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Abstract The propagation properties of surface plasmon

polariton waves on graphene microtubes were investigated

in this paper. A precise vectorial finite element modal

solver that models graphene as a surface boundary condi-

tion is devised for the graphene microribbon case. The

solver extracts the dispersion curves through the effective

index of various supported modes, while its propagation

length, compared to the microstrip’s one, unveils a

notable behavior of surface waves. Also, radial and axial

electric field components are evaluated at different fre-

quencies, indicating the strong confinement at the surface

of graphene and the impact of the microtubes’ diameter on

the propagating modes.

1 Introduction

Several studies have, recently, focused on graphene, the

two-dimensional (2D) carbon allotrope [1], due to its unique

wideband attributes [2–9]. Especially, at the far-infrared

regime, the propagation of highly confined transverse

magnetic (TM) surface plasmon polariton (SPP) waves is

supported [10–13], permitting thus the design of efficient

circuits [14–17]. The latter comprise, basically, graphene

microribbons, which have been elaborately examined in

previous studies through the propagation properties of the

supported modes [18–21]. Actually, their straightforward

planar implementation and preservation of the strong SPP

confinement have enabled their use at several far-infrared

applications. Nevertheless, the simultaneous propagation of

two equally concentratedmodes, i.e., the original waveguide

and the edge one, with different properties, can degrade the

overall operation, even at the lower THz frequencies.

For these reasons, the present paper studies the propa-

gation properties of graphene microtubes, as an alternative

means for the design of THz circuits. Initially, graphene’s

surface conductivity is described, and the key attributes of

the surface wave are extracted for the infinite graphene

layer case. To this goal, a 2D finite element modal solver,

based on the vector wave Helmholtz differential equation,

that models graphene as a surface boundary condition is

developed. The accuracy of the featured solver in terms of

the effective refractive index and electric field distribution

(normal to the propagation plane) is verified via the popular

microribbon setup. In addition, the extraction of the

effective index for diverse modes at the far-infrared spec-

trum of the suggested structures reveals their significant

behavior, which retains the desirable strong confinement of

typical graphene geometries and improves the propagation

length. Finally, a parametric study is conducted for dif-

ferent microtubes’ diameters, keeping the curvature at

acceptable levels to safely neglect quantum effects. The

latter analysis indicates an important variation in the

electric field distribution, which can be profitably exploited

for the realization of advanced micronetworks.

2 Theoretical analysis

2.1 Surface conductivity of graphene

In our formulation, graphene is deemed an infinitesimally

thin, two-sided layer determined by its surface conductivity
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rðx; lc;C; TÞ, with x the radial frequency, lc the chemical

potential adjusted by an electrostatic bias voltage or

chemical doping, C the energy-independent scattering rate,

and T the temperature. Moreover, the conductivity of gra-

phene is split at its two distinct contributions, i.e., the

intraband and interband term, and is evaluated via the

Kubo-based [22] expression of

rgðx;lc;C;TÞ ¼
je2ðx� j2CÞ
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where e is the electron charge, �h is the reduced Planck

constants, and fdðeÞ is the Fermi–Dirac distribution

fdðeÞ ¼ ee�lc=kBT þ 1
� ��1

; ð2Þ

for kB the Boltzmann constant. The frequency range in our

analysis is limited at the far-infrared spectrum, where the

interband term can be reliably ignored. Thus, only the

intraband contribution is considered, computed by means

of the following compact form

rgðx; lc;C; TÞ

¼ e2kBT

p�h2ðjxþ 2CÞ
lc
kBT

þ 2 ln e�lc=kBT þ 1
� �� �

: ð3Þ

In this context, the complex wave number of the SPP wave

kq, in the vacuum, is theoretically calculated in terms of

graphene’s surface conductivity through

kq ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4=ðg0rgÞ2

q
; ð4Þ

where k0 and g0 are the vacuum wave number and wave

impedance [10], respectively. Then, the effective index neff
of the surface wave, defined as the SPP wave number

normalized to the vacuum one, can be extracted as

neff ¼ kq=k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4=ðg0rgÞ2

q
: ð5Þ

On the other hand, the surface wave propagation length

LSPP, specified as the distance required for the SPP inten-

sity to decay by a factor of 1/e, is evaluated in terms of the

imaginary part of kq through

LSPP ¼ I 1=ð2kqÞ
	 


: ð6Þ

2.2 Development of the finite element modal solver

To examine the properties of graphene microtubes, a vec-

torial finite element (FE) modal solver is developed. Based

on the general concept of [23], the computational domain

is defined as the transverse plane on the propagation axis,

which coincides with that of the microtube. In this manner,

our formulation stems from the vector wave Helmholtz

partial differential equation, with the electric field as its

working variable, i.e.,

r� l̂rr� Eð Þ � k20 êrE ¼ 0; ð7Þ

where l̂r and êr are the relative permeability and permit-

tivity tensors, respectively, supporting the anisotropy of the

involved media. First, the transverse electric field compo-

nents are expanded via continuous vector basis functions,

while the remaining axial one is treated via node-based

scalar basis functions [24]. To discretize (7), we implement

the Galerkin approximation, which leads to the weak for-

mulation ofZZ
S

r� Uð Þl̂�1

r r� Eð ÞdS� k20

ZZ
S

UêrEdS

þ
I
oS
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r r� E
� �
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ð8Þ

