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Abstract An efficient technique for the polarizability

matrix extraction of non-planar chiral particles is intro-

duced in this paper. Assuming electrically small sizes, the

particles are modeled via electric and magnetic dipoles,

whose induced moments are derived from the surface

S-parameter response of three normal wave incidences.

Then, these moments are inserted in the initial convention

and polarizabilities are acquired through a linear system

formed by the measured or simulated S-parameters. To

validate the novel method, the retrieved polarizabilities are

involved in RCS calculations for diverse incidences and

compared with simulated ones.

1 Introduction

First-principle homogenization methods are widely

acknowledged due to their consistency and accuracy. Their

goal is to analytically calculate the effective constitutive

parameters of bulk metamaterials [1–5] from the properties

of the composing scatterers. Such an approach considers

the radiation behavior of each scatterer and the interaction

between scatterers on the 2D/3D grid, thus eradicating

artifacts of existing algorithms, associated with weak spa-

tial dispersion and non-locality [6].

Mainly, the prior schemes exploit single metamaterial

scatterer polarizabilities. In fact, for some typical struc-

tures, polarizabilities can be analytically derived via either

approximate surface current distributions [7] or antenna

models [8]. However, such techniques mostly apply to

certain shapes and produce quasi-static outcomes. Alter-

natively, generalized methods based on the scatterers’

response have been lately proposed. So, apart from far-field

data [9], S-paramaters (simulated or measured) constitute a

popular candidate. To this aim, a dynamic technique has

been presented for anisotropic scatterers [10], offering

closed-form expressions for two particle polarizabilities up

to the homogenization limit. Further extensions have

studied simple bianisotropic metamaterials through S-pa-

rameters, raising the number of the extracted polarizabili-

ties to four [11].

In this paper, a systematic methodology for non-planar

structures with larger polarizability matrices, like the helix

chiral particle, is developed. Presumed electrically small,

the scatterer is described by an electric and magnetic dipole

around its shape center. Next, the particles are placed in a

2D array, perpendicularly illuminated by plane wanes, and

the induced dipole moments are expressed via the particle’s

polarizabilities and the local field at its shape center. So, a

linear system is constructed and polarizabilities are derived

as a function of the induced dipole moments. The latter can

be obtained from simulated or measured S-parameters via

equivalent surface models. The new algorithm can pre-

cisely extract the polarizability matrix of a scatterer for up

to 9 elements through S-parameters and its application to

the helix chiral particle. Moreover, and unlike other

schemes, interaction coefficients for the 2D array are not

calculated, yet extracted for simplicity. The featured

method is certified by RCS computations, successfully

compared to various simulated results.
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2 Theoretical methodology

Consider the helix chiral particle of Fig. 1a and moderate

electrical sizes, so that jkjh\0:3 and jkjr\1, with k ¼
x

ffiffiffiffiffi

el
p

the wavenumber in the background medium. Thus,

the particle can be deemed significantly small and repre-

sented by a set of electric and magnetic dipoles around its

shape center, as in Fig. 1b. Note that, due to the non-planar

geometry, not all dipole moments are located at the shape

center (same position), contrary to other schemes [9–11].

Placing the scatterer on an infinite 2D array (Fig. 2), the

induced electric, p, and magnetic, m, dipole moments are

related to the particle polarizabilities and local fields at its

center by
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for aee, aem, amm, and ame the scatterer’s electric–electric,

electric–magnetic, magnetic–magnetic, and magnetic–

electric polarizabilities, respectively. Vector f inc denotes the

incident field and fscat the scattered one from all the other

particles of the array, while their summation is the local field.

Moreover, Cee and Cmm are the electric–electric and mag-

netic–magnetic interaction coefficients. For the normally

incident planewaves and the square array of Fig. 2, it follows

that Cxx
mm ¼ Cyy

ee ¼ Czz
ee ¼ C0, according to the properties of

dyadic Green’s functions [12]. If the particle radius, r, is

considerably smaller than the unit cell size, d, i.e., r\ 0.1 d,

it can be safely presumed thatCxx
ee � C0. AlthoughC0 may be

analytically calculated via dyadic Green’s functions, we,

herein, introduce an alternative process for its extraction

from S-parameters, to be next analyzed.

