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Abstract

Beam shape is a key parameter in process optimisation for all laser applications. Among these shapes, a square—flat-top beam
is fundamental and is in high demand. To obtain a beam with an aimed structure, various beam-shaping methods have been
developed. Among them, an adaptive beam-shaping technique that uses phase grating encoded on a spatial light modulator
with spatial frequency filtering in the Fourier plane in a 4f system has been developed. In this paper, using precise and simple
beam shaping to produce a square and flat-top beam, we examine in detail the phase grating structure via simulations. The
directions of the grating vectors inside and outside of the aimed area, i.e. Ky jyige AN Kg_g5iqe> and the normal vectors of the
square and flat-top area, i.e. k; and k,, critically affect the separation of the extracted and residual components on the Fourier
plane. To extract the high spatial frequency component for precise shaping, a non-parallel configuration of the grating vec-
tors to the normal vectors of the square beam is found to be effective. This method ensures precision beam shaping as well
as keeping of pulse width and wavefront over the shaped area.
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In addition to wavelength, pulse width, power, repetition
rate, etc., beam shape is a key parameter in all laser appli-
cations. The square—flat-top beam is in great demand for
uniform surface processing [1-3], ultra-high power laser
facilities [4, 5], skin therapy [6], etc. Considering the high
demand, static and adaptive beam-shaping methods have
been developed. The former methods, such as microlens
array or diffractive diffusers, are simple and cost effective
[7]. On the other hand, the edge steepness and flatness pro-
duced by these methods are relatively poor. In addition, the
wavefront and pulse shape are deformed. In the case of the
latter methods, a computer-generated hologram encoded
on a spatial light modulator (SLM) imaged by a Fourier
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transforming lens can generate a far-field arbitrary pattern
and has been applied to laser processing [8—10]. However,
this approach also has relatively poor performance in terms
of pulse shape and wavefront. To overcome these difficul-
ties, adaptive beam-shaping techniques using a phase grating
pattern on an SLM with spatial frequency filtering in the
Fourier plane in a 4f system have been developed (Fig. 1)
[11-16]. In this approach, the wavefront is maintained [11].
In addition, beam shaping is drastically improved via the
use of a diagonal phase grating [14]. However, the grating
structure has not been fully studied.

In this paper, optimisation of the phase grating structure
is investigated via simulations. The directions of the grating
vectors inside and outside of the aimed area (k,._jpgqe and
kq_outsige) and the normal vector of the square and flat-top
area (k; and k,) are considered as parameters. In addition,
the shape of the spatial frequency filter (SFF), by which the
Fourier transformed signal is filtered in the spatial frequency
domain, is designed to optimise the resultant beam shape.
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Fig. 1 Scheme of beam shaping. A phase grating is encoded on a spa-
tial light modulator (SLM) and imaged on an output plane at a magni-
fication factor of M = f, /f;

1 Principle and experimental layout

The scheme is shown in Fig. 1. The phase grating diffracts the
residual component, and the extracted component passes only
the SFF through the 2D-FFT (two-dimensional fast Fourier
transform) via the first convex lens L,. The component finally
forms the desired beam shape via inverse 2D-FFT using the
second lens L,. In this scheme, the electric field intensity at
the output plane is expressed by the following equation [14]:

F x E@os(%) X exp <]¥> (1)
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where ¢, and ¢, reflect the phase grating (phase grating
depth A¢ = ¢, — ¢,). Considering the first cosine term, the
intensity can be attenuated by changing A¢. In addition, the
exponential term shows that the phase can also be controlled.
In another meaning, this approach ensures the keeping of
pulse width and wavefront over the shaped area, as discussed
in detail later.

The scheme used for beam shaping from an original
beam shape to a square—flat-top beam shape via phase grat-
ing is shown in Fig. 2. The ratio of the original and desired
beam profiles, which are shown in Fig. 2a, b, respectively, is
mapped in the transfer function image, as shown in Fig. 2c.
Here, A¢(x,y) can be mapped from the transfer function
image using Eq. (1). By encoding A¢(x, y) to an SLM, beam
shaping to a target structure can be achieved.

