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Abstract 
Social interactions with conspecifics are key to the fitness of most animals and, through the transmission opportunities 
they provide, are also key to the fitness of their parasites. As a result, research to date has largely focused on the role of 
host social behavior in imposing selection on parasites, particularly their virulence and transmission phenotypes. However, 
host social behavior also influences the distribution of parasites among hosts, with implications for their evolution through 
non-random mating, gene flow, and genetic drift, and thus ability to respond to that selection. Here, we review the paucity 
of empirical studies on parasites, and draw from empirical studies of free-living organisms and population genetic theory 
to propose several mechanisms by which host social behavior potentially drives parasite evolution through these less-well 
studied mechanisms. We focus on the guppy host and Gyrodactylus (Monogenea) ectoparasitic flatworm system and follow a 
spatially hierarchical outline to highlight that social behavior varies between individuals, and between host populations across 
the landscape, generating a mosaic of ecological and evolutionary outcomes for their infecting parasites. We argue that the 
guppy-Gyrodactylus system presents a unique opportunity to address this fundamental knowledge gap in our understanding 
of the connection between host social behavior and parasite evolution. Individual differences in host social behavior generates 
fine-scale changes in the spatial distribution of parasite genotypes, shape the size, and diversity of their infecting parasite 
populations and  may generate non-random mating on, and non-random transmission between hosts. While at population 
and metapopulation level, variation in host social behavior interacts with landscape structure to affect parasite gene flow, 
effective population size, and genetic drift to alter the coevolutionary potential of local adaptation.

Significance statement
Social interactions between animals shape the evolution of the pathogens that infect them. Most research exploring this 
phenomenon has focused on the selection such interactions impose, but social hosts also shape parasite evolution by deter-
mining the ability of their parasites to respond to that selection. Here, we explore how host social behavior drives parasite 
evolution by shaping non-random mating, gene flow, and genetic drift, from the scale of the individual to the landscape. The 
relative strength of these evolutionary mechanisms can have striking implications for the evolution of parasite traits such as 
virulence and alter the evolutionary trajectories of populations across the landscape. We emphasize the importance of studies 
combining parasite population genetics, host social behavior, and landscape processes to illuminate complex host-parasite 
coevolutionary dynamics.

Keywords  Host social behavior · Host-parasite coevolution · Landscape population genetics · Spatial scale · Parasite non-
selective evolution · Parasite transmission dynamics

Introduction

Host social behavior strongly influences parasite transmis-
sion between hosts and thus the ecological and evolutionary 
trajectories of parasite populations among individual hosts, 
between host populations, and across the landscape (Paull 
et al. 2012; Albery et al. 2021). We define social behavior as 
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behavioral interactions between conspecific animals. These 
interactions may be negative (e.g., aggression, avoidance) 
or positive (e.g., allogrooming, affiliation) in nature and 
can occur within or outside the context of discrete social 
groups. We include mating interactions in this definition. 
A previous work exploring the evolutionary implications 
of host social behavior for metazoan parasites has focused 
almost exclusively on the form and strength of selection on 
parasite phenotypes, such as virulence (Boots and Sasaki 
1999; van Baalen 2002; Walsman et al. 2021) and transmis-
sibility (Stroeymeyt et al. 2018; White et al. 2018). Host 
social behavior also has the potential to affect other evolu-
tionary processes, including gene flow, non-random mat-
ing, and genetic drift, but these have received substantially 
less research attention. This is especially true for directly 
transmitted parasites that reproduce in or on the host. How-
ever, the relative dominance and interactions among evo-
lutionary mechanisms can have striking implications for 
parasite response to selection (Fig. 1). Understanding the 
parasite’s population structure and genetic mating system 
(hereafter “mating system”; the manner in which gametes 
unite to form a zygote with particular regard to relatedness; 
Table 1) is therefore key to predicting virulence evolution 
(Frank 1996). Similarly, the spatial population structure of 
parasites and their hosts, the dispersal rates of each, and 
population-level differences in demographic processes—all 
affected by host social behavior—will shift host-parasite 
coevolutionary outcomes across the landscape (Lively 1999; 
Thompson 1999; King et al. 2009). We therefore highlight 

the often-overlooked importance of host social behavior 
for parasite non-random mating (i.e., mating system), gene 
flow (i.e., population substructure), and genetic drift (i.e., 
changes in population effective size, bottlenecks, and genetic 
diversity), and emphasize the importance of incorporating 
multiple spatial scales (Fig. 2).