with S the computational space truncated by a suitably

tailored perfectly matched layer (PML), oS the enclosing

boundary, n̂ its normal unit vector, and U the adjoint field.

In this context, the resulting system constitutes a quadratic

eigenvalue problem, transformed to a linear one, pertinent

for sparse eigensolvers that employ the first companion

linearization technique.

A significant feature of the proposed algorithm in

terms of accuracy and simplicity is the incorporation of

graphene’s contribution. This is attained via a surface

current density Js ¼ rsEs in the form of a finite con-

ductivity boundary condition. The latter is applied

exclusively at the degrees of freedom that are tangential

to the one-dimensional curve created by the intersection

of graphene’s surface with the computational plane, as

shown in Fig. 1. Hence, the domain is enclosed by a non-

unified boundary, consisting of both the aforesaid condi-

tion and a perfectly electric conductor boundary that

terminates the PML. In particular, this finite conductivity

boundary condition is evaluated by

n̂g � Hþ �H�ð Þ ¼ Js; ð9Þ

Fig. 1 Surface boundary condition formulated in terms of the

magnetic field and the normal, to the graphene’s surface, unitary

vector (due to the surface conductivity of graphene)
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Then, (9)–(12) are embedded in the FE system via the line

integral term of (8), as
I
oS

n̂�r� Eð ÞUd‘

¼
Z
oSþ

Un̂þ � r� Eþd‘þ
Z
oS�

Un̂� � r� E�d‘

¼ jxl0

Z
oS

UrsEsd‘:

ð13Þ

Alternatively, graphene may be considered as a bulk

medium, implying that its conductivity is included in the

complex relative dielectric permittivity e�r , to obtain

e�r ¼ er � jrs=ðxe0Þ: ð14Þ

Since rs has both real and imaginary parts, the real part of

(14) is ignored and graphene’s contribution is inserted in

(8) through its second surface integral term [25]. However,

as graphene is considered infinitesimally thin, the variation

in the integrated quantities in this surface integral is neg-

ligible along one dimension, implying that the latter

degenerates to a line integral, computed only for the tan-

gential to the graphene’s surface degrees of freedom. In

this way, the previous interpretation of graphene’s contri-

bution leads to (8), as well.

Then, the expansion of the described weak formulation

(13) yields the generalized eigenvalue problem of
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A½ � x½ � ¼ neff B½ � x½ �; ð16Þ

where the eigenvalue of the problem is the complex

effective refractive index neff of the propagation mode and

column vector [x] is the corresponding eigenvector. Fur-

thermore, the elements of matrices [A] and [B] are the

block matrices obtained from the assembly of the integral

terms in (13) for every element. Conversely, the line

integral terms, due to the surface treatment of graphene, are

contained in block matrices Mt and Mz.

3 Numerical results

3.1 Modal solver verification

Firstly, we examine the well-documented case of the gra-

phene microribbon, in order to demonstrate the validity of

the vectorial FE modal solver. Particularly, our interest

focuses on the free-standing microribbon with a width of

5 lm, and graphene parameters selected as lc ¼ 0:2 eV,

C ¼ 0:1meV at room temperature T ¼ 300K: Figure 2

depicts the dispersion diagram of the first three modes,

compared to the theoretical dispersion relation of the infi-

nite layer case, computed through (5). The higher effective

index at the microstrip modes is related to the confinement

of moving charges, hence a more inductive behavior that is

in full compliance with the existing literature [19]. More-

over, the distribution of the normal and tangential, to the

graphene’s surface, electric field component is illustrated in

Fig. 3, proving the concentration at the microribbon edges

and verifying the accuracy of the vectorial FE solver.