2 Simulation of the shaped beam
from phase gratings

In this investigation, 2D-FFT images are assumed to overlap
the phase gratings on a Gaussian beam:

E(,j) = Ey(i,)) X exp(k X grating(i,j)) (i,j=1,2,3,...1024)

@
where Ey(i,j) and E(i,j) express the original and result-
ant field intensity distribution, respectively, grating(i, j)
expresses the phase distribution and k is an imaginary
unit. Periods of A =4 pixels and A = 24/2 = 2.83 pix-
els are assumed for vertical and diagonal phase grat-
ing, respectively, as shown in Fig. 3a, b. The pixel size s
is assumed to be 20 pm based on the size in a real SLM
(Hamamatsu Photonics K.K.). The matrix size corresponds
to 20.48 X 20.48 mm in real space, considering to cover the
effective area of the SLM and possible SFF filter size. The
matrix was transformed by Mathematica © Wolfram. The
image was digitised at 8-bit depth of greyscale considering
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Fig.2 Scheme for beam shaping to a square and flat-top beam using phase grating: a original beam profile, b desired beam profile, ¢ transfer
function image, d phase grating image reflecting the transfer function and the output intensity curve as a function of A¢
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Fig. 3 Models of a vertical
and b diagonal phase grating
encoded on an SLM. ¢ Gauss-
ian beam with D = 9.8 mm
diameter, d example image of
a phase grating image for beam
shaping to a square and flat-top
beam

phase [rad.]

intensity [rad.]

the input data format of the SLM. The 2D-FFT transformed
data of E(i,j) were transferred to an image by squaring pixel
to pixel; they were then filtered by a SFF placed on the Fou-
rier plane. Finally, the image was inverse 2D-FFT trans-
formed. The beam shape and an example of the used phase
grating are shown in Fig. 3c, d, respectively. Based on a pre-
vious experiment [14], the beam diameter was D = 9.8 mm
and the focal lengths were f; = 300 mm and f, = 150 mm.

3 Beam shape as a function of SFF diameter

Simulated beam shapes as a function of the diameter of the
SFF are shown in Fig. 4. Each upper greyscale image shows
the 2D-FFT image on the Fourier plane. The area overlapped
with grey colour is the SFF area where the beam is blocked.
The SFF is co-aligned with the Oth order beam, so a lower
frequency component is extracted. Each lower image in the
3D graph shows the resultant beam shape.

When the diameter of SFF ¢ = 1.0 mm, beam shape is
wavy, as shown in Fig. 4a. With a wider SFF, both the ridges
on the edge of the square beam and the wavy structure are
reduced. Here, concentric circles appearing at the centre of
the beam are the result of digital noise. On the other hand,
flatness is worsened at ¢ = 6.0 mm. This is due to the leak-
age of the residual component from the SFF, which can be
seen in the upper image of Fig. 4f. The best result in this
condition is produced at ¢ = 5.0 mm. This is due to regen-
eration of the beam with the high spatial frequency (HSF)
component, which is distant from the centre on the Fourier
plane. This is discussed in detail in the next subsection.
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4 Relation of the structure of phase grating,
desired beam profile and 2D-FFT image

The scheme using vertical phase grating, which is shown
in the previous subsection, is highly conventional [11-13].
In this case, the worsening of flatness is due to conflict
between HSF component blocking and leakage of the
residual component. In this subsection, combinations of
the direction of Ky ipgige and kg oyige @and normal vectors
of the square area, k; and k,, are examined. Moreover, the
configuration in which the residual component is blocked
while maintaining the HSF component is discussed.

In Fig. 5, different phase gratings and their resultant
2D-FFT images on the Fourier plane are given as a matrix.
The upper block shows the case of a square beam where
k, and k, are parallel to the pixel matrix of the SLM. The
lower block shows the case of a diamond beam. In the
2D-FFT images, extracted and residual components, as
well as their overlap, are shown in red, blue and violet,
respectively. To pass the HSF component of the extracted
component without leakage of the residual component,
overlap must be avoided. From this point of view, the fol-
lowing condition is best:

kg—inside’ kg—outside ki ky 3)

Following the condition of Eq. (3), an example of high-qual-
ity beam shaping, i.e. with steep edges and flatness, was
demonstrated in a previous paper [14].
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Fig.4 Simulated beam shape as
a function of the diameter of the
SFF. The used phase grating is
shown in Fig. 3d. A Gaussian
beam is aimed to produce a
square and flat-top beam with
40 % of the peak intensity

5 Beam shape and efficiency change
as a function of SFF shape

In this subsection, the shape of the SFF is changed and
the effective extraction of HSF component is examined.
Here, circular- and cross-shaped SFFs are tested, as shown
in Fig. 6a, b, respectively. The diagonal phase grating is
encoded to extract a square beam, as shown in the lower
right image in Fig. 5a.

