
 
 

Improvement of Soil Moisture Simulation in Eurasia by the Beijing
Climate Center Climate System Model from CMIP5 to CMIP6

Yinghan SANG1,3, Hong-Li REN*2,3, Xueli SHI3, Xiaofeng XU4,1, and Haishan CHEN1

1School of Atmospheric Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China
2State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China

3Laboratory for Climate Studies & CMA–NJU Joint Laboratory for Climate Prediction Studies,

National Climate Center, China Meteorological Administration, Beijing 100081, China
4China Meteorological Administration, Beijing 100081, China

(Received 31 May 2020; revised 24 August 2020; accepted 29 September 2020)

ABSTRACT

This  study  provides  a  comprehensive  evaluation  of  historical  surface  soil  moisture  simulation  (1979–2012)  over
Eurasia at annual and seasonal time scales between two medium-resolution versions of the Beijing Climate Center Climate
System Model (BCC-CSM)—one that is currently participating in phase 6 of the Coupled Model Intercomparison Project
(CMIP6), i.e., BCC-CSM2-MR, and the other, BCC-CSM1.1m, which participated in CMIP5. We show that BCC-CSM2-
MR  is  more  skillful  in  reproducing  the  climate  mean  states  and  standard  deviations  of  soil  moisture,  with  pattern
correlations increased and biases reduced significantly. BCC-CSM2-MR performs better in capturing the first two primary
patterns of  soil  moisture anomalies,  where the period of  the corresponding time series  is  closer  to that  of  reference data.
Comparisons show that BCC-CSM2-MR performs at a high level among multiple models of CMIP6 in terms of centered
pattern correlation and “amplitude of variation” (relative standard deviation). In general, the centered pattern correlation of
BCC-CSM2-MR,  ranging  from  0.61  to  0.87,  is  higher  than  the  multi-model  mean  of  CMIP6,  and  the  relative  standard
deviation  is  0.75,  which  surmounts  the  overestimations  in  most  of  the  CMIP6  models.  Due  to  the  vital  role  played  by
precipitation  in  land–atmosphere  interaction,  possible  causes  of  the  improvement  of  soil  moisture  simulation  are  further
related  to  precipitation  in  BCC-CSM2-MR.  The  results  indicate  that  a  better  description  of  the  relationship  between soil
moisture  and  precipitation  and  a  better  reproduction  of  the  climate  mean  precipitation  by  the  model  may  result  in  the
improved performance of soil moisture simulation.
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Article Highlights:

•  The  new  version  (BCC-CSM2-MR)  of  the  Beijing  Climate  Center  Climate  System  Model  for  the  CMIP6  historical
experiment  is  more  skillful  in  simulating  the  spatiotemporal  variations  of  surface  soil  moisture,  with  fewer  biases,
compared to its previous version (BCC-CSM1.1m) in CMIP5 and most models of CMIP6.

•  The  improvement  in  surface  soil  moisture  simulation  by  BCC-CSM2-MR  is  possibly  attributable  to  the  better
performance  of  this  model  in  representing  the  proper  relationship  between  soil  moisture  and  precipitation  and
reproducing the variation of precipitation with fewer deviations.

 

 
 

1.    Introduction

Soil  moisture  (SM)  plays  a  vital  role  in  affecting  cli-
matic  variability  through  influencing  many  physical  pro-
cesses  in  land–atmosphere  interactions.  By  regulating  sur-

face  water,  evapotranspiration,  and  latent  heat,  as  well  as
ground fluxes, SM variations feed back to the near-surface cli-
mate, extending to the boundary layer, impact vertical stabil-
ity, and further affect precipitation (Seneviratne et al., 2010;
Berg and Sheffield, 2018; Ruosteenoja et al., 2018). One sali-
ent character of SM is its long memory (Koster and Suarez,
2001; Shinoda,  2001; Ruosteenoja  et  al.,  2018),  which can
last 30–90 days for some climatic elements (Dirmeyer et al.,
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2009). The climatic response to the variation in SM changes
with  regions  and  seasons  (Yeh  et  al.,  1984; Koster  et  al.,
2003; Koster et al., 2004). Especially in the Eurasian contin-
ent  with  its  complex  and  diverse  climate,  SM  not  only
affects ground fluxes and climate in the monsoon zone, but
also impacts the evaporation and water vapor transport and
further  the  precipitation  and  temperature  inland  (Ma et  al.,
2000; Zuo and Zhang,  2007; Dai  and Zuo,  2010; Zhang et
al., 2016a).

Owing  to  the  deficiency  of  reliable  long-term  and
large-spatial-scale in-situ observational  datasets,  alternative
data sources have been made available for  researching SM
variation.  Represented  by  the  Global  Land  Data  Assimila-
tion  System  (GLDAS),  several  assimilated  SM  data
products have been developed. Research has found that data
assimilation  can  significantly  improve  the  accuracy  of
middle  and  deep  SM  estimates  and  the  assimilated  data
products are reliable for describing the SM annual cycle and
short-term  variability  (Renzullo  et  al.,  2014).  Simulations
from offline land surface models and coupled general circula-
tion models (GCMs) are another tool for investigating the con-
tinuity  of  SM  spatially  and  temporally  (Srinivasan  et  al.,
2000; Koster  et  al.,  2009).  With the gradual  improvements
of model systems in the past several decades, their ability to
reproduce SM has led to great progress, but there are still defi-
ciencies. Guo  and  Dirmeyer  (2006) pointed  out  that,
although  models  can  reproduce  SM anomalies  to  a  certain
extent, they do not simulate absolute soil water content accur-
ately. Xia et al. (2015) also showed that model simulations
may  overestimate  the  SM  in  the  Northern  Hemisphere.
Cheng et  al.  (2015) analyzed the simulations of 20 CMIP5
(phase  5  of  the  Coupled  Model  Intercomparison  Project)
GCMs and revealed that there has been an obvious decreas-
ing  trend  in  annual-mean  near-surface  SM  over  eastern
Asia.  Research  also  demonstrated  that  the  majority  of
CMIP5  GCMs  likewise  simulate  soil  drying  in  the  North-
ern  Hemisphere,  for  nearly  the  whole  continent  of  North
America  in  summer  and  everywhere  apart  from the  Arctic
regions  in  spring  (Dirmeyer  et  al.,  2013).  Thus,  although
there is a certain biases, simulations based on climate mod-
els  are  efficient  tools  to  investigate  the  variations  and
effects of SM in the climate system.

