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ABSTRACT

Cloud Masking is  one of the most  essential  products for  satellite  remote sensing and downstream applications.  This
study  develops  machine  learning-based  (ML-based)  cloud  detection  algorithms  using  spectral  observations  for  the
Advanced  Himawari  Imager  (AHI)  onboard  the  Himawari-8  geostationary  satellite.  Collocated  active  observations  from
Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) are used to provide reference labels for model development
and  validation.  We  introduce  both  daytime  and  nighttime  algorithms  that  differ  according  to  whether  solar  band
observations  are  included,  and  the  artificial  neural  network  (ANN)  and  random  forest  (RF)  techniques  are  adopted  for
comparison. To eliminate the influences of surface conditions on cloud detection, we introduce three models with different
treatments  of  the  surface.  Instead  of  developing  independent  ML-based  algorithms,  we  add  surface  variables  in  a  binary
way that  enhances  the  ML-based algorithm accuracy by ~5%.  Validated  against  CALIOP observations,  we find  that  our
daytime  RF-based  algorithm  outperforms  the  AHI  operational  algorithm  by  improving  the  accuracy  of  cloudy  pixel
detection  by  ~5%,  while  at  the  same  time,  reducing  misjudgment  by  ~3%.  The  nighttime  model  with  only  infrared
observations is also slightly better than the AHI operational product but may tend to overestimate cloudy pixels. Overall,
our ML-based algorithms can serve as a reliable method to provide cloud mask results for both daytime and nighttime AHI
observations.  We  furthermore  suggest  treating  the  surface  with  a  set  of  independent  variables  for  future  ML-based
algorithm development.
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Article Highlights:

•  Cloud  mask  algorithms  based  on  machine  learning  (ML)  techniques  are  developed  for  AHI  onboard  the  Himiwari-8
satellite.

•  The accuracy for cloud detection can be improved by ~5% by appropriately including surface variables.
•  Both our daytime and nighttime RF-based algorithms work slightly better than the current AHI operational product.

 

 
 

 1.    Introduction

Among various atmospheric components, clouds cover
almost two-thirds of the Earth and play an important role in
the evolution of weather and climate, especially in determin-
ing the global radiative budget (Sakaida et al., 2006; Baker
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and Peter, 2008; Geoffroy et al., 2008; Dessler, 2010). Satel-
lite-based instruments are one of the most unique and power-
ful tools to observe global cloud distributions and variations.
Cloud  detection  (i.e.,  cloud  mask  product)  is  an  essential
step  for  downstream  satellite  applications,  e.g.,  cloud  and
aerosol property retrievals, data assimilation, and further sci-
entific analyses.

For  spaceborne  spectral  radiometers,  cloudy  and  clear
pixels can be distinguished by the different solar reflectance
or  thermal  emissions  from  cloudy  and  cloud-free  atmo-
spheres, e.g., clouds normally result in lower brightness tem-
peratures  (BT)  in  thermal  infrared  bands  and  higher
reflectance  (R)  in  solar  bands  (Rossow  and  Garder,  1993;
Ackerman et al.,  1998; Saunders and Kriebel, 1988). Thus,
threshold and statistical  methods are traditional  approaches
for cloud detection that use multispectral radiometers. Thresh-
old methods are developed by setting thresholds for R, BTs,
and  BT  differences  (BTDs)  (Saunders  and  Kriebel,  1988;
Key et al., 1990; Wylie et al., 1994; Ackerman et al., 1998),
and are widely used for current radiometer operational algo-
rithms. Operational cloud products from the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) (Ackerman et al.,
1998; Platnick  et  al.,  2003; Frey  et  al.,  2008; Baum et  al.,
2012),  the  Advanced  Very  High-Resolution  Radiometer
(AVHRR) (Stowe et al., 1999; Dybbroe et al., 2005) and oth-
ers, are all based on threshold methods.