3.2 Graphene microtube analysis

The ability of the featured methodology to model arbitrary

geometries is exploited via the treatment of graphene
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Fig. 2 Dispersion curves of the first three modes on a graphene

microribbon with a width of 5 lm, compared to that of the infinite

layer case

Fig. 3 Distribution of the tangential Ex (left) and normal Ey (right), to

the 5 lm-wide graphene microribbon, electric field component at

3 THz
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microtubes. An indicative computational domain termi-

nated by PMLs is given in Fig. 4, where, in the vicinity of

the microtube, the mesh is much more refined than the rest

of the space. Overall, the discretization involves approxi-

mately 75,000 elements and 15� 104 unknown freedom

coefficients. In this framework, several graphene micro-

tubes with different diameters are explored at the far-in-

frared spectral range, regarding their plasmonic modes and

sorted according to their corresponding losses, namely the

imaginary part of the matching eigenvalue. Note that gra-

phene parameters remain the same as those of the previous

section.

Based on these aspects, an infinitely long 20 lm-diam-

eter graphene microtube is considered and its dispersion

diagram for the first four modes is displayed in Fig. 5.

Mainly, a behavior similar to the SPP modes propagating

on an infinite graphene layer can be detected, since neff

increases linearly with frequency. Furthermore, the dis-

persion curves of the second and third modes are in close

proximity, revealing a degenerate mode attributed to the

obvious cylindrical symmetry of the problem. This

deduction is supported by examining the electric field

distribution of Fig. 6, at 2 THz. In essence, the degeneracy

of the second and third modes is evident from their field

patterns, as they are complementary; thus, only the second

mode is taken into account for the rest of our study. Also,

all modes are confined laterally on the graphene’s surface,

presenting a TM profile, with the radial component Eq as

Fig. 4 Computational domain of the graphene microtube
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Fig. 5 Dispersion curves of the first four modes on a graphene

microtube with a diameter of 20lm
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4th mode

Fig. 6 Distribution of the radial Eq (left) and the axial Ez (right), to

the propagation, electric field components for the first four modes on a

graphene microtube with a diameter of 20lm at 2 THz
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the dominant one, since it is normal to the graphene’s

surface. Another interesting observation is that the first

mode presents a monopole behavior, the second that of a

dipole, and the fourth a quadrupole one. On the other hand,

inspecting the electric field distribution of Fig. 7 at the

higher frequency of 4 THz, we can securely claim that field

confinement increases with frequency, as theoretically

expected.

Proceeding to microtubes with gradually smaller diam-

eters, dispersion diagrams for 10 and 5 lm are, respec-

tively, plotted in Figs. 8 and 9, where the curvature remains

at reasonable levels and quantum effects can be reliably

ignored. It may be observed that neff , and thus the con-

finement, augments as the diameter reduces, which is

clearer for the fourth mode and less prominent for the

second one. This issue prompts us to further inspect the

case of 5 lm, by providing its electric field distribution in

Fig. 10 at 2 THz, in order to be comparable with the 20 lm
one. Obviously, the two patterns have significant similari-

ties, while the confinement on the surface of graphene is

slightly increased at the smaller microtube, thus verifying

our dispersion diagrams. In addition, the propagation

length is extracted through the neff imaginary part and

illustrated in Fig. 11, for the first three modes of the 5 lm-

wide microtube and the first mode of the 5 lm-long

microribbon. Comparing the attenuation of the first modes,

it becomes apparent that the microtube presents an ade-

quately larger propagation length, offering enhanced and

instructive propagation characteristics.

Finally, since the existence of SPP modes in microtubes

has been successfully determined, we explore a graphene

microtube with a diameter of 5 lm and a silica core of

relative dielectric permittivity er ¼ 3:32. The resulting

dispersion diagram is given in Fig. 12, where it appears

that the insertion of the silica core increases the effective

indices of all three dispersion curves. Actually, this out-

come is deemed promising for the potential use of such

structures as an alternative means in the systematic design

of efficient high-end micronetworks.

4 Conclusions

The propagation properties of SPP waves on graphene

microtubes have been comprehensively investigated in this

paper by means of a flexible 2D vectorial FE modal solver.

1st mode

2nd mode

4th mode

Fig. 7 Distribution of the radial Eq (left) and the axial Ez (right), to

the propagation, electric field components for the first three modes on

a graphene microtube with a diameter of 20lm at 4 THz
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Fig. 8 Dispersion curves of the first three modes on a graphene

microtube with a diameter of 10lm
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Fig. 9 Dispersion curves of the first three modes on a graphene

microtube with a diameter of 5 lm
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After the formulation of the graphene surface conductivity

model and its insertion on the prior solver, a microribbon

setup has been utilized to validate the proposed technique.

Therefore, the propagation properties of various modes on

several microtubes have been carefully studied through

dispersion diagrams and the associated electric field dis-

tributions, indicating a better confinement at decreased

diameters. Furthermore, the propagation length of the

graphene microtube has been compared to the microribbon

one, exhibiting an optimal behavior, able to enhance the

development of plasmonic circuits at the far-infrared

regime.
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