.  16. The  effect  of  implementing  the  improved  albedo  scheme  and  using  the  updated  land  cover  type  and
fractional  vegetation  coverage  on  model  estimates  of  near-surface  air  temperature,  albedo,  and  solid  precipitation
during the snow event.
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