Meanwhile,  machine  learning  (ML)  techniques  have
also been widely considered for cloud detection (Visa et al.,
1991; Heidinger et al., 2012; Chen et al., 2018). As a typical
binary  classification  involving  multivariate  analysis,  cloud
detection is well suited for ML techniques. ML-based algo-
rithms can learn the hidden relationships of different objects,
avoiding  artificially  defined  thresholds  or  conditions  for
matching  the  spectral  pattern.  Supervised  ML methods  are
mostly applied in cloud detection algorithms based on various
satellite measurements, such as the Bayesian algorithm (Hei-
dinger  et  al.,  2012; Karlsson  et  al.,  2015),  random  forests
(RF) (Thampi et al., 2017; Zhang et al., 2019; Wang et al.,
2020), support vector machine (Ishida et al., 2018), artificial
neural  network  (ANN) (Hughes  and  Hayes,  2014; Chen  et
al., 2018), and others. Those models generally use observed
radiative variables and their combinations as the input data
for training. Image data have also been considered for cloud
detection,  which account  not  only for  spectral  information,
but  also  cloud  textural  characteristics  (Bai  et  al.,  2016; Le
Goff et al., 2017), and have yielded favorable results as well.
With the advantages of onboard active instruments, some stud-
ies  use  collocated  lidar  or  radar  observations  as  reference
labels  to  determine  pixel  cloudiness  more  accurately,  e.g.,
the  Cloud-Aerosol  Lidar  with  Orthogonal  Polarization
(CALIOP)  (Heidinger  et  al.,  2012; Wang et  al.,  2020)  and
Cloud Profiling Radar (Gomis-Cebolla et al., 2020). Mean-
while,  theoretical  results  that  can  provide  full  atmospheric
conditions and corresponding simulated radiances have also
been used as efficient training datasets for ML-based model
development (Chen et al.,  2018). Due to its importance for

satellite applications and climate prediction, accurate cloud
detection is a worthy area for future research.

Apart from cloud spectral characteristics, the nature of
the Earth’s surface is another key factor that should be consid-
ered in algorithm development because of the significant spa-
tiotemporal variations in surface albedo and emission proper-
ties (Platnick et al., 2003). Currently, most ML-based cloud
detection models develop independent classifiers for different
surface types,  e.g., Heidinger et  al.  (2012) and Wang et al.
(2020). Some studies consider the surface by using additional
variables  as  input  features  (Poulsen  et  al.,  2020),  which
calls  to  question  how  surface  features  could  be  most  effi-
ciently  parameterized.  Thus,  it  is  still  an  open  issue  as  to
how  to  eliminate  the  influences  of  surface  differences  on
cloud detection algorithms and ultimately how to fully opti-
mize the cloud mask product.

The  Advanced  Himawari  Imager  (AHI)  onboard  the
Himawari-8,  a  new-generation  geostationary  satellite  laun-
ched by the Japan Meteorological Agency, has high temporal
and spatial resolutions across 16 spectral bands. New cloud
detection  algorithms  particularly  designed  for  the  AHI  are
needed because there are significant differences between the
AHI and other instruments concerning band characteristics.
For example, the strong water vapor absorption band centered
around 1.38 μm which is  useful  for  thin cirrus  detection is
not included in AHI. Central wavelengths of some bands sen-
sitive to cloud properties are also modified, e.g., there is an
AHI 2.25 μm band that used to be centered around 2.13 μm
in previous instruments (Wang et al., 2018). The differences
in band spectral response functions also can lead to incompa-
rable  measurements  from bands  with  similar  central  wave-
lengths.

The Japanese Meteorological Satellite Center team devel-
ops a threshold method for the AHI operational cloud mask
product (Imai and Yoshida, 2016), and a hit rate of ~0.85 is
reported when comparing with MODIS products. As one of
the original algorithms for AHI, it has been found that the cur-
rent  AHI  cloud  mask  product  may  slightly  overestimate
cloudy  pixels  compared  to  MODIS  product,  i.e.  ~25%  of
MODIS-determined  clear  pixels  may  be  misclassified  as
cloudy ones by the AHI product (Lai et al., 2019). However,
such  evaluations  may  be  biased  due  to  the  uncertainties
related to the MODIS product, so the performance of the cur-
rent AHI cloud mask is neither entirely well-known nor per-
fect  enough.  Furthermore,  the product  is  only available for
daytime cloud detection as solar band observations are used.

Consequently,  this  study intends to  develop ML-based
cloud detection algorithms for AHI observations that can pro-
vide  cloud  mask  products  for  both  daytime  and  nighttime
observations  with  a  particular  focus  upon  the  treatment  of
the surface. The remainder of the manuscript is organized as
follows. Section 2 describes the satellite data and the develop-
ment of the ML-based methods. The performance of the algo-
rithms is evaluated and discussed in section 3, and section 4
summarizes this study.
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 2.    Data and Methods

The flowchart in Fig. 1 illustrates the general structure
of  this  work  and  the  way  pre-processing  and  prediction
steps are carried out. During the pre-processing stage, ML-
based models will be trained and tested using different fea-
tures,  ML  techniques,  and  parameters,  which  will  be
detailed  in  this  section.  Then,  an  optimal  model  will  be
selected  and  used  for  predictions.  The  model  evaluations
will be presented in section 3.

