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Abstract We introduce the concept of localized acoustic

surface modes. We demonstrate that they are induced on a

two-dimensional cylindrical rigid surface with subwave-

length corrugations under excitation by an incident

acoustic plane wave. Our results show that the corrugated

rigid surface is acoustically equivalent to a cylindrical

scatterer with uniform mass density that can be represented

using a Drude-like model. This, indeed, suggests that

plasmonic-like acoustic materials can be engineered with

potential applications in various areas including sensing,

imaging, and cloaking.

1 Introduction

The current interest in plasmonics [1, 2] is fueled by its

promising applications in various areas [3] ranging from

biosensing [4], subwavelength imaging [5], energy har-

vesting [6], nanoelectronics [7], lighting [8], and photo-

voltaics [9]. Plasmonics studies the interaction of

electromagnetic fields with metals at optical frequencies

[2], and more recently, with graphene layers at terahertz

(THz) frequencies [10–13]. This interaction results in the

generation of surface plasmon polaritons, i.e., strong

electromagnetic fields localized to a subwavelength region

on the interface between the metal and dielectric [2]. Field

localization and amplification take place at frequencies

around the plasma frequency xp of the metal used. For

example, for gold, xp ¼ 2p� 350 THz, which explains

why surface plasmons are induced on metals only at optical

and near-infrared frequencies [14]. To overcome this lim-

itation, Pendry et al. [15] have proposed to use a corrugated

metal surface patterned with subwavelength holes or slits,

to generate surface plasmons at THz and gigahertz (GHz)

frequencies, and showed that the effective permittivity of

the equivalent medium possesses a plasma-like frequency,

which can be tuned by varying the geometrical parameters

of the corrugated surface [15]. These engineered surface

plasmons, termed ‘‘spoof’’ plasmons, have opened new

vistas in designing plasmonic devices/metamaterials with

operating frequencies at THz and GHz parts of the spec-

trum [16–22].

Similarly, there has been an increasing interest in

designing acoustic metamaterials, since Sheng et al. [23]

have demonstrated, for the first time, that dynamic mass

density and bulk modulus can be obtained using locally

resonant sonic materials. However, unlike photonic meta-

materials, which make use of surface plasmons to generate

the desired dispersion characteristics, acoustic metamate-

rials almost exclusively rely on geometrical properties of

their meta-atoms. This is due to the fact that surface

plasmons do not exist naturally in acoustics [24]. As a

result, design of acoustic metamaterials has made use of

mostly phononic (or sonic) crystals, counterpart of pho-

tonic crystals, and resonant cavities or pipes [24–35]. This

is, from many aspects, a major limitation of acoustic

metamaterials, and their applications in areas that could

benefit from acoustic plasmonic-like features.

To circumvent this limitation, one-dimensional (1D)

structures with subwavelength gratings, which can support
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acoustic modes confined to the surface, have been proposed

[36–38]. It should be noted here that these modes are

‘‘acoustic versions’’ of the propagating electromagnetic

surface plasmons and should not be confused with

‘‘acoustic surface plasmons’’ that correspond to collective

low-frequency excitations at metal surfaces [39, 40]. Even

though acoustic modes propagating on corrugated rigid

surfaces have been well studied, to the best of our

knowledge, their localized versions are yet to be investi-

gated. To this end, in this work, we introduce the concept

of localized acoustic surface modes (ASMs) supported by

corrugated rigid surfaces and demonstrate that such sur-

faces are equivalent to uniform scatterers with mass density

that can be represented using a Drude-like model. These

are achieved in two steps. First, we demonstrate that

propagating ASMs could be generated on 1D corrugated

rigid surfaces. Then, the results of 1D propagating ASMs

are used as a guide to design a 2D corrugated rigid surface

that supports localized ASMs.

Our findings demonstrate for the first time that localized

plasmons can go acoustics. These findings will open up

new vistas in designing acoustic devices with promising

applications in many areas, including nondestructive

sensing, subwavelength focusing and resolution, cloaking,

and medical imaging.