However,  because  so  many  models  have  been
developed  with  different  descriptions  of  land  surface  and
SM-related schemes, under the same simulation framework,
say the CMIP experiments, comparisons of multi-model simu-
lations will provide an overall assessment of the model per-
formance,  but  are  inconvenient  for  investigating  the  reas-
ons.  On  the  contrary,  comparisons  of  different  model  ver-
sions of a specified model system in the different phases of
CMIP  will  provide  a  good  opportunity  to  understand  the
SM simulation performance.

The  Beijing  Climate  Center  Climate  System  Model
(BCC-CSM) is one of the fully coupled climate system mod-
els that has participated in both the CMIP5 and CMIP6 experi-
ments. Most of the CMIP6 simulations have now been fin-

ished, with datasets available via the ESGF website (Xin et
al.,  2019). Wu et al.  (2019) summarized the general model
improvements and performances of different components of
models  from CMIP5 to  CMIP6.  However,  the  SM has  not
yet  been systematically evaluated.  Therefore,  in this  paper,
we assess the SM simulated by BCC-CSM through comparis-
ons  with  assimilated  data  and  observations  as  well  as  res-
ults of the different BCC model versions. Two medium resolu-
tions  are  selected  for  comparison  here,  i.e.,  BCC-CSM2-
MR for CMIP6 and BCC-CSM1.1m for CMIP5, in the histor-
ical  experiments.  Then,  a  horizontal  comparison  is  made
between  BCC-CSM2-MR  and  13  CMIP6  models.  Finally,
the coupling between precipitation and SM in model simula-
tions is also discussed.

2.    Data and methods

2.1.    Data

2.1.1.    BCC-CSM  historical  simulations  in  CMIP5  and
CMIP6

Recently,  BCC-CSM  has  been  upgraded  to  its  second
generation  (Wu  et  al.,  2020).  The  medium-resolution  ver-
sion (BCC-CSM2-MR) has carried out most of the CMIP6
DECK and MIP experiments (Eyring et al., 2016; Xin et al.,
2019).  Its  previous  generation (BCC-CSM1.1m; Wu et  al.,
2013, 2014) participated in CMIP5 (Taylor et al., 2012; Xin
et  al.,  2012).  Among  the  experiments  endorsed  by  CMIP5
and  CMIP6,  historical  simulation  is  one  of  the  entry  cards
for models to participate in the project. The historical period
is  defined  as  beginning in  1850 and extends  to  near  to  the
present  day  (2012  for  CMIP5  and  2014  for  CMIP6).  The
CMIP historical  simulation provides  a  good opportunity  to
assess  model  ability  in  simulating  climatic  variability  and
trends.  In  this  study,  monthly  surface  (0–10  cm)  SM  data
from the historical simulation of BCC-CSM2-MR are evalu-
ated by comparing with 13 other  CMIP6 models  (Table  1)
and  BCC-CSM1.1m  in  CMIP5.  The  monthly  precipitation
data of the BCC-CSMs are also used,  to analyze the coup-
ling between SM and precipitation.

2.1.2.    Reference data

Representative  of  assimilated  SM  data  products,
GLDAS,  which  comprises  ingested  satellite-  and  ground-
based observational data products and uses advanced land sur-
face  modeling  and  data  assimilation  techniques  (Rodell  et
al., 2004), is widely used in studies of land–atmosphere inter-
action (Cheng et al., 2013; Zhang et al., 2016b). Therefore,
we  select  the  monthly  data  of  near-surface  (0–10  cm)  SM
from  GLDAS  v2.0  and  v2.1  as  the  reference  data  in  this
study.  In  addition,  we  also  use  a  station-based  observa-
tional  SM  dataset  in  China  produced  by Wang  and  Shi
(2019), to make the best use of the observations available at
present.  The  SM  measurements  at  a  total  of  1471  stations
for the period January 1992 to September 2013 are from the
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National Meteorological Information Center of the China Met-
eorological Administration. Among these, 732 stations with
good spatial  and temporal continuity from January 1992 to
December 2012 are ultimately selected following quality con-
trol processes. We use the data of the first layer (0–10 cm)
and transform the units into kg m−2 for comparison. In the ana-
lysis of the coupling between SM and precipitation, we use
the monthly data of precipitation from the CPC (Climate Pre-
diction Center of NOAA) Merged Analysis of Precipitation
(CMAP; Huffman et al., 1997).

2.2.    Research region and diagnostic method

The  study  region  in  this  paper  is  Eurasia  (10°–80°N,
30°–160°E) and the study period ranges from 1979 to 2012,
in  which  we  use  the  annual  mean  and  the  four  seasons
defined  as  December–January–February  (DJF)  for  winter,
March–April–May  (MAM)  for  spring,  June–July–August
(JJA)  for  summer,  and  September–October–November
(SON)  for  autumn.  For  convenience  of  comparison,  both
the simulation data and reference data are regrided to a uni-
form  resolution  of  1°  ×  1°  using  bilinear  interpolation.
Although  the  dataset  of  the  732  stations  is  quality  con-
trolled, there are still plenty of missing values in the spatial
and temporal range. Therefore, it is inaccurate and inconveni-
ent  to  interpolate  the  station  dataset  to  the  grid.  Accord-
ingly, when using the station dataset from 1992 to 2012 as
the reference to make comparisons, we interpolate the simula-
tion data in China to the positions of the 732 stations. Pear-
son correlation (r),  root-mean-square error  (RMSE),  stand-
ard  deviation  and  linear  regression,  the  most  commonly
used  metrics  (Legates  and  McCabe,  1999),  are  used  to
quantify the agreement between reference data and model sim-
ulations. Besides, empirical orthogonal function (EOF) ana-
lysis  and  spectral  analysis  are  performed  to  identify  the
major modes of the surface SM anomalies in Eurasia and its
periodic characteristics.

