
Temperature dependence of band gap ratio and Q-factor defect
mode in a semiconductor quaternary alloy hexagonal
photonic-crystal hole slab

R. Sánchez-Cano1 • N. Porras-Montenegro2

Received: 20 August 2015 / Accepted: 26 November 2015 / Published online: 10 March 2016

� Springer-Verlag Berlin Heidelberg 2016

Abstract We present numerical predictions for the

photonic TE-like band gap ratio and the quality factors of

symmetric localized defect as a function of the thickness

slab and temperature by the use of plane wave expansion

and the finite-difference time-domain methods. The pho-

tonic-crystal hole slab is composed of a 2D hexagonal

array with identical air holes and a circular cross section,

embedded in a non-dispersive III–V semiconductor qua-

ternary alloy slab, which has a high value of dielectric

function in the near-infrared region, and the symmetric

defect is formed by increasing the radius of a single hole in

the 2D hexagonal lattice. We show that the band gap ratio

depends linearly on the temperature in the range

150–400 K. Our results show a strong temperature

dependence of the quality factor Q, the maximum

(Q ¼ 7000) is reached at T ¼ 350K; but if the temperature

continues to increase, the efficiency drops sharply. Fur-

thermore, we present numerical predictions for the elec-

tromagnetic field distribution at T ¼ 350K:

1 Introduction

Optoelectronics devices operating in the infrared range

arouse a growing interest due to their potential applications

in optical telecommunications, atmospheric pollution

monitoring, industrial process control, medical diagnoses,

optomechanical systems, characterization of materials,

analysis of biological samples, biomedical applications,

and chip light manipulation [1–6]. Recently, much interest

has been drawn in semiconductor photonic-crystal hole

slabs in which the structure is formed by a 2D hexagonal

lattice. The advantage of a semiconductor photonic-crystal

hole slab is that in addition to providing light guided modes

and photonic gaps for some frequency ranges for the TE-

like or TM-like polarization modes, it also allows the easy

inclusion of defects and efficient light emitters into the

crystal [7, 8]. In semiconductor-based photonic-crystal hole

slabs can make important contributions to the design of

new devices operating in the near-infrared range [9–14].

Several theoretical studies have been carried out on binary

semiconductor photonic-crystal slabs. However, few theo-

retical results on III–V quaternary semiconductor photonic-

crystal slabs have been reported. In this theoretical work

using supercell plane wave expansion (SCPW) and the

finite-difference time-domain (FDTD) methods [15–20],

we have calculated the photonic band gap ratio and Q-

factor as a function of temperature, and the electromagnetic

field distribution for electromagnetic waves propagating in

a semiconductor photonic-crystal hole slab composed of a

2D hexagonal array with identical air holes and a circular

cross section, and a symmetric point defect, embedded in a

non-dispersive Ga1�xInxAsySb1�y semiconductor quater-

nary alloy slab.

The paper is organized as follows: In Sect. 2.1, we

briefly describe the mathematical setting of band structure

calculation by the use of a supercell plane wave expansion

method. In Sects. 2.2 and 2.3, we present the FDTD basis

to calculate spatial distribution of the electromagnetic

fields. Numerical parameter, results and discussion are

presented in Sect. 3. Finally, we conclude in Sect. 4.
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2 Theoretical framework

2.1 Supercell plane wave method

Using the Bloch theorem and Fourier series expansion for

electromagnetic fields and dielectric function, eðr~; x; TÞ in a
3D periodic medium and Maxwell’s equations, after some

algebra, we obtain the following equations for the expan-

sions coefficients E~KðG~Þ and H~KðG~Þ:

�
X

G~
0
kðG~� G~
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V0
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1

eðr~; x; TÞ expðiG
~ � r~Þ; ð3Þ

where V0 denotes the volume of the unit cell of the pho-

tonic crystal, r~ is the position vector, x is the Indium

concentration, T is the absolute temperature, K~ and G~ are

the reciprocal lattice vectors, x and c are the frequency of

the electromagnetic wave and the speed of light,

respectively.