The circular SFF and the resultant beam shape are shown
in Fig. 6a. The diameter is ¢ = 2.0 mm. A wavy structure
appears on the beam shape owing to HSF component block-
ing. The cross-shaped SFF and the resultant beam shape
are shown in Fig. 6b. In this case, HSF component can be
extracted with complete blocking of the residual component,
and the SFF size in real space is 20.48 X 20.48 mm, which is
realistic, as mentioned above. The resultant beam shape is
flatter, and ridges on the edges are suppressed. This scheme
enables the shaping of super-flat beams with steep edges, as
discussed in a previous paper [14].

The efficiency should be compared for those two con-
figurations, and it was 23.07% and 23.31% in Fig. 6a, b,
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respectively. The difference is small, but the effective
extraction of HSF component results in better beam shap-
ing. Here, the efficiency depends on the shape difference
between original and shaped beam profiles. Actually, it
is not a good combination from Gaussian beam to flat-
top square in terms of efficiency. It will be improved by
using the combination of Gaussian and flat-top hexagonal,
which is under experiment. Moreover, if the original beam
shape is similar to the final shape, as in the case of nearly
flat-top beam of an excimer laser, the efficiency will be
far improved.

6 Pulse width and shape

As known from the exponential term in Eq. (1), the phase
is kept over the beam area. This also ensures the keeping
of pulse width and shape in the case of the extraction with
enough spectral width. For example, consider the case of
the Gaussian pulse without chirp. The spectral width is:
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Fig.5 Combinations of phase
grating and the resultant
2D-FFT images appearing on
the Fourier plane: a square
beam and b diamond beam to
be extracted. The phase grat-
ing images are schematic and
projected as they appear on the
SLM, and the 2D-FFT images
are projected as they appear in
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where 7, is the pulse width. In the case of 100 fs laser at
A = 800 nm, the bandwidth AA = 9.4 nm. Even though keep-
ing 3Av to suppress the generation of pedestal and pulse
shape change [4], conventional SLM wavelength range cov-
ers 3 Av. Here, beam shaping of a femtosecond laser by
using the scheme explained in Fig. 4 has been shown in the
past paper [13]. The quality will be improved with keeping
the pulse width by using the new scheme introduced in this
paper.

7 Summary

We investigated the effect of phase grating structure on the
resultant beam shape in an adaptive beam-shaping technique
that uses filtering in the spatial frequency domain. To extract
HSF component and obtain improved flatness and greater
edge steepness, the grating vectors inside and outside the
area of a square—flat-top beam must be non-parallel to the
normal vectors of the desired beam shape.

The adaptability to the wide wavelength region, of
which the capable wavelength of conventional SLM is
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Fig.6 Simulated beam shape
as a function of SFF shape: a
circular- and b cross-shaped
SFFs are used. Diagonal phase
grating, for which the structure
is shown at the lower right of
Fig. 5a, is used
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approximately 350 nm—1.6 um, enables optimisation across
a variety of applications such as laser annealing, exposure,
skin therapy and ultra-high power lasers. In a past experi-
ment, the diagonal configuration of the phase grating relative
to the square beam showed system stability as well as quick
and easy settings without iterative feedback [14]. Note that
the scheme is not restricted to the use of a Gaussian beam
as the original beam profile; therefore, its usability is very
broad.

From a practical point of view, the SLM is the only cost-
consuming component. Compared to the conventional adap-
tive beam-shaping systems, the performance is far improved
by encoding only the diagonal phase grating, without any
additional expense. We consider that these advantages will
result in the advancement of a variety of laser applications
in which beam shape, wavefront, pulse width and shape are
critical.
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