Population genetics presents an important set of molecu-
lar tools to indirectly infer the ecological and evolutionary 
implications of host social behavior for parasite ecology 
and evolution (Criscione et al. 2005; Gorton et al. 2012). 
Disruptions to panmixia can occur at multiple scales and 
the patterns of genetic structuring depend on the ecological 
mechanism that generates these disruptions, many of which 
may work in concert to generate the observed genetic pat-
terns. While there are many other potential candidates, we 
focus on host social behavior as one such ecological mecha-
nism because much recent research has focused on its role 
in imposing selection on parasites. A key difference between 
free-living and parasitic organisms is that parasite popula-
tions are further subdivided through non-random transmis-
sion between the “infrapopulations” of individual hosts 
and thus additionally affected by host biology and behav-
ior (Table 1, Fig. 2a). Genetic variation must be assessed 
across these hierarchical levels: disruptions to panmixia 
at the infrapopulation scale that go unrecognized can con-
found patterns detected at the larger spatial scales (Criscione 
et al. 2005; Prugnolle and De Meeus 2010; Gorton et al. 
2012). Importantly, the rate of genetic exchange between 
infrapopulations depends on migration rates between them 

Fig. 1   Host social behavior and parasite evolution result in complex 
bidirectional interactions. Host social behavior may shape parasite 
evolution through multiple pathways, not all of which are included 
in this chart. Increased contact rate, group size, and connectivity 
between host individual and groups facilitate parasite transmission, 
effective population size, genetic diversity, mating system, and struc-
ture (dashed boxes), which can be directly or indirectly estimated 
through studies of parasite population genetics. The combination of 

the factors in the blue box affects the strength of selection and the 
ability of the parasite population to respond to selection, which will 
feedback to affect host social behavior and thus are essential to our 
understanding of these bidirectional interactions in wild populations. 
Red arrows indicate processes discussed in this review, while gray 
arrows have been covered extensively elsewhere. In this review, we 
focus on the effects of host social behavior on parasite population 
structure, mating system, and gene flow
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(Criscione and Blouin 2006; Prugnolle and De Meeus 2010) 
which, for many systems, will be dictated by the transmis-
sion opportunities afforded by social interactions between 
hosts. Host social behavior can therefore be expected to fun-
damentally shape both selections on parasites, and their gene 
flow and mating systems, and thus ability to respond to that 
selection (Fig. 1). Early work on the importance of spatial 
genetic structure on parasite population genetics stems from 
a series of multi-scale publications in a seabird tick system 
by McCoy and colleagues. This work, which is foundational 
to the parasite population genetics work we review here, 
compared fine-scale spatial genetic structure and tick diver-
sity within and among nests of the seabird hosts (McCoy 

et al. 2003a) and regional scale host-driven differences in 
dispersal among tick races (McCoy et al. 2003b). (For a 
more detailed review of publications in this system, see Gor-
ton et al. (2012).)

To date, there is a paucity of research explicitly testing 
the effects of host social behavior on parasite population 
genetics. Lumme and Zietara (2018) sequenced the infra-
populations of Gyrodactylus arcuatus infecting adult and 
juvenile three-spined stickleback in a single host population 
at three time points to examine how host mating and shoal-
ing behavior affect parasite population structure. Initially, 
G. arcuatus infections on juvenile fish consisted of low-
intensity infections composed primarily of clonally derived 

Table 1   Glossary of terms used throughout the paper

Automictic parthenogenesis The production of diploid daughters from unfertilized eggs. The first stages of meiosis occur and diploidy is 
restored by the fusions of two nuclei originating from the same oocyte. Automictic parthenogenesis increases 
homozygosity in each generation but the rate of increase depends on the cytological mechanism restoring the 
diploidy

Between-clone mating Mating between two individuals originally derived from parthenogenetic reproduction. The resultant offspring 
will have a reduction in heterozygosity akin to the rates generated by selfing

