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Abstract
As a general rule, the development of specific processing algorithms requires to accurately simulate data of interest by gen-
erating it as close as possible to the reality. In digital holographic interferometry and related approaches, the experimental 
phase data that are used for metrology purposes are corrupted by the speckle decorrelation noise. Thus, they require to be 
processed with advanced algorithms. To check the performances of de-noising algorithms before applying to real experimen-
tal data, simulations have to be carried out to provide quantitative errors and other related metrics of those performances. 
In litterature, many published papers dealing with the problem of phase de-noising in digital holographic interferometry 
consider Gaussian statistics and the hypothesis of noise stationarity, for simulating test data. However, considering the point 
spread function of digital holographic imaging systems, the noise in the phase data does not follow the Gaussian statistics. 
This means that considering Gaussian noise in data simulations is to make a big mistake on the nature of the noise in the 
holographic system. Therefore, in this paper, one aims at demonstrating that the Gaussian statistics are not well appropriated 
for simulating noise in holography, because such an approach systematically overestimates the performances of the algo-
rithms. Then, using appropriate metrics such as mean standard deviation error, quality index, and peak-signal-to-noise-ratio, 
the paper demonstrates that the realistic speckle noise must be taken into account and correctly simulated for benchmarking 
overall algorithm performances.

1 Introduction

Digital holography is an efficient method for metrology, both 
at the micro- and macro-scales [1]. Holographic phase imag-
ing measures the optical path length related to the scene/
object/structure of interest and the relevant data are wrapped 
modulo 2π phase that can be advantageously used for several 
purposes in basic research or industry: roughness measure-
ments [2], surface shape profiling [3], surface deformation 
[4], or vibration measurements [5]. The method of holo-
graphic interferometry has the advantage of being contact-
less and non-intrusive by the use of light illumination but 
also provides full-field measurements. With the advent of 

very high-speed sensors, high temporal resolution can be 
obtained [5]. Thus, the approach is adapted to investigate 
fundamental properties of transient mechanical waves propa-
gating in complex metamaterials [6]. The recent advent of 
long-wavelength infrared digital holography allows large 
deformation measurements, which are of interest for wide-
field investigations [7]. In addition, such advances desen-
sitize holographic measurement, since the wavelength is 
increased by a factor of almost 20 [4].

From the practical point of view, the change in the optical 
phase from digitally reconstructed holograms is of interest 
and is obtained modulo 2π. Basically, the speckle pattern 
produced from the object surface under coherent illumina-
tion is modified and changed from its initial state. It fol-
lows that the phase from holograms is also speckled. As 
a consequence, speckle decorrelation noise in included in 
phase changes, requiring advanced filtering to get noise-free 
phase maps [8, 9]. For that, a huge litterature related to the 
problem of de-noising in digital image processing is avail-
able. In addition to the de-noising problem, unwrapping of 
the modulo 2π phase is required to get a continuous phase 
map which is generally proportional to the measurand of the 
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phenomenon under interest. Similarly as for de-noising, in 
litterature, a large diversity of unwrapping approaches can be 
found, each having its own specificities versus noise in phase 
maps, phase dislocations, or phase-fringe density.

For researchers and engineers, the development of spe-
cific processing algorithms requires to accurately simulate 
the phase data from digital holographic metrology. This 
point is a key point, because, as a geneal rule, performances 
of processing algorithms depend on the data used for the 
test of performances. The phase noise in data from holo-
graphic metrology and related approaches (shearography, 
speckle interferometry) is unconventional, since it has for 
figures of merit; first, the noise does not follow Gaussian 
statistics [10], second, the noise is amplitude-dependent 
(i.e., depends on the fringe density) [11], third, the noise 
is spatially correlated (its correlation length refers to the 
speckle grain size) [12], and fourth, the noise is anisotropic 
(i.e., depends on the sensor geometry) [13]. These have for 
consequences that the speckle noise in phase data is not 
stationary as can be the case for classical noises such as 
the photon noise, the electronic noise, or the quantization 
noise. It follows that realistic simulations of speckle phase 
noise to evaluate the performances of advanced processing 
algorithms have to consider the specificities of such a noise. 
However, without taking into account this physical reality, 
several papers related to the problem of phase de-noising in 
digital holographic interferometry did consider simulations 
with basic noise with Gaussian statistics with the hypothesis 
of stationarity [15–18]. In those papers, random Gaussian 
noise is added to the phase data to produce noisy modulo 
2π phase maps. Therefore, this appears to be far from the 
reality, which is driven by light propagation and diffraction.