3.    Results

3.1.    Comparison  between  BCC-CSM2-MR  and  BCC-
CSM1.1m

3.1.1.    Spatial distribution in Eurasia

The climatological mean surface SM in terms of annual
mean and the four seasons of GLDAS and BCC-CSM simula-
tions are firstly presented (Fig. 1). Basically, except the less
pronounced  gradient  in  model  simulations,  both  BCC-
CSM2-MR and BCC-CSM1.1m are able to capture the spa-
tial  patterns of the SM of GLDAS, but BCC-CSM2-MR is
closer to GLDAS in terms of the higher pattern correlation.
GLDAS shows a triple pattern in the annual mean, whereby
the surface soil with higher soil water content is typically loc-
ated in central and western Siberia and South China, while
that with lower soil water content is mainly distributed in cent-
ral Asia and the Arabian Peninsula (Fig. 1a). From northw-
est to southeast, the SM in Eurasia exhibits a wet–dry–wet dis-
tribution,  which  is  consistent  with  previous  research
(Nijssen et al., 2001; Guo et al., 2003; Erdenebat and Sato,
2018).  This  pattern  is  also  evident  in  the  BCC-CSM2-MR
and  BCC-CSM1.1m  model  simulations  (Figs.  1b and 1c).
The  pattern  correlation  coefficient  between  BCC-CSM2-
MR  and  GLDAS  is  0.97  (at  the  0.01  significance  level),
which  is  higher  than  that  between  BCC-CSM1.1m  and
GLDAS (r = 0.93). In different seasons, the pattern correla-
tion  coefficients  of  BCC-CSM2-MR  and  GLDAS  range
from  0.96  to  0.97,  which  are  higher  than  those  of  BCC-
CSM1.1m (between 0.92 and 0.94). The average pattern cor-
relation  coefficient  between  BCC-CSM2-MR  and  GLDAS
is  0.97,  which  is  a  rise  of  4.3% over  the  previous  version.
Therefore,  BCC-CSM2-MR  is  more  capable  than  BCC-
CSM1.1m in  its  reproduction of  the  distribution of  the  cli-
mate mean surface SM.

The  difference  in  patterns  of  the  climate  mean  SM

Table 1.   Details of the 14 CMIP6 models used in this study.

Model name Model center (or group) Spatial resolution (lat × lon)

BCC-CSM2-MR Beijing Climate Center, China Meteorological Administration 160 × 320
CanESM5 Canadian Centre for Climate Modelling and Analysis 64 × 128
CESM2 Community Earth System Model Contributors 192 × 288
CESM2-WACCM Community Earth System Model Contributors 192 × 288
E3SM-1-0 U.S. Department of Energy’s Office of Biological and Environmental Research 180 × 360
EC-Earth3-Veg EC-Earth consortium (27 institutions in Europe) 256 × 512
FGOALS-f3-L LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences 192 × 288
FIO-ESM-2-0 First Institute of Oceanography, Ministry of Natural Resources of China 192 × 288
GFDL-CM4 NOAA Geophysical Fluid Dynamics Laboratory 180 × 288
IPSL-CM6A-LR Institut Pierre-Simon Laplace 143 × 144
MIROC6 Atmosphere and Ocean Research Institute (The University of Tokyo) 128 × 256
MRI-ESM2-0 Meteorological Research Institute 160 × 320
NorESM2-LM Norwegian Climate Centre 96 × 144
SAM0-UNICON The National Renewable Energy Laboratory 192 × 288
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between the BCC model  simulations and GLDAS in terms
of their annual mean and the different seasons are shown in
Fig.  2.  As  the  first  two columns of  the  figure  show,  BCC-
CSM2-MR and BCC-CSM1.1m both tend to reproduce soil
that is drier than in GLDAS over the whole of Eurasia, with
a  large  coverage  of  negative  values,  especially  in  southern
China.  Underestimations  of  SM  in  climate  models  have
been demonstrated in many previous studies.  For  example,
Ramillien et al. (2003) indicated that Land Dynamics hydrolo-
gical model tends to underestimate the absolute water stor-
age in the soil and provide smoother values than in-situ meas-
urements.  However,  in  several  regions  (Siberia,  Northeast
China, the Yangtze–Huaihe River basin, etc.), the results of
the BCC-CSMs tend to be significantly wetter than those of
GLDAS.  Comparing Figs.  2a and b,  we  can  see  that  the
areas and absolute values of most regions with large differ-

ences  have  reduced  from  BCC-CSM1.1m  to  BCC-CSM2-
MR in terms of their annual mean. Taking the positive value
in Siberia as an example, the SM difference between BCC-
CSM1.1m and GLDAS is greater than 20 kg m−2. However,
it  decreases  to  around  5  kg  m−2 in  BCC-CSM2-MR,  with
obvious improvement. This is also the case in the four sea-
sons.  Furthermore,  compared  to  the  previous-generation
model, the RMSE values of BCC-CSM2-MR are lower both
in terms of their  annual mean and in the four seasons.  The
mean  RMSE  of  the  climate  mean  state  declines  by  7.5%
from  9.37  (BCC-CSM1.1m)  to  8.67  (BCC-CSM2-MR),
which  demonstrates  that  BCC-CSM2-MR  is  more  capable
of describing the actual distribution of the climate mean sur-
face SM, with fewer biases. The differences between BCC-
CSM2-MR and BCC-CSM1.1m are shown in the rightmost
panel of Fig. 2. Clear improvements can be seen in Siberia,

 

 

Fig. 1. Climate mean surface soil moisture (units: kg m−2) over Eurasia (1979–2012) on annual and seasonal time scales: (a,
d,  g,  j,  m)  GLDAS  as  the  reference  data;  (b,  e,  h,  k,  n)  BCC-CSM2-MR  and  the  pattern  correlation  coefficients  with
GLDAS; (c, f, i, l, o) BCC-CSM1.1m and the pattern correlation coefficients with GLDAS.
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Northeast  China,  and  the  Yangtze–Huaihe  River  basin,
which  are  basically  the  same  as  the  areas  of  large  BCC
model–GLDAS differences mentioned above.

Figure  3 compares  the  standard  deviations  of  the  cli-
mate mean surface SM over Eurasia in terms of their annual
mean and in the different seasons between the BCC model
simulations and the GLDAS data. GLDAS shows that the lar-
ger  standard  deviations  tend  to  be  found  at  high  latitudes
and  in  part  of  central  Asia,  and  clearly  during  winter  and
spring (Figs. 3d and g). This illustrates that the surface SM
over  these  regions  varies  greatly  and  is  spread  out  over  a
wider  range  in  winter  and  spring.  Conversely,  the  vari-
ations  of  surface  SM in  the  low–middle  latitudes  are  quite
small,  as  illustrated  by  the  relatively  lower  standard  devi-
ations over these areas. Gu et al. (2019) indicated that signific-

antly lower SM is generally found in Russia and northeast-
ern  Asia,  which  are  similar  to  the  areas  with  large  vari-
ations in Figure 3. It appears that both BCC-CSM2-MR and
BCC-CSM1.1m  are  able  to  capture  the  spatial  patterns,
except that the amplitudes of variation are relatively weaker
than  in  GLDAS.  For  instance,  the  standard  deviation  over
western Siberia during winter is supposed to exceed 6 kg m−2