2 Results

In acoustics, a rigid material defines a medium where field

propagation is prohibited. On surfaces of these materials,

the condition of zero normal derivative of pressure, i.e., qp/
qn = 0, where p is the pressure field and n is the surface

normal, is satisfied. The same condition can be expressed,

using the velocity field v as n�v = 0. These conditions

ensure that pressure and velocity fields do not penetrate

into the rigid obstacle. A good example of rigid materials is

steel. The fields p and v satisfy the equation ixp ¼ jr�v,
where j is the bulk modulus of the material, and x is the

frequency of excitation. This relation is valid for inviscid

fluids and is derived using the conservation of momentum

assuming the absence of shear, and a time harmonic

dependence e-ixt for the fields.

2.1 Propagating ASMs induced on 1D rigid gratings

Consider a 1D perforated acoustically rigid material as

shown in Fig. 1. The width and the height of the air-filled

periodic grooves are represented with a and h, respectively.

The period of the grating is K. The structure is excited by

an acoustic pressure plane wave generated by a transducer

residing in air. It is assumed that a � k0, K � k0, and
h � k0, where k0 = 2pc0/x is the wavelength in air. Here,

c0 is the speed of sound in air and x is the frequency of the

incident field. The grating in Fig. 1 supports propagating

acoustic surface waves. The pressure and velocity fields

associated with these waves can be expressed in the fol-

lowing form [2, 15]

pðy; zÞ ¼ 1
ffiffiffiffi

K
p b0

by
eibASMzþibyy;

vðy; zÞ ¼ �ðbASM=byŷþ ẑÞ 1
ffiffiffiffi

K
p eibASMzþibyy:

ð1Þ

Here, bASM represents the propagation constant of these

waves, b0 = x/c0 = 2p/k0 is the free space wave number,

and by ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b20 � b2ASM

q

. Note that the condition

bASM\b0 ¼ x=c0 should be satisfied for the waves

described by Eq. (1) to be propagating. To find the dis-

persion relation, i.e., to express bASM in terms of x, the
following steps are followed: (1) The expressions of the

fields inside the air-filled periodic grooves for different

diffraction orders are obtained under the assumption

a � k0 and K � k0. (2) Continuity conditions of the

normal components of the velocity and the pressure are

applied to obtain the reflection coefficient f0 associated

with the specular diffraction [2]:

f0 ¼ �
1þ i

P2
0 tanðb0hÞb0=by

1� i
P2

0 tanðb0hÞb0=by
: ð2Þ

Here,
P

0 ¼
ffiffiffiffiffiffiffiffiffi

a=K
p

sinc(bASMa=2Þ is the secular over-

lap integral (sinc is the cardinal sine function). Note that

Eq. (2) is valid for a � k0 and K � k0. (3) It is clear from
Eq. (2) that for evanescent waves, i.e., bASM [ b0, f0 has

one pole corresponding to the dispersion relation of the

ASM:

Fig. 1 One-dimensional rigid grating supporting propagating ASMs.

An acoustic plane wave incident on the rigid grating induces

propagating ASMs
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bASM ¼ x
c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
X

4

0

tan2ðxh=c0Þ

v

u

u

t : ð3Þ

First, acoustic field interactions on the grating without the

rigid ground layer (i.e., only alternating layers of rigid

material and air) are characterized. For this grating,

K ¼ 1 mm, h = 1.78 K, and a = 0.11 K. The transmit-

tance and reflectance of this structure are computed using a

finite-element solver for k0 changing from 0.1 to 7 K and

are plotted versus the normalized wavelength k0/K in

Fig. 2a. It can be seen that more than one peak with

amplitudes reaching high values (almost 1 for the first-

order resonance with the highest wavelength) appears in

the transmittance spectrum. The resonance wavelengths

can be calculated using matching conditions of the effec-

tive impedance of the alternating layers with that of the

background medium, i.e., air. These characteristics of the

spectrum can be understood in the context of extraordinary

transmission through subwavelength apertures analyzed for

electromagnetic fields [41] as well as for acoustic fields

[42, 43]. It has been, in particular, shown that the surface

acoustic modes, which enable the extraordinary transmis-

sion in acoustics, are fundamentally different from elec-

tromagnetic surface plasmons, which enable the

extraordinary transmission in electromagnetics and optics,

because the acoustic modes always hybridize with Fabry–

Perot modes and are not truly surface modes [43].