Therefore, this paper aims at demonstrating that the basic 
Gaussian noise is not well appropriated for simulating noise 
in holographic metrology, but that the realistic speckle noise 
must be taken into account according to the physics of the 
phenomenon. The paper is organized as follows: Sect. 2 pre-
sents the theoretical basics for realistic speckle noise simu-
lations and Sect. 3 presents the methodology we followed 
for the demonstration. Section 4 presents the results of the 
comparison. Section 5 draws the conclusion of the study.

2  Basics of realistic noise simulations

2.1  Goal

The main objective of realistic simulations of speckle 
decorrelation noise is to yield phase maps including phase-
fringe patterns corrupted with noise having rigorously 
the same properties as in real holographic systems. The 
simulated speckle noise must have the adequate probabil-
ity density function (non-Gaussian) as well as correlation 

length corresponding to usual values for off-axis/on-axis 
digital holography. In addition, it has to be amplitude-
dependent (dependent on the local fringe density) and 
according to the symmetry of the holographic system 
(possibly being anisotropic). At this point, for non-expert 
readers, we aim at giving few rapid explanations why the 
speckle noise does not follow Gaussian statistics and why 
it is dependent on the fringe density. We invite readers to 
consider papers [8, 11–13] which exhaustively describe 
the particular properties of the speckle decorrelation noise 
with experimental data supporting the theoretical analy-
sis. The phase computed from digital holograms with an 
arctangent formulae is wrapped in the modulo 2π interval. 
This means it cannot exceed + π or − π, so it statistically 
cannot reach infinite values. This has for consequence that, 
similarly, the decorrelation phase noise cannot exceed + π 
or − π, and that it does not follow Gaussian statistics (that 
would reach values exceeding + π or − π). Note that the 
probability density function of the phase noise is given in 
Eq. (4) in [12]. The decorrelation is amplitude-dependent, 
that is, it depends on the fringe density and fringe orienta-
tion. That was theoretically described in papers [11, 13]. In 
addition, in [13], experimental data perfectly fits theoreti-
cal data, thus clearly demonstrating this particular prop-
erty of the speckle noise in holographic interferometry.

As a general rule, for simulations, a numerical model for 
the fringe pattern is required and can be chosen using classi-
cal mathematical functions such a Gaussian, polynoms, etc. 
This phase-fringe pattern corresponds to the phase change 
at the object surface between the two instants (or expo-
sures). For example, this can be surface deformation due to 
vibration or heating. Generally, the surface deformation is 
related to the phase change by considering the observation 
and illumination conditions in the experimental set-up [1]. 
The simulation needs also to consider the roughness of the 
surface of the numerical object. From the surface roughness 
and deformation, two complex-valued fields can be com-
puted, the first including the roughness, i.e., A1 = A0exp(iψ0), 
and the last including both roughness and surface deforma-
tion, i.e., A2 = A0exp(iψ0 + i∆ψ), ∆ψ being the phase change. 
Those two wavefronts are then propagated to the image 
plane through the digital holographic system. To get the 
phase change due to surface deformation and including the 
speckle noise decorrelation, the phase difference between 
the two propagated optical fields is calculated. According to 
the theoretical approaches for digital holography, and more 
generally for optical system, the holographic system can be 
considered as a filtering process between the initial object 
plane and the output image plane [1, 13, 14]. Therefore, 
the computation of the propagation of the two optical fields 
requires modelling for the point spread fonction (PSF) of the 
holographic system. This is discussed in the next subsection.
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2.2  PSF of the digital holographic system