 2.1.    Satellite datasets

As  a  member  of  the  Multifunction  Transport  Satellite
series, the geostationary Himawari-8 satellite was launched
on 7 October 2014 and is located above 140.7°E for observa-
tion  of  Earth’s  surface,  atmospheric  moisture,  clouds,  and
the  environment  (Bessho  et  al.,  2016; Shang  et  al.,  2017;
Wang et al., 2018; Letu et al., 2020). The AHI is an important
instrument  onboard  Himwari-8  and  provides  images  at  16
spectral  bands  with  central  wavelengths  ranging  from 0.46
to 13.3 μm, with a temporal resolution of 10 minutes for full-
disk and spatial resolutions ranging from 0.5 to 2.0 km (Min
et al., 2017; Wang et al., 2019).

CALIOP onboard CALIPSO is a two-wavelength polar-
ization-sensitive lidar that provides continuous measurements
on  vertical  cloud  and  aerosol  structures  (Stephens  et  al.,
2002; Winker et al., 2007). The collocated CALIOP Level 2,
1 km cloud layer product provides a reliable assessment of
cloud mask labels for our model training and validation (Hei-
dinger  et  al.,  2012).  After  collocation,  if  there  are  one  or
more layers of clouds in a CALIOP pixel, it is considered to
be  a  cloudy one.  Otherwise,  the  pixel  is  defined  as  a  clear

one.  We  find  all  CALIOP  pixels  (1  km  resolution)  within
the  collocated  AHI  pixel  (spatial  resolution  of  5  km)  with
an observational  time difference of  fewer  than 10 minutes,
and only homogeneous AHI pixels (i.e., all collocated AHI
pixels being cloudy or clear ones) are considered in the train-
ing dataset to ensure its quality for training.

A  collocated  AHI  and  CALIOP  dataset  spanning  the
entirety  of  2017 is  built,  and  over  420  000  AHI  pixels  are
labeled.  We  randomly  separate  the  dataset  into  a  training
(70%) and a  testing (30%) subset,  and the  latter  is  used to
tune and to find the optimal ML model parameters. This par-
ticular training and testing split is widely used for ML algo-
rithm development to avoid overfitting. CALIOP VFM prod-
uct and MODIS cloud mask products will also be considered
for comparison and evaluation in section 3.

 2.2.    Feature selection

Features, i.e., input parameters for cloud detection, can
be chosen by considering the characteristics of different spec-
tral bands with respect to cloudy or clear atmospheres. The
analysis of previous cloud mask algorithms (either threshold-
based or ML-based models) provides us with the best sugges-
tions on possible feature selection. Table 1 gives examples
of features used by recent cloud mask or cloud classification
algorithms. Aside from direct radiative variables such as R,
BTs, and BTDs, auxiliary data such as observational geome-
tries,  geolocation  information,  and  surface  properties  are
also used as input datasets. Most of the predictors are chosen
from those considered by previous cloud detection algorithms
and these predictors have physical support. For example, win-
dow band BT (11.2 μm) normally represents cloud top temper-
ature and is one of the most important and widely-used chan-

 

 

Fig. 1. Flowchart of the ML-based cloud detection algorithm development and prediction.
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nels  to  distinguish  cloudy  and  clear  pixels  (Strabala  et  al.,
1994). Saunders and Kriebel (1988) use BTD (11–12 μm) to
detect  cirrus  clouds  because  BTDs  over  clouds  are  greater
than those in the absence of clouds. The low cloud test BTD
(3.9–11 μm) is based on the differential absorption of water
and ice cloud particles between these wavelengths (Platnick
et al., 2003). This study uses only radiative variables (and sur-
face  characteristics)  as  input  parameters  to  avoid  possible
influences due to collocation, noting that only local afternoon
observations  are  considered  because  of  CALIOP  passing
time.

Cloud detection algorithms with and without solar band
observations  are  developed  as  daytime  and  nighttime  ver-
sions, respectively. The daytime algorithm refers to the algo-
rithm  with  solar  band  reflectance  considered,  so  it  is  only
available during the local daytime. The nighttime algorithms
that  exclude  solar-related  parameters  can  be  used  for  all-
time  observations.  For  a  fair  comparison  during  algorithm
development  and  validation,  all  collocated  AHI  and
CALIOP observations are from local  daytime.  In this  way,
we used the same dataset for the daytime and nighttime algo-
rithm,  and  the  two  algorithms  differ  on  whether  the  solar
band reflectance was used. The following brightness tempera-
tures are considered for both algorithms: BT (3.85 μm), BT
(7.35  μm),  BT  (8.6  μm),  BT  (11.2  μm),  BT  (12.35  μm),
BTD  (3.85–11.2  μm),  BTD  (11.2–7.35  μm),  BTD  (8.6–
11.2  μm),  and  BTD  (11.2–12.35  μm).  The  solar  band
reflectance  channels  include: R (0.64  μm), R (0.86  μm), R
(1.61 μm), and R (2.25 μm), and are solely used in the daytime
model.