(Fig. 3d), but the simulated values in the BCC models range
between  4  kg  m−2 and  5  kg  m−2.  Despite  the  underestima-
tions  to  a  certain  extent,  BCC-CSM2-MR  has  made  pro-
gress  in  terms  of  the  standard  deviation  distributions,  with
higher pattern correlation coefficients than BCC-CSM1.1m
in the annual mean and most seasons. The average pattern cor-
relation coefficient increases by 4%, from 0.81 to 0.84. There-
fore,  BCC-CSM2-MR is  better  at  describing  the  variations

 

 

Fig. 2. Differences in climate mean surface soil moisture (units: kg m−2) between GLDAS and BCC simulations on annual
and  seasonal  time  scales:  (a,  d,  g,  j,  m)  differences  and  RMSEs  between  GLDAS  and  BCC-CSM2-MR;  (b,  e,  h,  k,  n)
differences and RMSEs between GLDAS and BCC-CSM1.1m; (c, f, i, l, o) differences between BCC-CSM2-MR and BCC-
CSM1.1m.
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of surface SM.
We  also  calculate  the  differences  of  the  aforemen-

tioned standard deviations over Eurasia. Although the differ-
ence patterns between BCC-CSM2-MR and GLDAS are sim-
ilar to those between BCC-CSM1.1m and GLDAS in terms
of  their  annual  mean (Figs.  4a and b),  the discrepancies  of
BCC-CSM2-MR  are  less  significant  than  those  of  BCC-
CSM1.1m in the four seasons, especially in western Siberia
and central Asia during spring, summer and winter, because
the  areas  and  absolute  negative  values  decrease.  That  is  to
say,  there  is  a  certain  underestimation  in  BCC-CSM1.1m
when describing the standard deviations of SM. In addition,
BCC-CSM2-MR  is  more  skillful  than  BCC-CSM1.1m  in
terms of RMSE. The RMSE values of BCC-CSM2-MR are
distinctly  lower  than  those  of  BCC-CSM1.1m  in  terms  of
their  annual  mean  and  all  seasons.  The  average  RMSE

reduces by 15.6%, from 1.56 to 1.35. This demonstrates that
BCC-CSM2-MR is more capable of describing the spatial dis-
tributions  of  surface  SM  standard  deviations,  with  fewer
biases. From the rightmost panel of Fig. 4, we can see that
the  reason  for  the  better  performances  in  BCC-CSM2-MR
is that the standard deviations described in BCC-CSM2-MR
are  systematically  greater  than  those  in  BCC-CSM1.1m.
This overcomes the defect of the underestimation in the previ-
ous generation, hence allowing BCC-CSM2-MR to present
the  degree  of  surface  SM  variation  more  accurately,  espe-
cially in the middle and high latitudes.

To make the results of the comparison more robust, we
also  employ  a  station-based  observational  SM  dataset  in
China as the reference data. Due to the relatively greater num-
ber of missing values in the cold seasons, Fig. 5 only shows
the difference patterns of the climate mean SM and the distri-

 

 

Fig. 3. Standard deviations of climate mean surface soil moisture on annual and seasonal time scale: (a, d, g, j, m) GLDAS
as  the  reference  data;  (b,  e,  h,  k,  n)  BCC-CSM2-MR  and  the  pattern  correlation  coefficients  of  standard  deviations  with
GLDAS; (c, f, i, l, o) BCC-CSM1.1m and the pattern correlation coefficients of standard deviations with GLDAS.
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butions of the standard deviations in summer; the results of
the annual mean and other seasons are listed in Tables 2 and
3.  From Figs.  5a and b,  we  can  see  that  the  SM  over  the
Yangtze–Huaihe  River  basin  and  Northeast  China  simu-
lated by BCC-CSM1.1m is obviously wetter than observed,
but  this  situation  improves  in  BCC-CSM2-MR. Figure  5c
shows  that  through  revising  the  overestimations  over  the
regions  mentioned  above  in  the  previous  generation,  the
biases of  the climate mean SM relative to observations are
less  severe  in  BCC-CSM2-MR.  The  reduction  in  RMSE
(from 10.92 to 9.62) also demonstrates that the ability of the
model simulation has been improved. It is worth noting that
the patterns shown in Figs. 5a–c are consistent with the pat-
terns in Fig. 2, where the reference data are from GLDAS.
Figures 5d and e show that both BCC-CSM1.1m and BCC-

CSM2-MR can capture the pattern of variation in SM over
North China as being larger than in other areas, but the amp-
litudes are smaller  than those of  the observations to differ-
ent  degrees.  However,  BCC-CSM2-MR  (standard  devi-
ation: 2.04) still performs better than BCC-CSM2-MR (stand-
ard  deviation:  1.63),  based  on  the  closer  average  standard
deviation  to  that  of  the  observations  (standard  deviation:
3.22).  The  simulations  of  BCC-CSM2-MR in  terms  of  the
annual  mean  and  the  other  seasons  are  also  improved
(Tables 2 and 3).

3.1.2.    EOF analysis

The  spatial  features  of  surface  SM  anomalies  over
Eurasia from 1979 to 2012 are analyzed by using the EOF
method. Figure  6 displays  the  first  two  principle  compon-

 

 

Fig. 4. Differences in standard deviations of mean surface soil moisture between GLDAS and model simulations on annual
and  seasonal  times  scales:  (a,  d,  g,  j,  m)  differences  and  RMSEs  between  GLDAS  and  BCC-CSM2-MR;  (b,  e,  h,  k,  n)
differences and RMSEs between GLDAS and BCC-CSM1.1m; (c, f, i, l, o) differences between BCC-CSM2-MR and BCC-
CSM1.1m.
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ents of the EOF analysis of GLDAS and the BCC model simu-
lations.  The  EOF1  pattern  in  GLDAS,  which  explains
34.1% of the variance (Fig. 6a), shows that there are signific-
ant negative signals in the western Siberia, central Asia and
the  Kamchatka  region,  while  other  areas  in  Eurasia  are
covered by weak positive signals. This pattern suggests that
the surface soil tends to getting drier in western Siberia, cent-
ral Asia and Kamchatka region, but slightly wetter in other
areas. In the EOF2 pattern of GLDAS, with an explained vari-
ance of 8.9% (Fig. 6b), there is a large-scale drying trend at
high latitudes and mild wetting trend in other areas. The res-
ults are consistent with previous studies (Dong et al., 2007;
Cheng  et  al.,  2015; Gu  et  al.,  2019).  In  BCC-CSM2-MR,
the  explained  variance  of  the  first  two  principle  compon-
ents reaches 20.0% in total (Figs. 6d and e). The EOF1 pat-
tern of BCC-CSM2-MR that can capture negative values in
western Siberia and central Asia has relatively high similar-
ity  with  the  EOF1  pattern  of  GLDAS.  However,  there  are