Clonemate Genetically identical individuals generated through asexual reproduction
Clonal co-transmission The clumped dispersal of clones from one host—the “donor”—to the next—the “recipient”
Component population All the parasites infecting the host population
Effective population size (Ne) The ideal population size is N in which all parents have an equal expectation of being the parents of offspring 

within the population. The size of Ne determines the rate of change in the population due to genetic drift. When 
the infrapopulation is stable over successive generations, genetic drift within the infrapopulation may weaken 
the force of selection. Note that the parasite effective population can be considered the infra-, component, or 
metapopulation, depending on the migration, or transmission rate between hosts

FIS The proportional change in heterozygosity relative to Hardy–Weinberg equilibrium is due to the non-random 
union of gametes in a subpopulation. Positive FIS can be caused by mating between closely related individuals, 
or when two genetically differentiated populations are analyzed as one (see Wahlund effect)

FST Proportional change in heterozygosity relative to Hardy–Weinberg equilibrium due to subdivision within the 
population. Larger values of FST indicate greater population subdivision

Genetic drift Random changes in allele frequency in a finite population
Habitat configuration Amount and spatial arrangement of biotic and abiotic components of the habitat
Inbreeding Mating among individuals is more closely related than expected at random within the population. Inbreeding 

may be the result of self-fertilization or biparental inbreeding (mating between two closely related individuals, 
such as full siblings)

Infrapopulation All the parasites infecting a single host at a particular point in time
Linkage disequilibrium The non-random association of alleles on different loci (also called gametic disequilibrium). Detecting linkage 

disequilibrium among loci can be an indication of inbreeding or small effective population sizes. However, it 
may also be caused by sampling closely related individuals, such as siblings

Mating system Here we use “mating system” to refer to the genetic mating system of parasites, not the behavioral mating system 
of hosts. Specifically, we use mating system to refer to the manner in which gametes unite to form a zygote. 
This may be random or non-random. We specifically focus on mating system regarding relatedness

Sibling co-transmission The clumped dispersal of siblings to subsequent hosts
Social behavior Behavioral interactions that occur among conspecific animals and vary in duration. These interactions can be 

“negative” (e.g., aggression, avoidance) or “positive” (e.g., allogrooming, affiliation) in nature and can occur 
within or outside the context of discrete social groups. We include mating interactions in this definition

Transmission bottleneck A genetic reduction in diversity is when a small number of individuals or a number of genetically similar individ-
uals are transmitted from one host to another. Large or wide transmission bottlenecks are less restrictive than 
small or narrow ones. Bottlenecks may occur between host individuals when the infrapopulation is the unit of 
evolution, or between component populations when infrapopulation turnover is high

Wahlund effect The reduction in the proportion of observed heterozygotes relative to the expected Hardy–Weinberg proportions 
in a sample caused by population substructure
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parasites, but diversity rapidly increased to levels similar to 
infrapopulations on adults, despite juveniles having overall 
smaller infrapopulation sizes. These results suggest that host 
social behavior permits continuous parasite transmission, 
resulting in diverse mitochondrial haplotypes at the infrap-
opulation level and low levels of relatedness over the course 

of the infection (Lumme and Zietara 2018). Host social 
behavior also appears to have an important role in structur-
ing the populations of mites infecting bats: Bruyndonckx 
et al. (2009) found patterns of isolation by distance and 
strong population subdivision between, but not within, wing 
mite (Spinturnix bechsteini) populations infecting colonies 
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Fig. 2   At the finest scale, a parasites are subdivided among individual 
hosts, generating infrapopulations made up of the parasites infecting a 
particular host at a particular point in time. Parasite infrapopulations 
composed of successive recurrent generations of individuals will 
function as a deme and genetic drift will act within the infrapopual-
tion. Transmission bottlenecks between individuals will influence the 
genetic diversity of parasites interacting within the infrapopulation. 
At the population scale, b the parasite component population is com-
posed of all the parasites infecting all hosts. When infrapopulation 
turnover is high, genetic drift will occur within the component popu-
lation. At the metapopulation scale, c the placement of a population 
within the complex habitat configuration and landscape processes 