 2.3.    Surface treatments

As mentioned above, the surface is a special but impor-
tant variable influencing cloud detection. Clear desert pixels
might be erroneously detected as cloudy in the daytime due
to the higher albedo and emissivity of desert sand (Ackerman
et al., 1998), so most algorithms develop independent models
for different surface conditions. To better eliminate the nega-
tive impact of surface features on cloud detection, three differ-
ent methods are introduced to treat the surface. Assume that

there are N surface types (ST), referred to as ST1, ST2…STN.
The first model (Model #1) develops separated ML models
for  each  surface  type,  and N independent  models  will  be
achieved, each of which handles only observations from the
particular  surface  type.  Model  #2 adds  an input  parameter,
i.e., surface type, as a new feature, and each type of surfaces
is specified by an integer from 1 to N. In this way, only one
ML-based model is needed for all observations, but the inte-
gers may misrepresent the physical differences among differ-
ent surfaces. To avoid such misrepresentation by using a sin-
gle  integer,  Model  #3  is  similar  to  Model  #2,  but  adds N
binary parameters, i.e., an additional parameter (a binary vari-
able) for each surface type. To be more specific, if the obser-
vation is over the nth surface, its nth surface variable will be
defined as one, while all others are zero. The three models dif-
fer only on how the surface types are considered, further not-
ing that all radiative features, ML models, and observational
datasets are kept the same.

Figure  2 illustrates  the  structures  of  the  three  models.
Each quadrangle in the figure represents a ML-based algo-
rithm, and Model #2 and Model #3 also illustrate how surface
variables are defined. Considering the coverage of AHI, this
study  considers  four  surface  types,  i.e.,  ocean,  forest,  land
and desert,  and the MODIS Land Cover Climate Modeling
Grid Product from MODIS Collection 6 annual surface type
product  MCD12C1  is  considered  (Loveland  and  Belward,
1997; Sulla-Menashe  and  Friedl,  2018).  There  are  fewer
observations over ice or snow surfaces in the covered area,
so we have not yet included them in our model.

 2.4.    Machine learning technologies

Two  popular  supervised  ML  methods  are  considered,
ANN and RF (Swami and Jain, 2013), because their perfor-
mances have been well justified (Chen et al., 2018; Gomis-
Cebolla et al., 2020; Wang et al., 2020). We pay more atten-
tion  to  the  construction  of  the  algorithms,  e.g.,  preparation
of  the  training  dataset,  feature  selection,  and  surface  treat-
ment,  as  opposed to the particular  ML techniques,  because
the latter is responsible for fewer differences in the results.
Thus, we only consider ANN and RF in this algorithm, and

Table 1.   Comparison for some recent ML-based cloud detection and classification algorithms for spectral radiometers.

References Feature parameters Auxiliary parameters Satellite

Lyapustin et al., 2008 R (0.64 μm), R (0.47 μm), R (0.55 μm), R (0.86 μm),
R (1.24 μm), R (2.11 μm), BT (11.03 μm)

No MODIS

Chen et al., 2018 R (0.47 μm), R (0.55 μm), R (0.66 μm),
R (0.86 μm), R (1.24 μm), R (2.13 μm)

SZA, VZA, RAZ,
Surface elevation

MODIS

Zhang et al., 2019 R (0.64 μm), BT (3.85 μm), BT (7.35 μm),
BT (8.6 μm), BT (11.2 μm), BT (12.35 μm),
BTD (11.2–3.85 μm), BTD (11.2–7.35 μm),
BTD (11.2–8.6 μm), BTD (11.2–12.35 μm)

VZA, Ts, Lat, Lon AHI

Gomis-Cebolla et al., 2020 R (0.64 μm), R (0.47 μm), R (0.45 μm),
R (0.86 μm), R (2.13 μm), R (1.38 μm)

No MODIS

Wang et al., 2020 R (0.86 μm), R (1.24 μm), R (1.38 μm), R (1.64 μm),
R (2.25 μm), BT (8.6 μm),BT (11 μm), BT (12 μm)