As suggested by Samara [21] it is not likely that the

quantity eðr~; x; TÞ is really linearly dependent on temper-

ature over a broad temperature range. Therefore, we fit the

dependence of such quantity by Varshni-type equation

given by

eðr~; xi; TÞ ¼ eðr~; xi; 0Þ þ
dT2

gþ T
; 0� xi � 1; ð4Þ

with d ¼ 4:8� 10�3 K�1; g ¼ 550K [22]. The parameter

eðr~; xi; 0Þ for a given concentration x ¼ xi is determined by

evaluating equation (4) at T ¼ 300K and the expression

proposed by Mikhailova [23]. Thus, we can obtain the

static dielectric constant value of the quaternary alloy for

concentration, x ¼ xi. We propose the dielectric constant as

a function of the temperature T, at x ¼ 0:16 for the qua-

ternary alloy, as [24]

eðr~; 0:16; TÞ ¼ 13:6þ 4:8� 10�3T2

550þ T
: ð5Þ

From Eqs. (1), (2), and (5) we can obtain the photonic band

structure solving the eigenvalue equations numerically for

each value of K~ and for each value of the band index m.

The kernel of the supercell method of expansion in plane

waves is constructed considering the periodic arrangement

of the photonic-crystal slab along the y-direction with a

period aN, while in the x�z plane the structure is a 2D

periodic lattice with period, a, with a symmetric point

defect. Supercell method in the x�z plane also is used to

calculate defective modes [15].

The Ky component of a wave vector K~ is restricted to the

interval ð�p=aNÞ\Ky\ð�p=aNÞ in a first 3D Brillouin

zone and tends to zero when the supercell size aN increa-

ses; then, the wave vector is chosen in the form

K~ ¼ ðKx; 0;KzÞ. As long as the domain in the y-direction is

sufficiently large, the coupling between the modes of the

adjacent slabs is negligible, and the eigenmodes converge

to the correct results for just one plane of holes. In general,

the modes of a 3D-photonic crystal are hybrid and involve

six components ðEx;Ey;Ez;Hx;Hy;HzÞ. However, the sep-

aration of Maxwell’s equations into E-polarization (TM:

transversal magnetic mode) and H-polarization (TE:

transversal electric mode) is only possible for 1D and 2D

photonic crystals. The 3D periodic hole slab possesses

r̂x; r̂y and r̂z reflection symmetries; then, an analogous

classification of the modes is possible with respect to

reflection in the y ¼ 0 plane. Therefore, even

(E~ ¼ ðEx; 0;EzÞ; H~ ¼ ð0;Hy; 0Þ) and odd (E~ ¼ ð0;Ey; 0Þ;
H~ ¼ ðHx; 0;HzÞ) modes at y ¼ 0 are the analog of TE and

TM modes, respectively. Figure 1 shows the profile of the

hole slab (left) and k-path in the first Brillouin zone of the

2D hexagonal lattice at Ky ¼ 0 plane (right), and the sys-

tem is invariant under reflections through the y ¼ 0 plane,

which allows us to classify the modes in even (TE-like) and

odd (TM-like).

2.2 FDTD method

A 3D-FDTD method is used to calculate field distribution,

the frequency, power spectrum transmittance, and coupled

modes.

The unit cell configuration for the FDTD calculation and

elementary lattice vectors a~; b~ are shown in Fig. 2.

We consider a plane wave packet of Gaussian time

dependence uniform in the y-direction passing through the

hexagonal array in x�z plane. The wave packet is a set of

plane waves with different frequencies, named Gaussian

modulated continuous wave (GMCW), where the incident

field for each input point has the form

Finc
y ðx; zincÞ ¼ AFðx; zincÞ exp � t � t0

2W

� �2
� �

sinð-tÞ; ð6Þ

where A is the field amplitude, Fðx; zincÞ is the rectangular

transverse field spatial distribution at the incident plane

location zinc; t is the time, t0 is the time offset, W is the
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pulse half width parameter, and - ¼ 2pc=k is the carrier

frequency of the input wave.

For the numerical band structure and the field distribu-

tion calculations Bloch periodicity in �x, y, z-directions are

the boundary conditions used in this work. Perfect Matched

Layer (PML) in �z-direction are the boundary conditions

used for the transmittance spectra calculation [16, 19, 20].