However, if one adds a rigid material below the alternating

layers (as shown in Fig. 1), it is possible to have ASMs

similar to spoof plasmons of electromagnetics, which is the

contribution of the work described here.

Next, the ASMs propagating on the grating with the

rigid ground layer (as seen in Fig. 1) are characterized. The

same values of K, h, and a are used. Figure 2c plots the

dispersion relation associated with the ASMs propagating

on the grating, [described by Eq. (3)], versus the normal-

ized wave number bASM=kp. Here, kp = p/2h. In Fig. 2c,

also, the dispersion curve of ASMs propagating on the

interface between air and a material, whose density is

represented using the Drude-like model with plasma-like

frequency xp ¼ c0p=
ffiffiffi

2
p

h, is plotted. The figure shows that

for small values of the wave number (in the static limit),

both dispersion relations are linear and identical to that in

air (marked with black dotted line). When the wave num-

ber is increased, the dispersion curves get ‘‘flatter’’ and

eventually converge to xp=
ffiffiffi

2
p

(marked with green dotted

line) outside the sound-cone (i.e., x� c0bASM). This

behavior is very typical of electromagnetic surface plas-

mons observed at optical frequencies [2] and shows that the

rigid grating gives rise to similar characteristics in acous-

tics. These results suggest that the rigid grating can be

effectively treated as a homogeneous Drude-like layer with

plasma-like frequency xp ¼ c0p=
ffiffiffi

2
p

h, which depends only

on the speed of sound and the height of the grooves.

(a) (b)

(c) (d)

Fig. 2 Characterization of

ASMs on the 1D rigid grating.

a Transmission/reflection

spectrum of the alternating

layers of the rigid material and

air (without the ground layer

made of rigid material) versus

the wavelength normalized with

grating period, b pressure field

distribution around the rigid

material layer at wavelengths

corresponding to maxima of the

transmittance (first-, second-,

and third-order modes,

respectively), c dispersion curve

associated with the propagating

ASMs, and d phase of the

transmittance f0 given by

Eq. (2)
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2.2 Localized ASMs induced on corrugated 2D

surfaces

Consider now an infinitely long corrugated cylindrical

surface, made of acoustically rigid material, as shown in

Fig. 3 (left panel). The surface is modeled in 2D space, as a

corrugated circular curve residing on the x–y plane. The

radius of the curve is R, and it is corrugated into N sectors,

of equal arc length RN = 2pR/N. The complementary

corrugation [shown in gray in Fig. 3 (left panel)] is filled

with a material with density qrq0 and modulus jrj0. Here,
q0 ¼ 1:225 kg/m3 and j0 ¼ 1:4� 105 Pa are the density

and modulus of air, where the structure is residing. The

corrugated cylinder is excited by an acoustic plane wave,

propagating in the x-direction, with unit amplitude pressure

field and equal velocity field components in x- and y-di-

rections. It is assumed that RN � k0.
The simulations of acoustic interactions on the corru-

gated cylinder are carried out using a finite-element solver,

for k0 changing from 2.5 to 5 R. For these simulations,

R ¼ 100 mm and N = 120, and the complementary cor-

rugation is filled with air, i.e., qr = 1 and jr = 1. After

each simulation, the scattering cross section, rSCS, of the
corrugated cylinder is computed (see Methods section).

Note that since there is no absorption (i.e., loss) associated

with the rigid surface, rSCS is equal to the extinction cross

section. Figure 4a plots rSCS=2R of the corrugated cylinder

versus k0/R. Several resonance peaks corresponding to the

different resonances of the corrugated cylinder are identi-

fied. Similar to the 1D grating scenario, this suggests that

this structure is acoustically equivalent to a complete cir-

cular scatterer of radius R with plasmonic-like effective

medium properties [Fig. 3 (right panel)]. Here, we propose

that the effective density qeff of this medium can be rep-

resented in terms of a Drude-like model, as was done for

the 1D case in the previous section:

qeffðxÞ=q0 ¼ 1� x2
p=x

2: ð4Þ

It is assumed that the effective bulk modulus of the

effective medium jeff ¼ j0. It should be clear here that the

plasma-like frequency xp depends on the geometry of the

corrugated cylinder, defined by R and hN, and the proper-

ties of the material filling the complementary corrugation,

defined by qr and jr. For frequencies x\xp, one can see

immediately that the density takes negative values, con-

trary to all existing materials in nature. This means that the

acceleration becomes p out of phase with the dynamic

pressure gradient. Electromagnetic equivalent of this phe-

nomena is having ReðerÞ\0, where er is the relative

dielectric permittivity. Noble metals satisfy this condition

at optical frequencies and have been extensively used in the

generation of plasmonic effects. The potential of having

materials with density described with Eq. (4) in acoustics

(as seen in Fig. 4a), even in the effective long wavelength

limit, would be a tremendous breakthrough by no less than

making most of the applications of plasmonics adapted to

acoustics.

Fig. 3 Two-dimensional corrugated rigid cylinder and its equivalent

model. Left panel corrugated rigid cylindrical surface of radius R with

N sectors, and right panel the complete circular region that is

acoustically equivalent to the corrugated surface in (left panel).

Effective mass density and bulk modulus of this region, qeff and jeff ,
depend on the geometry of the corrugated surface and the properties

of the material filling the complementary corrugation

(a)

(b)

Fig. 4 Comparison of acoustic field interactions on the corrugated

cylinder and its equivalent model. a Scattering cross section of the

corrugated cylinder and its equivalent model versus the wavelength

normalized with the radius of the cylinder. The inset shows the

Drude-like density dispersion of the equivalent cylinder given by

Eq. (4) and b pressure field distribution around the corrugated

cylinder (upper three) and its equivalent model (lower three) at

resonant frequencies of the three modes, marked with points of green,

blue, and red color, respectively, in (a)
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To verify these claims, rSCS of the equivalent complete

circular scatterer of radius R filled with effective medium

with qeff and jeff is compared to that of the corrugated

cylinder. Finite-element simulations are carried out using

the same excitation parameters. For these simulations, the

plasma-like frequency of the effective medium is

xp ¼ c0p=
ffiffiffi

2
p

R, which depends clearly, only on the radius

of the corrugated cylinder, and as stressed above, only

valid in the limit when the size of the building sectors is

much smaller than the wavelength. Note that this expres-

sion is predicted using the result of the 1D grating analysis

and it is same as the one provided in the previous section,

by changing h to R. For R ¼ 100 mm, plasma-like fre-

quency becomes xp ¼ 2p� 1:2 kHz. Figure 4a compares

rSCS of the corrugated cylinder and the equivalent model.

One can see that both rSCS undergo multiple resonances in

the range of wavelengths between 2.75 and 3.5 R. From

this graph, one can see that the effective material approx-

imation is quite accurate in predicting the spectral shapes

of the resonances: A broadband first-order mode at the

largest wavelength and narrowband higher-order modes at

smaller wavelengths can be observed for both scenarios.

Additionally, the resonance wavelengths of the different

modes can be fairly predicted using the equivalent scat-

terer. The discrepancy between rSCS of the corrugated

cylinder and its equivalent model is due to the fact that the

expression of xp is predicted from the analysis of a 1D

rigid grating, which may not be very accurate for the 2D

corrugated cylinder. To get more insight into the nature of

the resonances seen in Fig. 4a, upper and lower panels in

Fig. 4b plot the amplitude of the pressure field distribution

around the resonance wavelengths of the modes for the

corrugated cylinder and its equivalent model, respectively.

Note that the scales of both panels are different, because

for the corrugated case, the amplitude of the pressure field

reaches very high values in the narrow space between the

different sectors. These figures clearly show that the dis-

tribution of the pressure fields excited on the corrugated

cylinder and its equivalent model are similar, as expected.

The number of maxima of the modes of orders 6, 8, and 10

(from left to right in the figure) is the same for both

structures. These confirm the accuracy of ‘‘replacing’’ the

corrugated cylinder by its equivalent model with dispersive

mass density. Additionally, the peaks in the spectra of rSCS
around k0 = 3R (i.e., x = 2pc0/3R) are generated by the

equivalent model, with negative mass density [see Eq. (4),

note that 2pc0=3R\xp ¼ c0p=
ffiffiffi

2
p

R]. This just means that

the corrugated cylinder behaves effectively as a negative

density medium in this spectral range.