Whatever the optical configuration (Fresnel, Fourier, lens-
less Fourier, image-plane, microscopy) digital holographic 
imaging systems are linear system. Therefore, they can be 
approached using their PSF to describe the close relation 
between the initial object and the final digitally recon-
structed image (complex-valued field). The basic relation 
between input and output optical fields through the linear 
holographic system is given by the convolution relation, 
according to Eq. (1) [1, 10, 12]

For the sake of compactness of the formulas, vector nota-
tion is adopted to designate the cartesian coordinates (x,y) 
of a point as r. In Eq. (1), ⊗ means convolution, A(r) is the 
input complex object field, and Ar(r) is the image provided 
by the full holographic recording and processing. The PSF 
depends on the architecture. For example, for image-plane 
holography [12, 14] with pupil p(r), wavelength λ, and focal 
length f, the PSF is given by Eq. (2) [10]

In this case, if the pupil is circular, then the PSF is iso-
tropic and the noise also does. That means it does not depend 
on the fringe orientation. For the case of digital Fresnel 
holography [14], the PSF is given by Eq. (3) (ignoring the 
active surface of pixels):

with px, py the pixel pitch of the sensor, M, N the number 
of pixels and d0 the distance between the sensor and the 
objet. If M ≠ N or px ≠ py, then the PSF is anisotropic and 
the noise also does. That means it depends on the fringe 
orientation.

As a general rule, the PSF controls the speckle grain size 
in the reconstructed image plane. From a practical point of 
view, the convolution equation Eq. (1) can be computed with 
two-dimensional fast Fourier transforms.

The generation of phase noise in the phase difference can 
be approached from the point of view of spatial frequencies. 
In the pratical configurations, it can be considered that the 
holographic system described by its PSF, due to its limited 
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spatial bandwidth, behaves as a low-pass filter and attenu-
ates the high spatial frequencies corresponding to the strong 
slopes of the surface deformation. It follows that the speckle 
decorrelation noise is related to the modulation transfer func-
tion of the holographic imaging and that noise increases if the 
local slope of surface deformation increases [13]. Holographic 
imaging, as a linear filtering between the physical object and 
the digitally reconstructed image, disturbs the propagation of 
the spatial frequencies related to the deformation slope and 
this has for consequence the increase of the speckle decorrela-
tion in the phase change. Consequently, the attenuation results 
in phase noise in the phase-fringe pattern between the two 
considered instants. Since strong surface deformation induces 
strong surface variations and thus strong deformation slopes 
and high fringe density, the noise is higher in regions where 
the fringe density is high and lower elsewhere.

2.3  Practical computation

For the practical computation to get realistic noisy phase 
maps, the convolution is realized through fast Fourier trans-
form calculations. Equation (1) is expressed in the sens of 
Fourier transforms according to Eq. (4)

where FT means fast Fourier transform and PS̃F is the 
Fourier transform of the PSF. Note that PS̃F can be analyti-
cally known such as with Eq. (2,3) when considering their 
Fourier transforms [11, 13] or could also be numerically 
calculated using the equation of PSF (when known) and fast 
Fourier transform algorithm.

For setting the input optical fields Ai (i = 1,2), the rough-
ness is numerically simulated by considering a random 
surface profile having Gaussian statistics and Dirac delta 
for autocorrelation function. This random surface gener-
ates a random optical phase ψ0 uniformly distributed in the 
[− π, + π [phase range [11]. The complex field at the surface, 
A1, is calculated by considering a uniform amplitude for illu-
mination. The complex field after the surface deformation, 
A2, is computed by A2 = A1exp(i∆ψ). Then, the two images 
fields Ar1 and Ar2 are computed with Eq. (4). Finally, the 
individual phases are extracted and their phase difference 
yields the noisy phase ∆ψn. The noise map is obtained by 
subtracting the noise phase to the theoretical noise-free map.

This way to simulate corrupted phase maps with speckle 
decorrelation noise is the only one to produce realisitic noise 
having the appropriate physical properties.

The next section discusses on the quantitative assessment 
of noise simulations by considering, on one hand, realistic 
noise simulations [11–13] and, on the other hand, classical 
Gaussian noise simulations [15–18].