VZA, Ts, Lat, Lon VIIRS

*VZA=View Zenith Angle, SZA= Solar Zenith Angle, RAZ= Viewing zenith angle, Ts=Surface skin temperature, Lat=Latitude, and Lon=Longitude.
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others may be tested similarly in future studies.
ANN is a multilayer perceptron model consisting of an

input  layer,  a  hidden  layer,  and  an  output  layer  by  seizing
the  non-linear  relationship  between  input  and  output  vari-
ables. As a simple binary classification problem, we consider
only one hidden layer,  and the sigmoid function is  used as
the  activation  function.  The  neuron  number  is  chosen
between 5 and 100 in steps of five to find the optimal value.
RF considers an ensemble of decision trees and uses bagging
to train the model (Breiman, 2001). Two important parame-
ters in the RF model are the number of trees and the maximum
depth of the tree. We test the number of trees varying from
100 to 500 in steps of 100, and the maximum depth from 10
to 50. Table 2 lists the tuning parameters for the two ML mod-
els.

The  optimal  parameters  of  the  ML  algorithms  are
obtained  by  grid  searches.  Here,  we  define  “accuracy ”  as
the ratio of the number of pixels (samples),  which are cor-
rectly  detected  by  our  algorithm  (according  to  CALIOP
results), to that of the total pixels. Figure 3 gives the accuracy
values of the ANN and RF algorithms with different parame-
ters. The accuracies for the best ANN daytime and nighttime
model are 0.88 and 0.80, respectively.  The accuracy of the
best daytime model for RF is as large as 0.94, and that for
the nighttime model is 0.87. Evidently, the algorithm perfor-
mance is not significantly sensitive to the model parameters
with  the  accuracy  generally  varying  around  approximately
0.03. For the daytime algorithm, the best neuron node parame-
ter for ANN is 11, and the best ntrees and mdepth parameters
for  RF  are  200  and  20,  respectively.  Larger  mdepth  may
lead  to  overfitting,  so  two  relatively  small  parameters  are
used  to  guarantee  the  robustness  of  the  models  (Scornet,
2018). For the nighttime model, the best neuron node parame-
ter for ANN is eight, and the best ntrees and mdepth parame-
ters for RF are 100 and 10.

Through feature selection, the contribution of each fea-

ture  to  the  algorithm  is  calculated.  For  ANN,  a  “f_classif
score ”  is  obtained  based  on  the  analysis  of  variance.  The
higher the score of an interest field, the more the feature con-
tributes  to  the  cloud  detection.  For  the  RF  algorithm,  the
importance  of  a  feature  can  be  illustrated  by  the  “mean
decrease gini”, and larger ”mean decrease gini” values corre-
spond to features that are more “useful” for the detection.

Figure  4 shows  the  f_classif  score  and  mean  decrease
gini  for  the  two  models  to  demonstrate  the  feature  impor-
tance.  The  tests  are  performed  using  the  entire  training
dataset  including  observations  from  all  surfaces.  The  six
most  influential  parameters  in  the  daytime ANN algorithm
are  BTD  (11.2–7.35  μm),  BT  (12.25  μm),  BT  (11.2  μm),
BT  (8.6  μm),  BTD  (3.85–11.2  μm),  and R (0.64  μm).  For
the  RF-based  algorithm,  BTD  (11.2–7.35  μm),  BT
(12.25 μm), BTD (3.85–11.2 μm), BT (11.2 μm), R (0.64 μm),
and BTD (11.2–8.6 μm) are the six more important inputs.
Clearly,  the  physically  important  bands  and  combinations
all  rank  relatively  high  here.  It  should  also  be  noticed  that
the  two  water  vapor  bands,  i.e.,  BT  (7.35  μm)  and  BT
(3.85 μm), contribute less to the two ML-based algorithms.
Meanwhile, we have also considered geolocation and solar-
viewing geometries for tests, and their contributions are rela-
tively limited. Thus, we retain only radiative information in
the model.

Figure 5 gives the feature contribution under three sur-
face models based on the RF algorithm. Figures 5a–5d are fea-
ture  contributions  of  four  specific  surface  types  based  on
Model  #1,  and Fig.  5e and Fig.  5f are  for  Model  #2  and

Table  2.   Contingency  matrix  of  evaluation  of  cloud  detection
results by comparing with CALIOP results.