still  some  disagreements  between  BCC-CSM2-MR  and
GLDAS  in  the  first  principle  component  over  the  Arctic
coastal  region.  This  area  is  covered  by  positive  values  in
BCC-CSM2-MR, which means the  surface SM there  tends
to be wet. This trend is opposite to that of GLDAS. There-
fore, BCC-CSM2-MR is able to capture the EOF1 spatial pat-
tern  of  GLDAS,  except  at  high  latitudes  in  Arctic  coastal
regions.  The  EOF2  pattern  of  BCC-CSM2-MR,  which
shows that  large-scale  negative  values  cover  the  high latit-
udes,  is  similar to that of GLDAS, except that the gradient
is  not  as  obvious  as  shown  in  GLDAS.  As  for  BCC-
CSM1.1m, EOF1 (Fig. 6g) is unable to capture the spatial pat-
tern  of  drying  at  high  latitudes,  as  shown  in  the  EOF1  of
GLDAS and BCC-CSM2-MR. Neither  western Siberia nor
the Kamchatka region has the signs of a drying trend of sur-
face SM. In the EOF2 pattern of BCC-CSM1.1m (Fig. 6h),
the high latitudes are  covered by negative values,  but  their
area and gradient are relatively smaller. In conclusion, com-
pared to the previous-generation model, BCC-CSM2-MR is
more  skillful  in  describing  the  first  two  principle  compon-
ents  of  the  EOF  analysis  of  the  surface  SM  anomaly  over
Eurasia  from  1979  to  2012.  The  periodogram  estimates  of
the  spectra  of  the  first  principal  component  time  series
(PC1)  of  GLDAS  and  the  BCC  model  simulations  are
shown in the rightmost column of Fig. 6. The spectra above
the red line are approved by the Markov “red noise” test. As
shown  in  the  panel,  the  corresponding  period  of  GLDAS
PC1  is  16.6  years.  For  the  PC1s  of  BCC-CSM2-MR  and
BCC-CSM1.1m,  the  periods  are  13.3  years  and  8.3  years,
respectively. Obviously, the period of PC1 in BCC-CSM2-
MR  is  much  closer  to  that  in  GLDAS.  Therefore,  BCC-
CSM2-MR is more capable of capturing the periodicity char-
acteristics of the SM variation.

Table  2.   RMSEs between  observations  and  the  BCC models  in
terms of climate-mean SM.

Annual DJF MAM JJA SON

BCC-CSM2-MR 11.04 13.04 9.21 9.62 10.71
BCC-CSM1.1m 13.21 14.63 11.16 10.92 12.53

Table  3.   Mean  standard  deviations  of  the  observed  and  BCC-
modeled SM.

Annual DJF MAM JJA SON

Observations 1.99 3.40 3.17 3.22 3.44
BCC-CSM2-MR 0.97 1.77 1.59 2.04 1.84
BCC-CSM1.1m 0.77 1.39 1.13 1.63 1.44

 

 

Fig. 5. Differences in climate mean surface soil moisture between observations and BCC simulations over China in summer
and the standard deviations of three datasets: (a–c) differences and RMSEs; (d–f) standard deviations.
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3.2.    Evaluation  of  BCC-CSM2-MR  among  CMIP6
models

We also compare the performance of BCC-CSM2-MR
over Eurasia and China on annual and seasonal time scales
with  the  other  models  participating  in  CMIP6,  by  using
centered  pattern  correlation  (computing  anomalies  from  a
central mean) and “amplitude of variations” (relative stand-
ard deviation). To make the comparison more comprehens-
ive,  BCC-CSM1.1m,  the  previous-generation  model  of
BCC-CSM2-MR  that  participated  in  CMIP5,  is  also  taken
into  account.  Taylor  diagrams  (Taylor,  2001)  are  used  to
provide a visual representation of the aforementioned metrics.

Centered  pattern  correlations  between  the  surface  SM
simulated by the models and GLDAS are indicated by the azi-
muthal position of each dot in the Taylor diagrams. For the
simulated annual mean surface SM (Fig. 7a), the dots are rel-
atively  scattered.  Correlations  generally  fall  between  0.6
and 0.9 and tend to be clustered around 0.7. Compared with
other  CMIP6  models,  BCC-CSM2-MR  (r =  0.77),  second
only  to  EC-Earth3-Veg  (r =  0.83)  and  MRI-ESM2-0  (r =
0.78), performs at a high level. BCC-CSM2-MR also shows
marked  progress  in  correlation  compared  with  BCC-
CSM1.1m (r = 0.62), with a rate of increase of 24.2%. In dif-
ferent  seasons  (Figs.  7b–e),  although  the  correlations
between the CMIP6 models and GLDAS are more variable,
BCC-CSM2-MR is  still  well  ahead  of  most  models.  Espe-
cially in winter (Fig. 7b), BCC-CSM2-MR has the highest cor-
relation coefficient with GLDAS (r = 0.77). Also, the coeffi-

cients  of  BCC-CSM2-MR  are  obviously  higher  than  those
of BCC-CSM1.1m in all  seasons.  The radial  distance from
the origin represents the standard deviation of the model simu-
lation relative to the standard deviation of GLDAS (σ sim /
σ obs). The closer to 1 the ratio is, the fewer biases in simulat-
ing SM variations  the  models  have.  In  terms of  the  annual
mean (Fig. 7a), most models overestimate the standard devi-
ation  of  surface  SM  considerably,  with  ratios  above  1.25.
BCC-CSM2-MR (σ sim / σ obs = 0.83) is one of the mod-
els  able  to  give  a  comparatively  accurate  representation  of
the  standard  deviation.  Meanwhile,  compared  with  BCC-
CSM1.1m  (σ sim  / σ obs  =  1.24),  BCC-CSM2-MR  also
does a better job. During different seasons (Figs. 7b–e), the
ratios  of  BCC-CSM2-MR  are  between  0.77  and  0.88  (the
average ratio is 0.81), which places BCC-CSM2-MR at a bet-
ter  level  among  the  CMIP6  models  (the  average  ratio  is
1.48) in representing similar standard deviations to GLDAS.
However, compared to the previous-generation model, with
slight  overestimation  (average  ratio  of  1.15),  the  improve-
ments of BCC-CSM2-MR are not that obvious.