2.3 Power transmittance and quality factor

For an electromagnetic wave propagating in the x�z plane,

the power can be obtained by the flux of the Poynting

vector through any x�y plane near the FDTD absorbing

boundaries (PML). The total power through the x�y plane

at the z position can be calculated for TE and TM modes as

PTE ¼ Re
1

2

Z

s

ð�Ex þ �EzÞ � H�
ydxdy

� �
; ð7aÞ

PTM ¼ Re
1

2

Z

s

�Ey � ðH�
x þ H�

z Þdxdy
� �

; ð7bÞ

where �E is the complex value that comes from the discrete

Fourier transform (DFT) calculation and H� is the complex

conjugate value. We calculate the power normalized to the

input signal given by Eq.(6).

The quality factor Q of the point defect is defined as

Q ¼ x0

U

Pabs

; ð8Þ

where U is the stored energy in the resonant mode with

frequency x0 and Pabs is the power absorbed in the

boundaries.

3 Results and discussion

For numerical calculations, the following parameters were

considered: The PWM convergence tolerance for the

eigenvalues of the Eqs. (1) and (2)was 10�12. Therefore,

the precision obtained in the frequency was roughly the

square root of the convergence tolerance, the carrier

wavelength of the input wave k ¼ 1:5 lm, lattice constant

a ¼ 1 lm, hole radius r ¼ 0:45a lm, dielectric function of

the background material e ¼ 1 (air), dielectric function of

the Ga0:84In0:16As0:14Sb0:86 semiconductor slab

eðr~; 0:16; 300Þ ¼ 14:1 is given by Eq.(5).

The excited Gaussian pulse was given by Eq. (6), with

A ¼ 1;Fðx; zincÞ ¼ 0 if jx� xincj[ 6 lm else

Fðx; zincÞ ¼ 1; t0 ¼ 9:94� 10�15s;W ¼ 2:81� 10�15s, and

- ¼ 1:26� 1015 rad=s in the C�M direction. For the

power transmittance, the computational domain �z was

truncated by ten additional PML layers with 1� 10�12

theoretical reflection coefficient. The space cell size was

taken as Dx ¼ Dz ¼ 0:008 lm and the time step size was

selected as Dt ¼ 1:779� 10�17 s that satisfies the FDTD

stability limit [19, 20]. Figure 3a shows the photonic band

structure for the lowest even modes and Fig. 3b shows the

photonic band structure for the lowest odd modes, both

even and odd modes calculated by the PWM method for

periodic slab. The photonic bands are presented along the

C�M� K� C edge of an irreducible Brillouin zone

Kx

Kz

Fig. 1 (Color online) Left

Schematic illustration of the

photonic-crystal hole slab

composed of a 2D hexagonal

array with identical air holes

and a circular cross section,

fabricated in a

Ga0:84In0:16As0:14Sb0:86
semiconductor quaternary alloy

slab. Right k-path in the first

Brillouin zone of the 2D

hexagonal lattice at Ky ¼ 0

plane; C, M, and K are the three

high-symmetry points

a

b

Unit cell

x

z

Fig. 2 (Color online) 2D schematic illustration of the photonic-

crystal hole slab composed of a hexagonal array with identical air

holes and a circular cross section, fabricated in a

Ga0:84In0:16As0:14Sb0:86 semiconductor quaternary alloy slab; the

shaded rectangle shows the FDTD unit cell at Ky ¼ 0 plane
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(Right in Fig. 1). As it is seen, the Ga0:84In0:16As0:14Sb0:86
periodic hexagonal photonic-crystal hole slab has a wide

band gap (gray zone) in the even modes (electric field in

the x�z plane). This characteristic is observed at

xa=2p ¼ 0:33� 0:51. Nevertheless, this is not an

authentic band gap because radiation modes exist above the

light line (dashed line) in the same frequency range.

Conversely, Fig. 3b shows a small band gap in the odd

modes (magnetic field in the x�z plane). This feature is

observed in a hole hexagonal photonic-crystal slab because

even and odd modes have close similarities in TE and TM

modes of the 2D hexagonal photonic crystal, respectively.