Since azzee in (1) is isolated and can be separately

extracted, the retrieval of the other nine elements of matrix

½a� will, also, require nine independent equations. This is

attained by plugging different incident plane waves into

(1). Therefore, if i = 1,2 and j ¼ A;B indicate the direc-

tion and polarization of the incident wave, then f inci;j ¼

e0Einc
x c�1Hinc

x e0Einc
y e0Einc

z

h iT

and f incA;1 ¼ f incA;2 ¼ e0½1 0

0 0�T , f incB;1 ¼ e0½0 � 1 1 0�T , f incB;2 ¼ e0½0 1 1 0�T , in rela-

tion to the normally incident plane waves of Fig. 2, for

normalized field values. Based on these notions, substitu-

tion of f inci;j in (1) yields

pAx ¼ axxee e0 þ C0p
A
x

� �

þ axxemC0c
�1mA

x þ axyeeC0p
A
y ; ð2aÞ

c�1mA
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A
x

� �
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x
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A
y ;

ð2bÞ
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A
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� �
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A
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� �
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where the � sign becomes ‘‘-’’ for the i = 1 incident field

and ‘‘?’’ for the i = 2 one. Also, (2) and (3) constitute

three linear systems of equations, each with three different

unknowns, thus being sufficient for the desired polariz-

abilities. Designating as FA
11 ¼ e0 þ C0p

A
x , F

A
12 ¼ C0c

�1mA
x ,

FA
13 ¼ C0p

A
y , FB

ðiþ1Þ1 ¼ C0p
B
x;i, FB

ðiþ1Þ2 ¼ �e0 þ C0c
�1mB

x;i,

and FB
ðiþ1Þ2 ¼ e0 þ C0p

B
y;i, the polarizabilities of the helix

particle can be retrieved in terms of the induced dipole

moments through (4).
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Fig. 1 Helix chiral particle. b Geometry with r = 3 mm, h = 1 mm,

g = 0.3 mm, a wire radius of 0.05 mm, and the largest dimension

given by 2s ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ h2
p

. b Equivalent dipole moments and their

respective positions
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Fig. 2 Array of metamaterial scatterers (d = 10 mm)
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This new set of equations can efficiently calculate the nine

unknown polarizabilities of (1), provided that the induced

electric and magnetic dipole for each incidence is known.

The latter may be derived from the response of the 2D array

of Fig. 2, for each incidence, in the form of S-parameters or

reflection/transmission coefficients, as explained below.

2.1 S-parameters from dipole moments

To evaluate the required dipole moments, the 2D array in

Fig. 2 is replaced by a set of equivalent radiating surfaces.

Assuming planar arrays of px, mx, and py, the replacement

involves equivalent surfaces with the respective electric

and magnetic surface currents Jsx, Ksx, and Jsy. Thus, if we

follow the averaging process of [11], these surface currents

can be expressed as

Jsx ¼ jx
px

d2
x̂; Ksx ¼ �jxl0

mx

d2
x̂; Jsy ¼ jx

py

d2
ŷ: ð5Þ

Moreover, the appropriate boundary conditions for the

surface currents of (5) lead to the scattered fields from each

equivalent surface, as in Fig. 3. Gathering the scattered

field contribution of each surface current, the total scattered

field of the 2D array with helix particles can be obtained as

a function of the dipole moments, i.e.,

Esurf ¼ Esurf
x x̂þ Esurf

y ŷ; ð6aÞ

Esurf
x ¼ � jxg0

2d2
pxe

�jkðjzj�rÞ; ð6bÞ

Esurf
y ¼ � jxg0

2d2
�sgnðzÞc�1mx þ py
	 


e�jkjzj; ð6cÞ

for g0 the vacuum characteristic impedance and sgnðzÞ the
sign function. Notice that in this paper, and in contrast

to [9, 11], the ejkr term is multiplied by the Esurf
x component

of (6a) to compensate for the px displacement from the

shape center, where the local field is considered as the

excitation point of the particle in (1). The � sign in (6b)

becomes ‘‘-’’ or ‘‘?’’ for a wave along the negative or

positive z-axis (Fig. 3). This is analogous to the far-field

calculation of an antenna array, where the distance of each

element from the antenna source is signified by a phase

shift at the element’s own feed.