For  the  area  of  China,  the  dots  in Fig.  8 are  more
clustered than in Fig.  7,  which means  that  the  models  per-
form  relatively  consistently  over  China.  For  the  annual
mean  surface  SM  (Fig.  8a),  the  correlation  coefficients  in
the  model  simulations  fall  between  0.4  and  0.8.  BCC-
CSM2-MR (r =  0.61)  is  at  the  mid-upper  level  among  the
CMIP6 models. Compared with BCC-CSM1.1m (r = 0.41),
BCC-CSM2-MR has made an evident improvement.  In the

 

 

Fig.  6.  The  first  two  EOFs  of  annual  mean  soil  moisture  and  periodogram estimates  of  the  spectra  of  the  PC1s:  (a,  d,  g)
EOF1 for  GLDAS, BCC-CSM2-MR and BCC-CSM1.1m, respectively;  (b,  e,  h)  EOF2 for  GLDAS, BCC-CSM2-MR and
BCC-CSM1.1m, respectively;  (c,  f,  i)  periodogram estimates  of  the spectra  of  the PC1s of  GLDAS, BCC-CSM2-MR and
BCC-CSM1.1m (red lines: Markov “red noise” spectrum; green lines: upper confidence bound for Markov; blue lines: lower
confidence bound for Markov).
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four  seasons  (Figs.  8b–e),  the  correlation  coefficients  of

BCC-CSM2-MR  always  fall  within  the  range  of  0.5–0.8.

The average is 0.64, which is higher than that of the CMIP6

models (r = 0.61), showing BCC-CSM2-MR to be more skill-

ful  in  accurately and consistently representing the distribu-

tion of surface SM compared to most of the CMIP6 models.

 

 

Fig.  7.  Taylor  diagrams  for  model-simulated  surface  soil  moisture  based  on  GLDAS  over  Eurasia:  (a)  annual  mean;  (b)
winter; (c) spring; (d) summer; (e) autumn.

 

 

Fig.  8.  Taylor  diagrams  for  model-simulated  surface  soil  moisture  based  on  GLDAS  over  China:  (a)  annual  mean;  (b)
winter; (c) spring; (d) summer; (e) autumn.

246 IMPROVEMENT OF SM SIMULATION IN BCC-CSM2-MR VOLUME 38

 

  



Meanwhile,  BCC-CSM2-MR takes  the  lead  in  comparison
with  BCC-CSM1.1m  (average  correlation  coefficient  is
0.40).  As  for  the  ratios  between  the  standard  deviations  of
the  model  simulations  and  those  of  the  reference  data,  the
advantages  of  BCC-CSM2-MR  are  highlighted.  The  ratios
of BCC-CSM2-MR are generally around 0.7–0.8 which are
the  closest  to  1  among  all  the  CMIP6  models.  This  indic-
ates that BCC-CSM2-MR can capture the variability of the
surface SM properly and maintain a minimum bias relative
to  the  reference  data.  Compared  with  BCC-CSM1.1m,
BCC-CSM2-MR carries forward the advantage of a similar
standard deviation to that of GLDAS, and a slight improve-
ment  to  the  overestimation  of  the  previous-generation
model.

In  general,  compared  with  other  CMIP6  models  and
BCC-CSM1.1m,  BCC-CSM2-MR  is  more  competent  in
describing the distributions and variations of annual and sea-
sonal  SM,  as  shown  by  the  relatively  higher  centered  pat-
tern correlation and standard deviation that is closer to that
of the reference data, either in Eurasia or China.

3.3.    Role of precipitation in soil moisture simulation

The  above  analysis  shows  that  BCC-CSM2-MR  has
made certain progress in the simulation of surface SM com-
pared to BCC-CSM1.1m. This might benefit from improve-
ments to parameterization schemes in the component mod-
els, especially the land model implemented in BCC-CSM2-
MR (Wu et al., 2019), such as the inclusion of a variable tem-
perature  threshold  to  determine  soil  water  freeze–thaw,
rather than a fixed temperature of 0 °C, a better calculation
of  snow  cover  fraction,  and  so  on  (Li  et  al.,  2019).  In  the
actual process of land–atmosphere coupling, there are many
elements that have effects on the variations of SM, such as
precipitation,  temperature,  wind,  etc.  Among  these  ele-
ments, precipitation is well known as the most vital and has
thus been widely studied.  The wetting of  soil  by precipita-
tion, identified as the first part of the land–atmosphere feed-
back of water, is straightforward and intuitive and indisput-
ably occurs in nature (Koster et al., 2003, 2004; Tawfik and
Steiner, 2011). Numerous studies have shown that precipita-
tion is the most direct and vital among the factors affecting
SM. Zhang et al.  (2008) used analysis data of precipitation
and  SM  from  GLDAS  and  pointed  out  that  the  strong
land–atmosphere coupling lies mainly in semi-humid forest
to  grassland  transition  zones  or  in  arid  to  semi-arid  trans-
ition  zones,  including  central  Eurasia,  northern  China,  etc.
Research has also shown that the interaction between precipit-
ation and SM exists in atmospheric general circulation mod-
els (Oglesby and Erickson III, 1989; Dirmeyer, 2000).

The SM procedure adopted in BCC-CSM is almost the
same as that in the NCAR Community Land Model (Oleson
et  al.,  2004).  SM  is  governed  by  infiltration,  surface  and
sub-surface runoff, gradient diffusion, gravity, and root extrac-
tion through canopy transpiration. For one-dimensional ver-
tical  water flow in soils,  the conservation of mass is  stated
as 

∂θ

∂t
= −∂q
∂z
− e, (1)

where θ is the volumetric soil water content, t is time and z
is height above some datum in the soil column, q is the soil
water flux, and e is the evapotranspiration loss. In the coup-
ling between the land model and atmospheric model, liquid
and  solid  precipitation  from  the  atmospheric  model  will
have  an  important  effect  on q and  subsequently  influence
the  simulation  of  SM.  Therefore,  the  improvements  in  SM
simulation in BCC-CSM2-MR may be attributable to a bet-
ter  simulation  of  precipitation.  Influences  of  precipitation
on SM in the models are thus discussed as follows.

Differences in the climate mean of the surface SM (c.f.
Fig. 2) have shown that there are three regions where the dif-
ference  values  are  significantly  improved:  Siberia
(55°–64°N,  60°–87°E),  Northeast  China  (40°–50°N,  120°–
135°E),  and  the  Yangtze–Huaihe  River  basin  (28°–33°N,
110°–121°E).  The  difference  values  in  these  three  regions
decrease by 32.7%, 30.0% and 20.6%, respectively. Hence,
we  select  these  three  subregions  (see  the  black  sectors  in
Figs. 2a–c) and the whole of Eurasia as target areas to invest-
igate the possible reasons behind the improvement in SM sim-
ulation, which has been linked with precipitation.