Scenario AHI cloudy AHI clear

CALIOP cloudy TP FN
CALIOP clear FP TN

 

 

Fig. 2. Schematic diagram of the three models for the treatments for observations over different surfaces.
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Model  #3,  respectively.  For  ocean surfaces,  both  solar  and
infrared bands, e.g., BTD (3.85–11.2 μm), R (0.64 μm), and
BTD  (11.2–7.35  μm),  correspond  to  higher  feature  impor-
tance values, and, for other surfaces, longwave infrared BT
differences  such  as  BTD  (11.2–7.35  μm),  BTD  (11.2–

12.35 μm), and BTD (11.2–8.6 μm) are more important. For
Model  #2  and  Model  #3,  the  surface  variables  don’t  rank
high (not in the top six), but clearly show different impacts
on the models by modifying the orders of the radiative param-
eters. The relative performances of the three surface models

 

 

Fig. 3. Accuracy scores for the ANN and RF algorithms with different parameters.

 

 

Fig.  4. F_classif  scores  (top  panels)  in  the  ANN  algorithm  and  mean  decrease  gini  (bottom  panels)  in  the  RF
algorithm for both daytime (left) and nighttime (right) algorithms.
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will be evaluated in the following section.
It is worth mentioning that CALIPSO is in the afternoon

orbit,  so  the  collocated  AHI  and  CALIOP  observations
include only local afternoon data, which could bring uncer-
tainties for the all-time cloud detection algorithm. To avoid
such influences, our algorithms consider only direct radiance
observations,  auxiliary  information  such  as  pixel  position
and  viewing  geometries  (especially  solar  zenith)  are  not
included. In this way, the algorithms would be less dependent
on the time of observation, viewing geometries, or the spa-
tiotemporal distributions of the clouds.

 3.    Results and discussion

With the optimal algorithms for both ANN and RF deter-
mined,  we quantitatively evaluate them as well  as the AHI
operational  product  by  comparing  their  results  with  active
CALIOP  observations  and  MODIS  results.  To  keep  the
dataset independent, we collocate AHI and CALIOP observa-
tions  from  the  first  five  days  of  each  month  in  2018.
CALIOP determined cloudy pixels are defined as “positive”
events,  and  clear  ones  are  marked  as  “negative ”  events.

Again,  we  refer  to  the  CALIOP  results  as  the  truth.  Then,
“true positive (TP)” means that CALIOP and our ML-based
algorithms  (or  the  AHI  operational  product)  consistently
detect  a  pixel  as  a  cloudy  one,  and  “true  negative  (TN) ”
refers to pixels that are detected as clear ones by both instru-
ments.  “False positive (FP)” corresponds to pixels that  are
detected as clear by CALIOP but as cloudy by the AHI algo-
rithms,  and  “false  negative  (FN) ”  is  defined  similarly  but
for  pixels  recognized  as  cloudy  and  clear  by  CALIOP and
AHI respectively. These definitions of TP, TN, FP, and FN
can be better understood by Table 2. Then, the performance
of algorithms can be generally represented with two indices,
the  true  positive  rate  (TPR)  and  false  positive  rate  (FPR),
and they are given by: 

TPR =
TP

TP+FN
, (1)

 

FPR =
FP

FP+TN
. (2)

TPR is also called sensitivity and shows the fraction of
cloudy pixels correctly identified by our algorithms or opera-

 

 

Fig. 5. Mean decrease gini (bottom panels) in the RF algorithm for different surface models: (a–d) for Model #1 with
four surface types, (e) for Model #2, and (f) for Model #3.
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tional  product.  FPR  is  known  as  specificity,  which  shows
the  fraction  of  clear  pixels  that  are  not  identified.  A  better
algorithm can be defined by that with a TPR closer to 1, and
a  FPR  closer  to  0.  It  is  noticed  that  for  similar  variables
such as the relative operating characteristic, the Pierce skill
score  has  also  been  widely  used  for  model  evaluations,
which  results  in  similar  conclusions,  so  we  will  just  keep
the problem simple by using TPR and FRP.

Figure 6 shows the TPR and FPR values of the AHI oper-
ational  product  and  our  daytime  ML-based  algorithms  for
all surface results [panel (a)] as well as for the four specific
surface types [panels (b)–(e)].  Again, markers closer to the
upper  left  corner  represent  better  algorithm  performance.
The TPR values are mostly over 0.9, and the FPR values are
under 0.2, indicating a slight overestimation of cloudy pix-
els. As can be seen from Fig. 6a, the ANN-based results are
better  than  those  of  the  operational  results  while  they  are
not as good as the RF-based ones. The RF Model #3 results
are the best among all algorithms with a TPR of 0.97 (all sur-
face  types).  For  most  surface  types,  our  ML-based  algo-
rithms,  especially  the  RF-based  ones,  are  better  than  the
AHI operational  product.  For  results  over  oceans,  the  AHI
operational product and our algorithm achieve similar TPR
and FPR values with differences less than 0.02. This shows
that  the surface parameters  screening into the model  in the
form of independent  binary variables is  helpful  to improve
the ML algorithm performance.