The equivalency between the acoustic responses of the

rigid corrugated cylinder and the uniform cylinder with

Drude-like density is only valid for acoustic fields external

to the cylinders. The effective Drude cylinder cannot be

accurately used to model the behavior of the acoustic fields

inside the corrugations (sectors of the cylinder shown in

Fig. 3). The explanation is that inside a Drude-like mate-

rial, acoustic fields decay exponentially, whereas within the

sectors of the corrugated rigid cylinder there exists a

propagating acoustic mode leading to nonevanescent

acoustic fields. To represent these fields inside the sectors

using an effective material, one shall map the corrugated

region into an effective anisotropic material, when the

condition 2pR/N � k0 is satisfied. Using a reasoning

similar to that developed for TM electromagnetic waves

[21], one can derive that qr = k = 2 and qh =-?. In

addition, the results presented in Fig. 4 can be explained

using a modal expansion technique, which provides an

insight to the mechanism of the resonances. This technique

relies on ‘‘matching’’ fields of the acoustic modes present

outside the scatterer with those inside the sectors (or

grooves) [44]. We start by expanding the fields in terms of

Hankel functions of the first and second kinds (due to the

symmetry of the problem):

p0 r; hð Þ ¼
X

þ1

l¼�1
clH

ð1Þ
l b0rð Þeilh;

p1 r; hð Þ ¼ dþH
ð1Þ
0 b0rð Þ þ d�H

ð2Þ
0 b0rð Þ:

ð5Þ

Here, the subscripts 1 and 2 refer to regions external to

the scatterer and the interior of the grooves, respectively.

Applying the matching boundary conditions on the pres-

sure and normal component of the velocity, we obtain the

following resonance condition

J1 b0Rð ÞHð1Þ
l b0Rð Þ þ 2J0 b0Rð ÞHð1Þ0

l b0Rð Þ ¼ 0; ð6Þ

where J0(�) and J1(�) are the Bessel functions of order zero

and one, respectively. It should be noted here that this

equation is obtained under the assumption that the

dimensions of the grooves and the rigid sectors are the

same. Three solutions (in terms of normalized wavelength)

to Eq. (6), which correspond to different multipole reso-

nances of the corrugated cylinder, are marked with green,

blue, and red circles in Fig. 4a.

Physically, this means that each resonance that is

observed in Fig. 4a corresponds to an integer number of

wavelengths (of the acoustic mode) that fit into the

perimeter of the cylinder (as seen in Fig. 4b). This simple

analytical model elucidates the geometrical origin of the

localized ASMs and shows why the plasma-like frequency

predicted from 1D analysis should be related to the height

of the grooves (here the radius of the cylinder). This also

justifies the terminology of multipolar modes (dipole,

quadrupole, etc.). Thus, it becomes clear from this picture

that the acoustic modes associated with the grooves play
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the role of the collective oscillations of electrons in Drude

metals, and is at the origin of (localized) ASMs.

3 Discussion

In this section, we further demonstrate that the character-

istics of the localized ASMs induced on the corrugated

cylinder can be tuned by changing the geometry of the

corrugation and the material filling the complementary

corrugation. Additionally, the possibility of using its

plasmon-like resonant mode in acoustic sensing applica-

tions is discussed.

First, the effect of changing qr, the relative mass density

of the material filling in the complementary corrugation, on

rSCS of the corrugated cylinder is characterized. For these

simulations, the geometry parameters of the structure are

kept the same while qr is varied from 0.8 to 2. Figure 5a

plots rSCS versus k0/R for various values of qr. A dramatic

redshift in the resonant frequencies is observed as qr is

increased. It should also be noted here that the spectral

shape of rSCS is preserved. This is a behavior expected

from a good sensor: A slight change in the medium (here

represented by qr) has a large effect on the observed

properties of the sensor (here represented by rSCS).