Figure 9 shows the correlation coefficients between the
time  series  of  the  annual  mean  surface  SM  and  precipita-
tion in the reference data (GLDAS for SM, CMAP for precip-
itation) and the BCC model simulations. In GLDAS/CMAP,
the  correlation  coefficients  range  between  0.35  and  0.60,
which  are  statistically  significant  at  the  95%  confidence
level  according  to  the  Student’s t-test.  As  for  the  BCC
model  simulations,  the  correlation  coefficients  are  gener-
ally  significant  in  most  areas  except  the  whole  of  Eurasia.
For Eurasia, which of course covers a wide range of longit-
udes and latitudes, the factors that influence SM in are more
complex and diverse. Therefore, this complicated land–atmo-
sphere interaction makes the proportion of the influence of
precipitation on SM smaller and the correlation coefficients

 

Fig. 9. Correlation coefficients between the annual mean time
series  of  soil  moisture  and  precipitation  of  BCC-CSM2-MR,
BCC-CSM1.1m  and  reference  data  (GLDAS/CMAP)  over
Eurasia  (EA),  Siberia  (SIB),  Northeast  China  (NEC)  and  the
Yangtze–Huaihe River basin (YH).
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between them to be reduced further. Coupled climate mod-
els  may  not  properly  capture  the  complicated  relationships
between SM and factors of influence, and perhaps may even
weaken  the  influence  of  precipitation  excessively.  Hence,
the  correlation  coefficients  in  the  BCC  model  simulations
are quite low and even non-significant. As for the three subre-
gions,  the  correlation  coefficients  of  BCC-CSM2-MR  in
Siberia,  Northeast  China  and  the  Yangtze–Huaihe  River
basin  are  0.49,  0.67  and  0.87,  respectively,  while  those  of
BCC-CSM1.1m  are  0.60,  0.78  and  0.89,  respectively.  The
former  is  apparently  lower  than  the  latter  and  much  closer
to  the  coefficients  in  GLDAS\CMAP  (r =  0.52,  0.59  and
0.49,  respectively).  That  is  to  say,  the  proportion  of  influ-
ence  of  precipitation  on  surface  SM in  BCC-CSM2-MR is
not  as  much  as  in  BCC-CSM1.1m.  As  seen  on  the  annual

time scale, the coefficients of BCC-CSM2-MR are more con-
sistent with those of the reference data on the seasonal scale
(not shown here). In other words, compared with the previ-
ous-generation model, BCC-CSM2-MR is able to represent,
relatively  realistically,  the  relationship  between  precipita-
tion and surface SM in these three subregions.

The anomalies of surface SM in GLDAS and the BCC
models, in conjunction with corresponding anomalies of pre-
cipitation in CMAP and the BCC models, over Eurasia and
the  three  subregions,  are  shown in Fig.  10.  In  Eurasia,  the
SM responses in GLDAS are positively correlated with the
precipitation  variations  in  CMAP (Fig.  10a).  By  analyzing
the slope of the regression line, we can conclude that BCC-
CSM2-MR is able to represent the correlation with a posit-
ive linear regression coefficient, but BCC-CSM1.1m shows

 

 

Fig.  10.  Scatterplots  showing  the  anomalies  of  soil  moisture  in  the  reference  data  and  BCC  models,  in  conjunction  with
corresponding  changes  in  precipitation,  over  (a)  Eurasia  (EA),  (b)  Siberia  (SIB),  (c)  Northeast  China  (NEC)  and  (e)  the
Yangtze–Huaihe River basin (YH).
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an opposite correlation with a negative linear regression coef-
ficient.  In  the  three  subregions  (Figs.  10b–d),  the  dots  are
not as spread as they are in Eurasia. This means that precipita-
tion  anomalies  play  a  more  obvious  and  important  role  in
increasing  SM.  In  general,  the  regression  lines  in  BCC-
CSM2-MR are closer to those in the reference data, as indic-
ated  by  the  similar  spacing  and  trends  of  the  dots.  Taking
Northeast China as an example, the linear regression coeffi-
cient  of  GLDAS\CMAP  is  0.58,  while  the  coefficients  of
BCC-CSM2-MR  and  BCC-CSM1.1m  are  0.67  and  0.77,
respectively.  Obviously,  the former is  closer than the latter
to the reference data. Therefore, compared to the previous ver-
sion, BCC-CSM2-MR is more skillful in describing the rela-
tionship between precipitation and surface SM variations.

We also evaluate the RMSE values of the mean precipita-
tion between CMAP and the BCC model simulations on the
annual  time  scale  (Table  4).  The  RMSEs  of  BCC-CSM2-
MR are lower than those of BCC-CSM1.1m to some extent.
For  Eurasia,  the  RMSE  of  the  annual  mean  decreases  by
9.6%,  from  1.14  (BCC-CSM1.1m)  to  1.03  (BCC-CSM2-
MR).  In  the  three  subregions,  the  RMSEs  of  BCC-CSM2-
MR tend to be obviously lower. The Yangtze–Huaihe River
basin  is  the  region  with  the  most  obvious  improvement,
where the RMSE is reduced by 40.4%. The progress is also
significant  on  the  seasonal  time  scale  (not  shown  here).
Hence,  BCC-CSM2-MR  is  generally  more  skillful  than
BCC-CSM1.1m in realistically representing the variation of
precipitation, as shown by the smaller deviation between the
simulation and CMAP.

From  the  above  analyses,  BCC-CSM2-MR  is  better
able  to  properly  describe  the  correlation  between  the  sur-
face  SM and precipitation,  the  response  of  the  surface  SM
variation to precipitation anomalies, and the variation of pre-
cipitation. These qualities may contribute to the better simula-
tion of surface SM in BCC-CSM2-MR.

4.    Summary and discussion

This study has evaluated the surface SM simulations of
BCC-CSM2-MR over Eurasia on annual and seasonal time
scales and compared them with its previous-generation ver-
sion (BCC-CSM1.1m) and other CMIP6 models, as well as
with  GLDAS  and  station-based  observations  as  reference
data,  and further  discussed the  possible  reasons  behind the
improvement in surface SM simulations in relation to precipit-
ation. The conclusions can be summarized as follows:

BCC-CSM2-MR, which is participating in CMIP6, has
clearly  improved  SM  simulations  compared  with  BCC-
CSM1.1m, part of CMIP5, not only in terms of spatial distri-
butions  of  the  climate  mean  surface  SM,  with  higher  pat-

tern  correlations  with  GLDAS,  but  also  in  terms  of  obvi-
ously  reduced  RMSEs.  The  standard  deviations  of  BCC-
CSM2-MR also have closer spatial distributions to those of
the reference data, and the RMSEs are generally lower. The
first two principle components of BCC-CSM2-MR are able
to capture the spatial patterns shown as EOF1 and EOF2 of
GLDAS, while BCC-CSM1.1m struggles to describe the char-
acteristics  properly.  Compared  with  the  8.3-year  period  of
PC1 shown in  BCC-CSM1.1m,  the  period  in  BCC-CSM2-
MR (13.3 years) is closer to that in GLDAS (16.6 years).