Figure 7 is similar to Fig. 6 but for the nighttime algo-
rithms. As expected, the nighttime algorithms do not perform

as well as the daytime ones but only by a slight margin, i.e.,
TPRs are approximately 0.03 smaller. Surprisingly, the night-
time RF-based algorithms also result in a larger TPR and a
smaller  FPR  compared  to  the  AHI  product,  noting  once
again, that the AHI is based on a daytime threshold method
with solar band tests. Overall, both our daytime and nighttime
algorithms  improve  the  accuracy  for  detection  and  reduce
the false identification rate.

To understand the ML-based algorithm performance in
detail, Figure 8 illustrates an example of cloud mask results
from the  AHI  and  MODIS operational  products  as  well  as
our daytime RF-based algorithms. The observation is taken
at  0510  UTC  4  June  2018.  The  top  panels  show  the  AHI
RGB image, the AHI operational cloud mask (Bessho et al.,
2016),  and the  MODIS MYD35 cloud mask (Ackerman et
al.,  1998).  Each  pixel  in  the  AHI  and  MODIS  operational
products is classified into one of the four categories, i.e., con-
fident clear, probably clear, probably cloudy, and cloudy. In
our investigation, the probably cloudy and probably clear pix-
els  are  recognized  as  cloudy  and  clear  ones  respectively.
The blue and gray colors represent clear and cloudy pixels,
respectively. If the MODIS cloud mask is understood as the
reference, the AHI product tends to underestimate clear sky
pixels,  and  this  agrees  with  its  large  FPR values  in Fig.  6.
Because the RF-based algorithms work better than the ANN-
based ones, only RF-based results are presented in the bottom
panels. Generally, the results from the three RF-based algo-
rithms  agree  well  with  each  other  and  are  consistent  with
the MODIS cloud mask (the top center panel).

 

 

Fig.  6. Comparison  of  the  true  positive  rate  (TPR)  and  false  positive  rate  (FPR)  of  the  two  ML-based  daytime
algorithms and the AHI operational product, (a) for all surface results and (b–e) for the four different surface types.
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Figure 9 directly illustrates the differences between the
MODIS/AHI  operational  results  and  those  from  our  algo-
rithms,  and  the  upper  and  lower  panels  use  MODIS  and

AHI results as references, respectively. In Fig. 9, the green
pixels correspond to those identified as cloudy ones by the
MODIS/AHI  operational  product  but  as  clear  ones  in  our

 

 

Fig. 7. Same as Fig. 6 but for nighttime algorithms.

 

 

Fig. 8. An example for the MODIS and AHI operational cloud product and our results for the scene at 0510 UTC 4
June 2018, (a) RGB image, (b) MODIS cloud mask, (c) AHI cloud mask, and (d–f) RF-based results. Cloudy pixels
are marked by gray, and clear ones are marked by blue.
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ML-based algorithms, and the red represents pixels that are
identified as clear ones by the MODIS/AHI but cloudy ones
by our algorithms. In short, the gray regions indicate pixels
correctly identified by our ML-based algorithms, while blue
or  red  ones  are  misclassified  ones.  Compared  with  the
MODIS  product,  the  RF  Model  #1  and  Model  #2  slightly
overestimate  the  cloudy  pixels,  whereas  our  Model  #3
shows much fewer misclassified pixels. Compared with the
AHI operational  product,  the  RF-based Model  #1 overesti-
mates  cloudy  pixels  more  than  the  other  two  methods.
Model #2 and Model #3 overestimate clear pixels, especially
in the region around ~ 45°S and 135°–140°E. The results sug-
gest that the current AHI operational algorithm erroneously
detects  more  cloudy  pixels,  and  our  ML-based  algorithms,
especially  Model  #3,  overcome  this  overestimation.  For
Model  #3,  disagreements  are  mostly  noticed  around  cloud
edges,  and  this  may  be  caused  by  collocation  errors  and
cloud  movement  or  development.  Thus,  the  agreement
between our RF-based algorithm and MODIS results should
be even better than presented.