(4)Ar = FT−1
[

FT[A] × PS̃F
]

,



 S. Montrésor, P. Picart 

1 3

59 Page 4 of 10

3  Methodology

3.1  Databases

To get quantitative appraisal of the influence of the noise in 
the performances of processing algorithms, two databases 
were constitued. They were used to evaluate the perfomances 
of de-noising algorithms from litterature. The two databases 
include 25 phase-fringe patterns divided into 5 patterns and 
5 different signal-to-noise ratios (SNR). The first database 
is obtained by adding stationary Gaussian noise, with the 
adequate SNR, to the noise-free phase data from the model-
ling. In that case, the level of noise is settled so as to get the 
same SNR as those obtained with speckle noise for each 
fringe pattern. Each pattern has its own noise realization. 
In the first database, the local SNR is not depending on the 
local fringe density. The second database is obtained by 
generating realistic speckle noise with non-Gaussian statis-
tics and natural non-stationarity property, as discussed in 
Sect. 2. In the second database, the SNR depends on the 
fringe density and mimics realistic noise conditions, as those 
observed in experimental results [1, 12–14]. Note that for 
each fringe pattern, the SNR are almost equivalent in the two 
databases: the Gaussian noise is adjusted to yield the same 
SNR as given by the speckle simulator according to Eq. (5), 
by adjusting coefficient β

with W[…] the wrapping operator, Φ the noise-free phase 
and n the Gaussian noise. Then, de-noising algorithms are 
applied to the two databases to de-noise the set of phase-
fringe patterns. The phase errors are calculated using the 
noise-free reference phases. The ranking of the algorithms 
according to the phase errors may be generated by consider-
ing metrics.

3.2  Algorithms

The set of algorithms for the analysis was previously 
described in [12] and almost the same set is considered in 
[19–32]. As a brief reminder, the de-noising algorithms are: 
Gaussian filtering, median filtering, SAR filtering, Wiener 
filtering, wavelet thresholding approaches (such as Daube-
chies, symlets, curvelets, contourlets), non-local means fil-
tering (NLMeans), anisotropic diffusion (Diffaniso) BM3D, 
and 2-D windowed Fourier transform filtering (Wtfr2). The 
reader is invited to consider [12] for the panel and details 
about the de-noising algorithms.

The set is completed with “Deep learning” algorithm 
that have been recently developed and applied to de-noise 
phase maps in digital holography [33–35], and with the 

(5)ΦnG = W[Φ + �n],

dualtree wavelet transform [36], which has the advantage 
to yield good performances with very fast computational 
efficiency. A total of 39 selected de-noising algorithms 
were considered for the simulations. To keep clarity in 
figures, we have retained only the best 20 first methods 
considering each metric. Other else, for all simulations 
presented in the paper, the SNR are computed from the 
cosine image of the wrapped phase maps.

3.3  Metrics

The quantitative assessment requires choosing adapted 
metrics. The phase error (σϕ) [12], the Qindex [37] and the 
peak-signal-to-noise ratio (PSNR) [38] were considered 
and are explicited in Eqs. (6, 7, 8) (Fig. 1):

Fig. 1  Schemes of computation processes to generate noisy wrapped 
phase with speckle or Gaussian noise having same input cosine SNR; 
one can observe that in the case of speckle (zoom window), noise is 
dependent on the fringe density, thus being non-stationary: a noise-
free phase, b phase map with added Gaussian noise, c phase map 
with generated speckle noise, d Gaussian noise map with zoom and 
input SNR for cosine with coefficient β  = 0.83 to provide the same 
SNR as the speckle noise, and e speckle noise map with zoom and 
input SNR for cosine at 2.29 dB, similarly as the Gaussian SNR in d 
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In Eq.  (6), we have r = ∆ψ − ∆ψd, with ∆ψ being the 
known reference noise-free phase map and ∆ψd being the 
de-noised phase map. For the Qindex in Eq. (7), µs and µd 
are the mean values of ∆ψ and ∆ψd, σs and σd are their vari-
ances and σsd their covariance. In Eq. (8), mse is the mean-
squared error between the cosine of the reference noise-free 
phase map and the cosine of the de-noised phase map, both 
rescaled in the [0,255] interval.