Let us, now, presume a two-port system with port 1 at the

negative z-axis in Fig. 2 and port 2 at the positive one. Both

ports are equally distanced from the particle, while l is the

phase reference plane distance of each port from the particle

shapecenter [11].Then, if the distanceofpx fromthe reference

plane of port 1, lx ¼ l� r, is set as the distance covered by the

incident wave, the induced dipole moments may be computed

via the acquired S-parameters, using (6) and [11], as

pAx ¼ j2d2
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S
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for ‘‘co’’ and ‘‘cr’’ the co- and cross-polarization of the

scattered wave relative the incident one (Fig. 2). Finally,
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Fig. 3 Equivalent surface currents and their respective scattered

fields, derived from (5) and (6), respectively. The origin of the

Cartesian coordinate system is located at the shape center, while the

‘‘?’’ or ‘‘-’’ sign denotes that wave propagation occurs along the

positive or negative z-axis, correspondingly
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substitution of (7)–(9) in (4) leads to the desired polariz-

abilities. The last non-resonant polarizability azzee is

retrieved simply by pivoting the particle for 90 �C and

replacing x- with z-axis, to have a particle with an aniso-

tropic behavior for waves propagating normally to the

particle loop plane. Then, azzee can be computed via aniso-

tropic polarizability extraction methods [10]. The proposed

algorithm may also be applied to metamaterial scatterers

with fewer polarizabilities than the helix particle and, from

this viewpoint, it can comprise a generalization of the

retrieval schemes in [10] and [11].

2.2 Extraction of interaction coefficient C0

As already stated, C0 may be determined by rapidly con-

verging series of dyadic Green’s functions. Herein,

nonetheless, a simple technique, which evades the cum-

bersome issues of series convergence, is developed.

Assume a multiply arranged random anisotropic particle, as

in Fig. 2, illuminated by an incident wave f incA;1. Starting

from the retrieval formulas of [10] for anisotropic scatter-

ers (modeled by two dipoles, px and my, at their shape

center) and setting C0 as our unknown, we get

C0 ¼ px � axxeee0
� �

=ðpxaxxeeÞ: ð10Þ

Evidently, if px and axxee are known, C0 can be directly

extracted from (10) for every frequency. Observe that px
for an anisotropic scatterer may be acquired from the S-

parameters of the 2D array in Fig. 2, as

px ¼ � jd2

xg0
1� Sco11 þ Sco21
� �

ej2kl; ð11Þ

while axxee can be analytically obtained for simple geome-

tries. In this paper, we use the closed-form formula for the

electric polarizability of a magneto-dielectric sphere [13].

So, for vaccuum as our host medium,

axxee ¼ 3V
Gð/Þ es � e0
Gð/Þ es þ 2e0

; ð12aÞ

Gð/Þ ¼ 2 sin/� / cos/ð Þ
/2 � 1
� �

sin/� / cos/
; ð12bÞ

with es and ls the electric permittivity and magnetic per-

meability of the sphere, V ¼ 4pr30=3 its volume, r0 its

radius, and / ¼ xr0
ffiffiffiffiffiffiffiffi

esls
p

. Then, plugging (11) and (12)

into (10) provides C0 for a given 2D grid.

To verify our procedure, we select a dielectric sphere

with r 0 = 1.5 mm, es ¼ 10e0, ls ¼ l0 and compare the

extracted coefficient C0; extr with its C0; calc counterpart,

calculated through fast-convergence series from a popular

anisotropic particle. Specifically, for the square 2D grid of

Fig. 2 with d = 10 mm, we consider the bianisotropic

split-ring resonator (BC-SRR) of the inlet sketch in Fig. 4.

The latter presents the real parts of the subsequent output,

retrieved via C0; extr and C0; calc, which are in promising

agreement. Actually, only minor resonance frequency

shifts are observed, that is � 0:53% for the first magnetic

resonance and � 1:7% for the second electric one. So, we,

next, use C0; extr for our polarizability extractions to further

prove its robustness.

3 Results and validation

The featured method is, now, applied to the particle of

Fig. 1a, and results are given in Fig. 5, while the required

S-parameter input is numerically obtained via the CST

MWSTM package [14]. All results are in full qualitative

accordance with previous analytical methods [8] and sat-

isfy the Onsager–Casimir symmetries, aem ¼ �a
T

me and

aee ¼ a
T

ee, unlike other approaches for non-planar parti-

cles [15]. This is due to the px phase shift in (7)–(9).

Furthermore, ayyee at low frequencies is equal to the non-

resonant azzee, as reported [7, 8].