directly affects the diversity of parasite genotypes to which a host is 
exposed. Dendritic branching interacts with host dispersal behavior 
to influence gene flow and subsequent genetic differentiation within 
the network. Genetic differentiation between populations is illustrated 
by circle color in which greater color differences between popula-
tions indicate greater genetic differentiation and higher FST values ( 
adapted from Thomaz et al. 2016)—the inset color graph represents 
local population genetic identity in multivariate space. Asymmet-
ric dispersal in response to unidirectional stream drift results greater 
genetic diversity downstream and in narrower parasite transmission 
bottlenecks farther upstream, increasing the strength of genetic drift 
upstream (see Fig. 3)
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of Bechstein’s bat (Myotis bechstienii), indicative that host 
social roosting behavior limits long-distance mite dispersal. 
Additionally, a cross-species comparison indicated that S. 
myotis, which infects a more social bat host, Myotis myo-
tis, exhibited higher intensity of infection, greater genetic 
diversity, and lower genetic differentiation among colonies, 
when compared to Spinturnix bechsteini infecting the less 
social Myotis bechstienii (van Schaik et al. 2014). Further 
work in the genus Spinturnix demonstrated that both host 
social organization and mating system shapes mite aggrega-
tion, prevalence, and intensity (van Schaik and Kerth 2017). 
The authors note that these patterns are likely to have con-
sequences for the population genetic structure of the para-
site but did not include population genetic analysis within 
the study. Wohlfeil et al. (2020) found that tick relatedness 
increased with increased spatial proximity and asynchronous 
shared refuge spaces within social networks of their hosts, 
Australian sleepy lizards (Tiliqua rugosa). However, Port-
anier et al. (2019) found no evidence that social behavior in 
Mediterranean mouflon (Ovis gmelini musimon) generates 
fine-scale spatial genetic structure in Haemonchus contortus, 
a nematode with direct transmission, likely because the free-
living stage of the parasite, coupled with a broad host range, 
facilitates parasite genetic mixing beyond that suggested by 
the host social behaviors.

Future work should build on these foundational studies 
of host social behavior driving parasite population struc-
ture: deeper analysis across hierarchical scales can address 
the implications of this structure for parasite mating within 
the host, and subsequent transmission between hosts. For 
the remainder of the review, we use empirical data and 
population genetic theory to suggest likely important, but 
as yet unstudied, patterns at this exciting early stage of 
investigations into how host social behavior shapes parasite 
non-selective evolution. We highlight that future research 
incorporating field sampling in natural experiments, exper-
imental manipulations, and population genetic hypothesis 
testing is sorely needed to elucidate how ecological mecha-
nisms, including host social behavior, may structure para-
site populations. We structure our review by spatial scale, 
first examining the impact of individual-level host social 
behavior, and then population- and metapopulation-level 
variation in host social behavior, on the structure of para-
site populations at the corresponding scales of within-host 
(infrapopulation), between-host (component population), 
and metapopulation. Wherever possible, we focus on host-
specific metazoan ectoparasites with direct transmission and 
simple, one-host life cycles because their population size and 
structure are intuitively most likely to be influenced by host 
social behaviors. Furthermore, host social behavior is likely 
to be particularly important in structuring the populations 
of directly transmitted parasites: social interactions involv-
ing infected hosts facilitate their direct transmission, but 

pathology caused by the infection, particularly if parasites 
reach high loads on individual hosts, may induce susceptible 
hosts to actively avoid infected hosts.