4  Results

Figure 2 shows the rankings obtained for the two databases 
for the rms phase error. Figure 2a provides the ranking 
when considering the simulated Gaussian noise, whereas 
Fig. 2b provides the ranking for the realistic speckle noise. 
One observes that rankings obtained for both Gaussian and 
speckle noise are very similar. Particularly, rankings of the 
sixth first algorithms remain unchanged.

The best algorithm of the panel is the Wtfr2 [19], fol-
lowed by Deep learning, dual tree wavelet transform, and 
curvelets. However, note that the rms phase error values are 
different: one observes variations of about 25% for the mean 
rms phase error. The rms phase error is underestimated when 
simulating Gaussian noise instead of using realistic speckle 
noise. The consequence is that the performances of all algo-
rithms are overestimated.

Figure 3 provides the rms phase error versus the initial 
SNR in the phase images for 7 selected algorithms from the 
panel: deep learning, BM3D, anisotropic diffusion, symlet 8, 
dual tree wavelet transform, curvelets, and median 11 × 11. 
Figure 3a shows the rms phase error for the Gaussian noise 
and Fig. 3b that for the speckle noise. Both curves exhibit 
a “negative exponential” type shape. The decrease of the 
performance is not uniform over the range of the SNR in 
the database. Especially, one can note that the degradation 
of the performances (increase of the rms phase error) with 
simulated realistic speckle noise is more significant for low 
input SNR than for the Gaussian statistics. This means that 
when simulating noisy phase data using Gaussian statistics, 
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the performances are systemically overestimated, and even 
more for low SNR.

Note also that in Fig. 3b, stationary wavelets (sym8) and 
curvelets exhibit an increase of the rms phase error beyond 
9 dB. Finally, observe that the Median 11 × 11 and sym8 
algorithms both exhibit higher variances than other algo-
rithms for both Gaussian and speckle cases.

Let us consider the Qindex metric: one can notice in Fig. 4 
that rankings exhibit globally the same trends but that there 
do exist small differences. Therefore, if Wtfr2 appears first 
in both rankings, Dtdwt and Deep Learning do not appear 
in the same order in the overall ranking. Compared to the 
rms phase error, BM3D appears farther in both rankings, 
and stationary wavelets appear close to the top first places. 
However, one can see that in terms of values of the met-
ric, algorithms are very close together from rank 4 to rank 
15 whatever the considered noise statistics. These results 
are confirmed in Fig. 5 which exhibits very close trends for 

Fig. 2  Rankings of phase error for the 20 first de-noising algorithms: 
a Gaussian noise and b speckle noise
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the selected algorithms except BM3D and Median 11 × 11 
for the Gaussian case. One observes with Sym8 that the 
decrease of performance in the case of speckle noise is about 
9 dB. Considering Deep Learning, Wtfr2, Dtdwt, and BM3D 
algorithms, the metric are very close and constant in the 
range [8, 12] dB whatever the considered statistics.

In Fig. 6, rankings are obtained when considering the 
PSNR metric. In the six first ranks, the same algorithms 
are found with the same order except BM3D and curvelets 
which are permuted. In the rest of the rankings, one can 
clearly see that families of algorithms are grouped at the 
same place for both statistics. These are, respectively, sta-
tionary wavelets, Frost and NL_means algorithms. Over-
all, the PSNR metric is surrestimated of about 3 dB using 
Gaussian statistics rather than speckle ones, but there are 
strong differences between algorithms. For example, PSNR 
for BM3D is 36 dB with Gaussian noise and 32 dB with 
speckle noise. Considering Deep Learning, the PSNR exhib-
its almost the same values for both statistics, and there does 
exist small underestimation of 0.25 dB in case of the Gauss-
ian noise. This is simply explained by the fact that Deep 

Learning is the only algorithm that has been trained specifi-
cally with speckle noise [33]. Considering Wtfr2, noticeable 
differences do exist between both statistics, and clearly, the 
PSNR is surrestimated of about 3 dB. In Fig. 7, the previous 
remarks are confirmed with trends, and one can clearly see 
that Deep learning exhibits same trends for both statistics for 
the whole range of input SNR. Except Deep learning, one 
can see that all methods among the seven selected exhibit a 
difference of about 2.5 dB for the PSNR between Gaussian 
and speckle cases.