Next, the robustness of the structure to imperfections in

the geometry of corrugation is investigated. For these

simulations, one of the corrugation sections is made larger

by increasing its angle from 2 to 4 p/N. The other geometry

parameters are kept the same, and qr = 1 and jr = 1.

Figure 5b compares rSCS of the corrugated cylinder to that

of the one with the modified corrugation. It is clear that

rSCS is not affected that much; in particular, the shape and

the spectral location of the modes remain unchanged.

Next, the geometry changed from a corrugated circular

cylinder to a corrugated square cylinder. For these simu-

lations, the side of the square is 100 mm and the number of

corrugation sectors N = 120. rSCS of the square cylinder

behaves in a similar way to that of the circular cylinder.

The resonant frequencies of the modes can be identified, in

Fig. 5c, but they are observed at a wavelength range

slightly different than those of the circular cylinder, similar

to optical plasmons.

Last, a small circular scatterer with radius robj ¼ 0:1R

made out of from a material with mass density qobjq0 and

bulk modulus j0 is placed in the vicinity of the corrugated

cylinder. For these simulations, geometrical parameters of

the cylinder are kept the same while qobj is varied between

3 and 8. Figure 5d compares rSCS obtained in simulations

without the scatterer, and with the scatterer with qobj ¼ 3
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Fig. 5 Comparison of acoustic

field interactions on the

corrugated cylinder and its

equivalent model. a Scattering

cross section of the corrugated

cylinder and its equivalent

model versus the wavelength

normalized with the radius of

the cylinder. The inset shows

the Drude-like density

dispersion of the equivalent

cylinder given by Eq. (4) and

b pressure field distribution

around the corrugated cylinder

(upper three) and its equivalent

model (lower three) at resonant

frequencies of the three modes,

marked with points of green,

blue, and red color,

respectively, in (a)
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and qobj ¼ 8. For the lowest order mode, the change in

rSCS is not significant, whereas for the higher-order modes,

rSCS undergoes an abrupt change with increasing qobj. This
suggests that the corrugated cylinder can be used in the

detection of small objects with dimensions on the order of

k0/30.
We have introduced here the concept of localized

ASMs. We have described in detail how they can be gen-

erated on rigid cylinders with subwavelength corrugations.

Indeed, our numerical experiments, which involve full-

wave simulations and analytical analysis, demonstrate that

localized ASMs supported by such structures have char-

acteristics that are very similar to those of the electro-

magnetic plasmons supported by metallic scatterers at

optical frequencies. We envision that devices capable of

supporting such acoustic modes might find interesting

applications in biomedical sensing, imaging, cloaking,

waveguiding, and enhancement of nonlinear acoustic field

interactions.

4 Methods: computation of the SCS

The scattering cross section rSCS is computed by inte-

grating the acoustic energy flux density over a circular

surface that is enclosing the scatterer:

rSCS ¼ 1

2pR0

I

S0

P � n̂ ds: ð7Þ

Here, S0 is the integration surface, R0 is its radius, n̂ is the

unit normal vector pointing outwards on S0, and P is the

time-averaged acoustic energy flux density. Let p and v

denote pressure and velocity fields (in phasor domain)

assuming time harmonic dependence e-ixt, and then,

P~¼ Reðpe�ixtÞ � Reðve�ixtÞ ¼ 1

2
Reðpv�Þ þ 1

2
Reðpve�2ixtÞ;

ð8Þ

is the instantaneous energy flux density. Here, ‘‘*’’ repre-

sents complex conjugation. Time averaging P~ yields

P ¼ P~
D E

¼ 1

T

Z

T

P~ dt¼ 1

2
Reðpv�Þ; ð9Þ

where T = 2p/x is the period of the oscillation in time.

Inserting Eq. (9) into Eq. (7) yields rSCS in terms of an

integral involving p and n̂ � v. For scatterers with arbitrary

shapes, p and v can only be computed using numerical

tools. In this work, finite-element method-based commer-

cial software COMSOL Multiphysics is used for this pur-

pose: We use here the PDE module of COMSOL

Multiphysics in the 2D, to model the Helmholtz equation

satisfied by the pressure field of acoustic waves, and we

enforce Neumann boundary conditions to model rigid

materials
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