With this review, we aim to highlight the utility of the 
well-characterized Trinidadian guppy (Poecilia reticulata) 
and its directly transmitted monogenean ectoparasites, Gyro-
dactylus spp., as a model system both to address the exist-
ing knowledge gap and also provide a useful illustration of 
the patterns and processes, we predict are likely important. 
Guppies are a classic ecoevolutionary model (Reznick et al. 
1997; Magurran 2005) because the geographic mosaic of 
Trinidadian river ecosystems generates a “natural labora-
tory” for studying guppy evolution in response to variation 
in predation pressure: waterfalls form upstream migration 
barriers to large piscivorous fish, resulting in upper and 
lower course guppy populations experiencing dramatically 
different predation regimes. Since the 1960s, researchers 
have worked to demonstrate that this difference in preda-
tion regime has resulted in repeated evolution of divergent 
guppy life history, behavior, and morphology (reviewed in 
Magurran 2005). The interactions between the guppy and 
its directly transmitted ectoparasites, Gyrodactylus turnbulli 
and G. bullatarudis, have also received some research atten-
tion (Cable and van Oosterhout 2007; Martin and Johnsen 
2007; Fraser and Neff 2009; Fraser et al. 2010; Gotanda et al. 
2013; Stephenson et al. 2015a, b; Xavier et a. 2015; Moham-
med et al. 2020), and molecular genetic tools provide new 
and rare opportunities to investigate parasite response to host 
social behavior (Konczal et al. 2020, 2021). Gyrodactylid 
reproduction in the wild is complex, which presents opportu-
nity for future study (Shelkle et al. 2012). Gyrodactylids pro-
duce two daughters asexually, after which individuals grow a 
penis and can reproduce either sexually or asexually (Cable 
and Harris 2002). The first daughter is produced through 
asexual proliferation which would result in an offspring with 
an identical multilocus genotype to the mother (Cable and 
Harris 2002). The mating between two genetically identical 
clonally derived individuals results in patterns of reduced 
heterozygosity analogous to selfing (Svendsen et al. 2015; 
Criscione and Blouin 2006). Self-fertilization reduces hete-
rozygosity by 50% compared to the parent generation, while 
the expected heterozygosity decreases due to parthenogene-
sis depend on the phase of meiosis in which the fusion of the 
meiotic products takes place and the form of automictic par-
thenogenesis (Svendsen et al. 2015). The second asexually 
produced daughter is generated through automictic parthe-
nogenesis, although the automictic mechanism is unknown 
(Cable and Harris 2002). Automixis by gamete duplication 
and terminal fusion will increase homozygosity, while cen-
tral fusion will maintain heterozygosity in the offspring rela-
tive to the adult (Engelstädter 2008; Tanaka and Daimon 
2019). Thus, they exhibit acyclical partial clonality, where 
sexual reproduction, clonality, and parthenogenesis co-occur 
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in time (Rouger et al. 2016). Infection by a single individual 
can result in epidemic infections that induce significant host 
morbidity and mortality (Harris and Lyles 1992; Bakke et al. 
2007). Crucially for our review, guppy behavior, including 
social interactions, has been extensively characterized both 
in the wild and in the laboratory (reviewed in Houde 1997; 
Magurran 2005), and Gyrodactylus spp. transmission has 
been linked directly to host social behavior. We therefore 
draw from theoretical models, population genetic analyses 
from free-living wild systems, and the highly characterized 
Trinidadian guppy model system to generate predictions of 
how host social behavior could shape parasite population 
genetic structure, and thus parasite evolution through both 
selective and non-selective processes.

How do individual host social interactions 
determine parasite population genetic 
structure and mating system?

We draw from our focal system, Trinidadian guppies and 
their Monogenean ectoparasites, Gyrodactylus spp., and the 
wealth of knowledge about the host’s behavior, to illustrate 
that host social behaviors affect the frequency and type of 
contact between hosts, and the identity of the interacting 
hosts. The extent to which host social decisions mean they 
encounter the same subset of conspecifics will determine the 
extent to which transmission is clustered and therefore the 
identity of parasite individuals that interact. This section is 
divided into two subsections: in the first, we focus on gup-
pies to illustrate how host social behaviors may affect the 
distribution of parasites among hosts. In the second, we draw 
from theory and empirical work on free-living and parasitic 
animals to generate general, testable predictions about the 
implications of these host behaviors for parasite population 
genetic structure and mating system.