An example is given in Fig. 10 for the nighttime algo-
rithms,  and  the  results  are  based  on  observations  at  2000
UTC 3 November 2018. Since there is  no AHI operational
cloud mask for nighttime observations, only the MODIS prod-
uct is compared. The infrared cloud image in the AHI 11.2
μm band is given in Fig. 10a. Overall, our ML-based results
agree  well  with  the  MODIS  results,  and  Model  #1  seems
slightly better for this case. The red boxes in the figure illus-
trate  regions,  over  which our  results  disagree more signifi-

cantly with the MODIS results. Figure 11 is similar to Fig. 9
for  the  relative  differences.  Massive  red  pixels  that  appear
in Fig. 11 indicate that our nighttime algorithms tend to over-
estimate cloudy pixels as well. However, with possible mis-
classifications from MODIS itself, those differences cannot
entirely be attributed to the problem of our algorithms.

To better evaluate the results with the “truth” determined
from active lidar observations, Fig. 12 compares our results
with  the  collocated  CALIOP  product.  The  CALIOP  VFM
product shows the vertical profiles of the atmosphere, and var-
ious  types  of  cloudy  conditions  are  depicted.  We  present
two examples  from 2018.  Again,  our  results  are  consistent
with the CALIOP and MODIS products. Specifically, in the
low latitudes  (13°–17°N),  some pixels  are  misidentified  as
cloudy  ones  in  the  AHI  operational  product,  but  most  of
them are correctly detected by our algorithms.

Last, Fig. 13 shows a full disk comparison to show the
consistency of our algorithms for large-scale cloud coverage,
along with some details. Our algorithm performs reasonably
well  in  detecting  large-scale  cloud  coverage.  Due  to  the
absence of solar bands at local night (black regions in Figs.
13b and 13c), the AHI product and our daytime results miss
a small region on the disk, whereas our nighttime algorithm
can still provide reasonable cloud masks.

In  summary,  when  compared  to  both  active  CALIOP
and  classic  MODIS results,  our  RF-based  algorithms,  with
the  surface  treated  in  the  form of  independent  binary  vari-
ables,  provide  the  most  reliable  cloud  mask  results  for  the
AHI  observations.  We  further  note  that  both  the  daytime

 

 

Fig. 9. Differences between our cloud detection results and MODIS/AHI operational results.  The upper panels use
the  MODIS results  as  references,  and the  lower  panels  use  AHI results  as  references.  Green represents  pixels  that
were detected as clear ones by our method but cloudy ones by MODIS or AHI, and red represents pixels that were
detected as cloudy ones by our method but clear ones by MODIS or AHI.
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and nighttime algorithms outperform the current AHI thresh-
old method-based results.

 4.    Conclusions

This study develops ML-based algorithms to distinguish
between cloudy and clear pixels for AHI observations. The
training,  testing,  and  validating  datasets  for  our  algorithm
development are from the collocated CALIOP product, and
only  radiometer-based  radiative  and  surface  variables  are
used  as  input  for  the  ML prediction.  Two ML-based  algo-
rithms are  separately  developed,  referred to  as  the  daytime
and  nighttime  models,  which  differ  on  whether  the  solar
band observations are included. Meanwhile, this study pays
special attention to eliminating influences of different surface
types on cloud detection and finds that optimizing the elimina-
tion  of  surface  influence  is  an  important  consideration  and
an efficient strategy to further improve the model.  Overall,

the RF-based algorithms outperform the current AHI opera-
tional product by improving the TPR by ~5% and reducing
the FPR by ~3%. Such advantages are achieved through the
application of the ML model, including careful preparations
of  the  training  dataset,  special  treatments  for  surfaces,  and
more  careful  considerations  of  radiative  observations  and
their combinations.

Future  research  will  focus  on  further  optimization  for
our algorithm. We would consider methods that use additional
auxiliary information, such as latitude, longitude, and surface
albedo which may be worked upon with a much larger training
dataset. The ML classification algorithms, such as deep learn-
ing algorithms, may also be considered in the future. Mean-
while, our method may be easily applied to cognate instru-
ments,  such  as  the  Advanced  Geosynchronous  Radiation
Imager  (AGRI)  onboard  China’s  geostationary  satellite
Fengyun-4A. In conclusion, as cloud detection is one of the
most fundamental products for satellite applications, our mod-

 

 

Fig. 10. Same as Fig. 8 but for ML-based nighttime algorithm results and a sense at 2000 UTC 3 November 2018.

 

 

Fig. 11. Same as Fig. 9 but for differences of Fig. 10 results.
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Fig. 12. Two examples of AHI, MODIS, and our results compared with the CALIPSO level 2 VFM product.
 

 

Fig. 13. A full disk comparison among AHI operational cloud mask (upper right) and our ML-based results.
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els  will  definitely  benefit  downstream applications  such  as
remote sensing, data assimilation, and climate studies.
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