Among the other models participating in CMIP6, BCC-
CSM2-MR performs well in statistical diagnostics. The aver-
age centered correlation coefficient of BCC-CSM2-MR (r =
0.77) is the third highest among the CMIP6 models. The aver-
age relative standard deviation is 0.83, closer to that of the ref-
erence  data,  which  surmounts  the  overestimations  in  most
of the CMIP6 models.

The possible reasons behind the improvement in BCC-
CSM2-MR, as related to precipitation, have been discussed.
BCC-CSM2-MR simulates correlation coefficients and regres-
sion coefficients that are closer to those of GLDAS\CMAP.
The simulation of  precipitation by BCC-CSM2-MR is  also
improved in terms of the RMSE.

In addition to the above conclusions, we found that the
improvement of BCC-CSM2-MR differs from season to sea-
son.  Specifically,  the  performances  in  autumn  and  winter
are  better  than  in  spring  and  summer.  Taking  the  simula-
tions of the climate mean SM for example, the pattern correla-
tion coefficient between model and reference data increases
by 4.3%, from 0.93 to 0.97, in autumn and winter, which is
higher than that the rate of 3.7% in spring and summer. The
reduction in RMSE is 8.0% in autumn and winter,  while it
is  6.6% in  spring and summer.  The different  performances
between the cold and warm seasons are possibly related to
the  optimization  of  parameterization  schemes.  In
BCC_AVIM1.0  (the  land  component  in  BCC-CSM1.1m),
liquid water freezes when the soil temperature decreases to
0°C, and the soil temperature will remain at 0°C until all the
liquid  water  has  frozen.  However,  liquid  water  can coexist
with  ice  in  the  real  world  when  the  soil  temperature  is
below 0°C. The relationship between soil water content and
soil  temperature is  determined by the inherent characterist-
ics  of  soil  hydraulics  and  the  thermodynamic  equilibrium
between  soil  water  potential  and  soil  temperature.  There-
fore, the method to calculate the soil freeze–thaw critical tem-
perature  used  by Li  and  Sun  (2008) is  adopted  in
BCC_AVIM2.0  (the  land  component  in  BCC-CSM2-MR)
to  replace  the  unreasonable  assumption  used  in
BCC_AVIM1.0.  In  addition,  the  parameterization  of  snow
cover  fraction  in  BCC_AVIM2.0  is  also  adjusted  for  the

Table 4.   RMSEs between the BCC models and CMAP data of annual mean precipitation over Eurasia and four subregions.

Eurasia (10°–80°N,
30°–160°E)

Siberia (55°–64°N,
60°–87°E)

Northeast China (40°–50°N,
120°–135°E)

Yangtze–Huaihe River basin
(25°–33°N, 110°–121°E)

BCC-CSM2-MR 1.03 0.24 0.36 0.81
BCC-CSM1-1-m 1.14 0.28 0.47 1.36
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absence  of  fluctuating  topography  by  taking  into  account
the  subgrid  variability  of  topography  in  a  model  grid  cell
(Li et al., 2019). Thus, the optimization for the parameteriza-
tion  schemes  of  soil  freeze–thaw  processes  and  the  snow
cover fraction may result in BCC-CSM2-MR performing bet-
ter in its autumn and winter season simulations.

Also  of  note  is  that  the  performance  of  BCC-CSM2-
MR improves differently in different regions. Possible reas-
ons related to parameterization schemes are discussed here.
In Fig. 2, the areas with significant improvement are mostly
located in Eurasian mid–high latitudes (Siberian region and
Northeast  China).  For  the  relatively  higher  latitudes,  pro-
cesses related to snow cover and soil water freeze–thaw are
more  significant  and  important  than  in  the  low  latitudes.
Therefore,  the  upgrading  of  related  parameterization
schemes mentioned above will make more obvious improve-
ments  in  the  high  latitudes.  It  is  worth  noting  that  the
Yangtze–Huaihe River basin is also an area showing signific-
ant  improvement.  This  area  is  the  main  rice  production
region in China. The interactions between such agricultural
land  and  the  overlying  atmosphere  play  an  important  role,
where  surface  latent  heat  flux  values  are  relatively  large.
However,  the  plant  functional  type  of  “crop ”  in
BCC_AVIM1.0  to  represent  rice  paddies  will  underestim-
ate the amount of surface evaporation, which is the import-
ant link between SM and the atmosphere. A new scheme for
rice paddy fields was developed in BCC_AVIM2.0 to incor-
porate  the  addition  of  surface  water  above  soil  (Li  et  al.,
2019).  The  essential  difference  in  the  calculation  of  latent
heat  flux  between  BCC_AVIM2.0  and  the  original  crop
scheme in BCC_AVIM1.0 lies in that there is no limit to the
evaporation  from  a  rice  paddy  in  BCC_AVIM2.0.  There-
fore, the optimization of the parameterization over rice pad-
dies  may  result  in  the  model  improvement  in  the
Yangtze–Huaihe River basin.

However,  there are still  some limitations in this  study.
First, we applied bilinear interpolation to regrid both the simu-
lation  data  and  reference  data  into  a  uniform  resolution  of
1°  ×  1°  to  make  the  evaluation  more  convenient,  which
might  have  affected  the  conclusions  to  a  certain  degree
because of the inhomogeneity of SM. Although bilinear inter-
polation  is  a  simple  method  and  commonly  used  (Crow et
al., 2012; Hsu et al., 2013; Yuan and Quiring, 2017), apply-
ing  a  more  advanced  downscaling  or  interpolation  tech-
nique may provide better estimates of model-simulated SM.
Second,  this  study  has  only  discussed  the  correlation
between SM and precipitation. In fact, the improvements in
related land surface process schemes are also important,  as
well  as  the  land–atmosphere  coupling  in  other  component
models,  and  so  precipitation  is  merely  one  of  the  most-
related factors. Other factors need more and further investiga-
tions in the future.
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