Guppy individual‑level social behavior likely 
changes the frequency and type of transmission 
opportunities for their parasites

Larger host social groups and higher host density should 
intuitively lead to increased contact rates between hosts 
and therefore more parasite transmission and thus larger 
parasite populations (Côté and Poulinb 1995; Patterson 
and Ruckstuhl 2013). From the parasite’s perspective, it is 
likely more complicated: host social interactions within a 
population are often non-random, resulting in higher con-
tact between particular individuals than otherwise expected 
due to chance. Thus, group size alone likely does not cap-
ture how host social behavior drives parasite transmission. 
Indeed, our focal guppy hosts tend to live in social groups, 
“shoals”, as an anti-predator defense (Farr 1975) and to 

improve foraging efficiency (Day et al. 2001), the composi-
tion of which is highly non-random. Individual guppies dis-
criminate between potential shoalmates based on their size 
(Croft et al. 2003b), sex (Magurran et al. 1992), familiarity 
(Magurran et al. 1994; Sievers and Magurran 2011), repro-
ductive receptivity (Guevara-Fiore et al. 2009; Brask et al. 
2012), personality (Lucon-Xiccato and Dadda 2017; Kniel 
and Godin 2019), cooperativeness (Brask et al. 2019), diet 
(Morrell et al. 2007), relatedness (Griffiths and Magurran 
1998; Piyapong et al. 2011), and population of origin, as 
well as rearing density (Song et al. 2011).

These individual-level decisions affect the conspecifics a 
guppy electively interacts with, and therefore the shape of 
their social networks (Croft et al. 2005a, b), and vary both 
between individuals and contexts. The structure of a social 
network is therefore dependent on its members and can be 
highly dynamic. For example, female guppies shoal more 
than males (Magurran et al. 1992), preferentially with famil-
iar (Griffiths and Magurran 1998) and same-sex conspecifics 
(Shohet and Watt 2004), unlike males (Godin et al. 2003). 
Females therefore have more stable social interactions than 
males (Croft et al. 2005a; Krause et al. 2017). Further to this, 
these individual differences in shoaling are context-depend-
ent: for example, the visual stimulus of a male decreases 
shoaling tendency in single-sex female shoals (Darden and 
Watts 2012). Indeed, sexual behavior further shapes the host 
social network. Female guppies in many populations prefer 
males with larger areas of orange coloration (Houde and 
Endler 1990), who exhibit mate choice copying (Dugatkin 
and Godin 1992), and with size-assortative mating (Auld 
et al. 2016), potentially clustering social networks around 
a few key males. However, both sexes exhibit a preference 
for novelty (Hughes et al. 1999; Eakley and Houde 2004; 
Zajitschek et al. 2006; Mariette et al. 2010; Macario et al. 
2017), which decreases the modularity of contacts. Related-
ness may or may not affect mate choice: Viken et al. (2006) 
found that mature virgin females may not actively discrimi-
nate between related and unrelated males, and inbreeding 
can be favored for optimizing offspring genotypes (Neff 
2004). Overall, guppy networks are highly modular with 
short path lengths: individuals within a shoal directly con-
tact only about 15% of the network (Croft et al. 2004). 
Importantly, individual network position remains stable 
over time (Krause et al. 2017). Collectively, these studies 
indicate how individual variation in guppy social behavior 
can generate fine-scale spatial variation in parasite transmis-
sion opportunities.

This remarkable body of work (our review of which is 
not exhaustive) yields a deep understanding of the factors 
affecting guppy social interactions and enriches our predic-
tions about parasite transmission in this system. Our focal 
parasites, Gyrodactylus spp., are transmitted through close 
contact during social interactions (Johnson et al. 2011), so 
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guppy social network structure likely influences the iden-
tity of hosts coming into transmission-relevant contact, and 
the rate of transmission between them. As guppies are live-
bearing fish with internal fertilization (Houde 1997), these 
parasites are also sexually transmitted (Houde and Torio 
1992; Able 1996). Importantly, males vary in the extent to 
which they court females or attempt coercive mating, both 
within and between individuals, and within and between 
populations (Houde 1997). If sneak mating decreases the 
amount of close contact relative to courting, this variation in 
mating tactics then drives individual- and population-level 
variation in transmission. Finally, females are more likely to 
contract G. turnbulli than males in single-sex shoals (Croft 
et al. 2005a; Richards et al. 2010; Krause et al. 2017), but 
males tend to move between shoals more frequently (Croft 
et al. 2003a), potentially facilitating parasite transmission 
between social networks or even populations.