In Figs. 8, 9 and 10, we display only differences of 
metric values versus input SNR, between the Gaussian 
case and the speckle case. For example, in Fig. 8a, each 
bar represents for a given method the average differences 
between the standard phase error computed in cases of 
Gaussian noise and speckle noise. In Fig. 8b, for a given 

Fig. 3  Trends of 7 selected de-noising algorithms for phase error vs 
input cosine SNR: a Gaussian noise and b speckle noise

Fig. 4  Rankings of Qindex metric for 20 de-noising algorithms: a 
Gaussian noise and b speckle noise
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selected method among the 7 displayed, the evolution of 
those differences versus the input SNR are plotted. Fig-
ures 8, 9 and 10 report, for each metric, values of the sub-
traction between statistics and for all algorithms. Then, 
those values were ranked. It appears in Fig. 8a that deep 
learning has a small underestimation in terms of phase 
error and that this trend remains constant over the input 
SNR range (see Fig. 8b). Median 5 × 5 exhibits the same 
results for both statistics and median 21 × 21 exhibits also 
small underestimation. In terms of Quality index, note in 
Fig. 9 that Dtdwt, Wtfr2, and deep learning algorithms 
are not sensitive nor to input SNR neither to statistics. In 
Fig. 9a, large median filters (kernel at 13, 15, or 21) are 
not impacted by the noise statistics. This is due to the fact 
that such methods have strong errors regarding the fringe 
structures, even more than the noise error itself. In Fig. 10, 
ranking of the differences of performances for Gaussian 
and speckle noise exhibits very close results than those 
given in Fig. 8. This is explained by the fact that phase 

error and cosine PSNR are closely linked by an algebraic 
approximation [38].

5  Conclusion

This paper discusses on the influence of the noise statistics 
from the point of view of the performances of de-noising 
algorithms in digital holographic interferometry and other 
related approaches in which the phase map is corrupted by 
speckle decorrelation noise. The discussion of the paper is 
related to the difference of performances when simulating 
noise in the phase data. On one hand, the simulations can be 
carried out according to the physical properties of the optical 
system by taking into account its point spread function. That 
does mimic the physical reality. On the other hand, basic 
noise simulation can be obtained by simply adding Gaussian 

Fig. 5  Trends of 7 selected de-noising algorithms for phase error vs 
input cosine SNR: a Gaussian noise and b speckle noise

Fig. 6  Rankings of PSNR metric for 20 de-noising algorithms: a 
Gaussian noise and b speckle noise
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noise to the phase. That corresponds to what is usually pro-
posed for simulating noise in images, from the general point 
of view. A set of 39 de-noising algorithms from literature 
were chosen and used to process two databases of phase-
fringe patterns.

Gaussian and speckle statistics are considered for the 
comparison of the performances of the algorithms.

Results demonstrate that, although rankings are close 
together whatever the simulated statistics, the standard devi-
ations of the phase errors are different for each algorithm. 
The performances obtained with the Gaussian statistics are 
systemically overestimated compared to those obtained with 
the speckle statistics. This means that if new algorithmic 
approaches are tested with noisy phases obtained with basic 

Gaussian simulations, then the evaluated performances will 
be better than that which would be obtained with real data. 
Thus, this may be a delicate issue for the real-life appli-
cations of the algorithm where the performances will fall 
short of expectations. As a conclusion, for more accurate 
simulations of algorithm perfomances in digital holographic 
interferometry and related methods, the speckle noise sta-
tistics (non-Gaussian, non-stationary, amplitude-dependent, 
possibly anisotropic) need to be considered.

Fig. 7  Trends of 7 selected de-noising algorithms for PSNR vs input 
cosine SNR: a Gaussian noise and b speckle noise

Fig. 8  Difference of performances for Gaussian noise and speckle 
noise for the phase error: a ranking of differences for the 20 algo-
rithms; b trends of differences of phase error vs input cosine SNR for 
7 selected algorithms
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