For their validation, the polarizabilities of Fig. 5 are,

next, employed for the analytical evaluation of the parti-

cle’s RCS for a given incident wave, compared with its

CST MWSTM computed counterpart. In particular, if the

far-field response of an electrically small particle can be

described in terms of electric and magnetic dipole

moments, its generated RCS is given by [16]

r ¼ k4 ðn̂� pÞ � n̂� ðn̂� c�1mÞ
�

�

�

�

2
=ð4pe20Þ; ð13Þ

with n̂ ¼ cosh x̂� sinh sinu ŷþ sinh sinu ẑ the unit vector

toward the direction of observation, as in Fig. 6. The
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required dipole moments p and m are derived by (1),

considering an isolated scatterer, i.e., fscat ¼ 0.

In this way, all possible incidence angles along the four

plane waves of Fig. 6 may be analyzed through normalized

fields, fTM;1
inc ¼ e0 sinwA 0 0 coswA½ �T , fTE;1inc ¼ e0 0 � sinwA½

1 0�T , fTM;2
inc ¼ e0 ½0 � 1 sinwB coswB�

T
, and fTE;2inc ¼ e0 1½

0 0 0�T . Nevertheless, we, herein, focus only on the fTM;1
inc and

fTM;2
inc cases, since they are sufficient for the excitation of all

elements of the polarizability matrix in (1). Also, five dif-

ferent angles of incidence, i.e., 90; 60; 45; 30; and 0 � are

investigated for wA and wB. Comparative plots of the cal-

culated and simulated RCS are illustrated in Fig. 7 for the
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(c) f ¼ 7GHz, and (d) f ¼ 10GHz
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TM; 1 incidence and Fig. 8 for the TM; 2 incidence. Partic-

ularly, for the low frequency f ¼ 4GHz scenario (electrical

length of 2s=k ¼ 0:0843), displayed in Figs. 7a and 8a, a

very satisfactory match for the quasi-static response of the

particle is achieved. Moving to the spectrum around the

scatterer’s resonance, the outcomes are shown in Figs. 7b and

8b, for f ¼ 6GHz (2s=k ¼ 0:1265), and Figs. 7c and 8c, for

f ¼ 7GHz (2s=k ¼ 0:1476), respectively. Again, the agree-

ment is undoubtedly sufficient, except for some minor devi-

ations due to the sensitivity of polarizabilities around the

resonance for small frequency shifts. Finally, Figs. 7d and 8d

display the RCS results near the homogenization limit of

k=5� k=4, for f ¼ 10 GHz (2s=k ¼ 0:2108), with similar

high levels of coincidence.

Overall, the prior evaluation process substantiates the

efficiency of the novel method and offers modeling

guidelines for helix chiral particles or the multi-pole

treatment of metamaterial structures. As shown, the dipole

approximation can lead to very accurate representations of

the prior particles, at least for electrical lengths around the

k=5 limit. Furthermore, the RCS obtained from the

extracted polarizability matrix succeeds in following the

variation of the actual RCS, both in value and in pattern,

for every angle of incidence and wave polarization. This

excellent agreement allows the reliable use of the extracted

C0, instead of the calculated one in relevant setups. Bear in

mind, however, that the dipole approximation may not be

sufficient when moderate particle dimensions are not taken

into account, namely large wire lengths h. In such cases, as

for electrical lengths beyond k=4, the addition of quadra-

poles in the multi-pole model is possibly required.

4 Conclusions

A rigorous algorithm for the dynamic retrieval of the

polarizability matrix of non-planar helix chiral particles has

been presented in this paper. Initially, it is assumed that,

under certain dimensions, the helix particle can be replaced

with a set of electric and magnetic dipole moments, which

are, afterward, placed on a 2D square array, illuminated by

normally incident plane waves. Then, the induced dipole

moments of the scatterer in the array are analytically

derived as a function of the polarizability matrix to form

three linear systems with the unknown polarizabilities. By

expressing these dipole moments in terms of the simulated

or measured S-parameters, the polarizability matrix is

promptly obtained. Also, a new technique for the trust-

worthy computation of the interaction coefficient for a 2D

array has been launched. Finally, the extracted polariz-

abilities have been extensively certified through compar-

isons of the resulting RCS patterns with simulated ones, for

frequencies up to the homogenization limit.
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