However, inferences about transmission through social 
networks based on data from uninfected individuals are 
likely flawed (Stroeymeyt et al. 2018): the presence of infec-
tion can change the social behavior of both infected (Croft 
et al. 2011), and uninfected hosts in the network (Hart 1990; 
Loehle 1995). Non-discriminative shoaling allows epidem-
ics of Gyrodactylus spp. even at low host densities (Johnson 
et al. 2011): unsurprisingly, then, guppy social decisions are 
affected by infection. Conspecifics actively avoid infected 
guppies (Croft et al. 2011) based on visual and olfactory 
cues (Houde and Torio 1992; Stephenson and Reynolds 
2016) which change with transmission risk (Stephenson 
et al. 2018). In theory, such avoidance behaviors reduce 
transmission and increase aggregation on infected individu-
als. In contrast, infected guppies increase their social con-
tacts (Stephenson 2019). Early life infection exposure can, 
again, be formative: juvenile guppies exposed to infected 
conspecifics associated more with them as adults (Stephen-
son and Reynolds 2016). Infection also shapes guppy mate 
choice: females tend to prefer uninfected and relatively 
resistant males (Kennedy et al. 1987; McMinn 1990; Houde 
and Torio 1992; Stephenson et al. 2020). However, because 
sneak mating undermines female mate preferences (Magur-
ran 2005), and therefore a females’ ability to avoid mating 
with infected males, it decreases clustering and increase 
opportunities for transmission. Female guppies also lose 
their choosiness when infected (López 1999), potentially 
increasing transmission between the sexes. Therefore, dis-
crimination against infected conspecifics, combined with the 
social behavior of those infected individuals, shapes host 
social networks and thus parasite transmission.

We can draw from the broader literature to inform how 
guppy social networks may affect Gyrodactylus spp. trans-
mission and thus population genetic structure (Fig. 3a). 
Across systems, an individual’s position in the network can 
predict its probability of parasite infection (Godfrey 2013; 

White et al., 2017). For Gyrodactylus spp., modeling sug-
gests that guppies with the highest network rank are more 
than twice as likely to become parasitized than guppies of 
low network rank (Krause et al. 2017). Further to this, mod-
eling reveals that the more highly structured the network, the 
more transmission is constrained within local clusters, gen-
erating non-random distributions of parasite populations and 
genetic diversity (Newman 2003; Griffin and Nunn 2012; 
Mohr et al. 2018; Romano et al. 2018; Webber and Vander 
Wal 2020). Thus, the structure of the host social network 
likely dictates non-random mating and fine-scale gene flow 
among parasites (Fig. 3b).

Individual-level guppy behavior therefore dictates the 
structure of their social networks, and therefore likely 
the transmission and population genetic structure of their 
directly transmitted gyrodactylid parasites (Fig. 3b). Social 
behavior that increases transmission opportunities or results 
in unclustered transmission allows greater mixing of the par-
asite population, while behaviors that increase transmission 
clustering or drive down transmission opportunities impose 
decreased connectivity in the parasite population (Fig. 3b). 
Male sneaky mating, or loss of female choosiness when 
infected, for example, both increase transmission opportu-
nities while potentially decreasing the clustering of female-
male interactions, resulting in greater mixing of the parasite 
population. By contrast, preferences for uninfected, familiar 
fish would result in the opposite. Some host social behav-
iors could result in contrasting effects on the parasite popu-
lation, possibly negating each other: as mentioned above, 
females shoal more but preferentially with other females, 
possibly both increasing and clustering parasite transmission 
opportunities within limited parts of the overall host social 
network. Sexual transmission allows for bridging between 
female and male social networks, while vertical transmis-
sion could occur if Gyrodactylus spp. are transferred during 
guppy live-birth, potentially tying parasite populations to 
guppy lineages. Host social behaviors also have the poten-
tial to facilitate transmission opportunities within modular 
networks, while limiting transmission among networks. 
Thus, network stability can generate fine-scale population 
substructure among parasites originating from different 
networks.