Figure 4 shows a graph of the band gap ratio, Mx=xc for

even modes as a function of slab thickness d at room tem-

perature for the Ga1�xInxAsySb1�y,xc is the frequency at the

center of the gap. As observed, there is an optimal thickness

at d ¼ 0:6a, which justifies the use of slab thickness d ¼
0:6a in our calculations for r ¼ 0:45a. The existence of an

optimum thickness can be understood by considering two

limiting cases of a very thin or very thick slab. If the slab is

too thin, practically there are no guidedmodes and the lattice

periodicity do not affect the cladding. On the other hand, if

the slab is very thick, the photonic band gap approaches to

the 2D photonic-crystal case. However, higher modes are

pulled into the photonic band gap.

Figure 5 shows a graph of the band gap ratio, Mx=xc for

even modes as a function of the temperature for slab

thickness, d ¼ 0:2a; d ¼ 0:4a; d ¼ 0:6a, d ¼ 0:8a, and

d ¼ 1:0a, radius r ¼ 0:45a, Indium and Arsenic
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Fig. 3 (Color online) Photonic band structure of a

Ga0:84In0:16As0:14Sb0:86 periodic hexagonal photonic-crystal hole slab;

a even modes and b odd modes. The slab dielectric constant is 14.1,

its thickness is d ¼ 0:6a, the air rods radius is r ¼ 0:45a, and the

cladding background is air
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Fig. 4 (Color online) Band gap ratio, Mx=xc for TE-like modes as a

function of the slab thickness d, for Ga0:84In0:16As0:14Sb0:86 slab, xc is

the frequency at the center of the gap. The slab dielectric constant is

eðr~; 0:16; 300Þ ¼ 14:1, the air rods radius is r ¼ 0:45a, and the

cladding background is air
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Fig. 5 (Color online) Band gap ratio, Mx=xc for TE-like (even)

modes as a function of the temperature for slab thickness

d ¼ 0:2a; d ¼ 0:4a; d ¼ 0:6a; d ¼ 0:8a, and d ¼ 1:0a, and the same

parameters as in Fig. 4
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concentrations, x ¼ 0:16 and y ¼ 0:14, respectively. We

see that in the graphs the band gap ratio depends linearly on

the temperature. This result is due basically to the dielectric

constant, which is strongly linked to the electronic energy

band structure of the semiconductor quaternary alloy and to

the variation in the critical point energy levels, originated

by the lattice thermal expansion and Debye–Waller effect.

Furthermore, an analysis shows that the dielectric constant

increases linearly with the temperature in 150–400 K range.

Figure 6 shows a strong temperature dependence of the

quality factor Q; the maximum (Q ¼ 7000) is reached at

T ¼ 350K, but if the temperature continues to increase the

efficiency drops sharply. At T ¼ 350K the dielectric

function is no longer linear, and the quality factor begins to

decrease, because the vertical radiation losses in the cavity

become large. To have a better understanding of the results

previously obtained, in Fig. 7. we show the distribution of

electric field intensity in the center of the slab, y ¼ 0, and

in the upper border, y ¼ d=2. As shown, the energy into the

cavity (y ¼ 0) at x0a=2pC ¼ 0:24 is smaller than the

energy radiated vertically (y ¼ d=2). This result agrees

with other reported for InSb [15, 25 ].

4 Conclusions

We show that the band gap ratio depends linearly on the

temperature in the range 150–400 K. As observed, higher

values are obtained for a thickness d ¼ 0:6a. Furthermore,

we show that there is a strong temperature dependence of

the quality factor Q, and the maximum value of the quality

factor Q (Q ¼ 7000) is reached at T ¼ 350K, but if the

temperature continues to increase, the efficiency drops

sharply. In conclusion, our theoretical predictions allow a

better understanding of this type of photonic crystals based

on quaternary semiconductors Ga1�xInxAsySb1�y periodic

hexagonal photonic-crystal hole slab and their applications

for the design of new temperature-tunable optoelectronic

devices in the infrared spectrum.
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