The frequency and type of transmission 
opportunities likely shape parasite population 
genetic structure and mating system

Non-random interactions between social hosts, such as have 
been extensively described in the guppy system, can have 
profound implications for the structure of their parasite 
populations both at the within- and between-host scales. In 
this subsection, we draw on theory and empirical work from 
free-living systems to suggest general patterns. Our central 
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thesis is that host social behavior likely shapes the distribu-
tion of parasite genotypes within a host, which would in 
turn dictate the parasite mating system. Together, population 
genetic structure and mating system have implications for 
parasite evolution at the within- and between-host scales, 
and indeed the scale at which evolution can act: limited and 
clustered transmission events increase the extent to which 
the infrapopulation is considered the evolutionary unit, but 
when transmission facilitates rapid changes in infrapopula-
tion genetic composition, evolution will act at the compo-
nent population (Fig. 2b) (Criscione and Blouin 2006).

Host social behaviors that increase transmission, and 
decrease the extent to which transmission is clustered, 
theoretically increase the size and diversity of para-
site infra- and component populations. Such conditions 
should approximate panmixia and increase the importance 

of selection while reducing the effects of drift (Hedrick 
2010). Less aggregated, more even distribution among 
hosts may reduce parasite intraspecific competition and 
variation in parasite reproductive success, potentially 
increasing effective population sizes (Dharmarajan 2015). 
Host social behaviors that generate larger group sizes and 
transmission opportunities also increase the probability 
of multigenotype coinfections and thus the genetic diver-
sity of infrapopulations. In such host populations, larger 
and more diverse infrapopulations will result in relatively 
wider transmission bottlenecks, which perpetuates the 
relative importance of selection over drift across multiple 
hosts (Fig. 4). Our current understanding of the role of 
coinfection in parasite evolutionary outcomes is incom-
plete, but their important impact on virulence evolution 

Fig. 3   Individual host social 
behaviors shape the rate of 
contact between hosts and 
the identity of interacting 
hosts (a). Social behaviors 
which facilitate high contacts 
(indicated by positive arrows) 
or decrease network modular-
ity will increase opportunities 
for parasite transmission and 
decrease parasite aggregation. 
Thus, host social behaviors and 
network structure will shape the 
genetic identity and turnover of 
interacting parasite individuals. 
b Social behaviors that result 
in lower host contact rates or 
networks are highly modular, 
parasite transmission among 
individuals and within networks 
may increase deviations from 
panmixia due to non-random 
mating driven by reductions in 
transmission opportunity and 
population subdivision
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(Alizon et al. 2013; Gleichsner et al. 2018) suggests this 
is likely an important avenue for future research.

By increasing the genetic diversity of infrapopulations, 
reducing relatedness of coinfecting parasite individuals, 
and reducing parasite aggregation among hosts, host social 
behavior drives parasite evolution through non-selective pro-
cesses. These conditions may promote outcrossing, detect-
able as FST values approaching zero (Table 1) (Detwiler 
et al. 2017), and allowing for novel combinations of alleles 
which can be especially advantageous for the parasite dur-
ing coevolutionary arms races (Lighten et al. 2017; Park and 
Bolker 2019). Host social behaviors that facilitate parasite 
outcrossing will also reduce the effects of genetic drift at the 
infrapopulation level by preventing the loss of alleles due to 
random sampling and repeated recolonization and extinc-
tions events (Price 1977; Nadler 1995).

By contrast, host social behavior that limits or clusters 
transmission opportunities may contribute to the aggregation 
of closely related parasites, forcing parasites to inbreed, self, 

or exclusively clonally reproduce, with potentially substan-
tial negative fitness consequences (Fig. 3) (Detwiler et al. 
2017). Inbreeding can decrease offspring survival and fecun-
dity (Charlesworth and Willis 2009), and high population-
level rates of inbreeding and selfing increase the relative 
importance of genetic drift, reducing both the effective 
population size and within-population genetic variance rela-
tive to outcrossed populations (Pollak 1987; Charlesworth 
2003; Jullien et  al. 2019). By increasing homozygosity 
across all alleles, thus limiting the generation of potentially 
advantageous novel genotype combinations (Jullien et al. 
2019), selfing can reduce genetic diversity to the extent that 
populations cannot adapt to changing host or environmen-
tal conditions (Charlesworth and Charlesworth 1995). Over 
the longer term, however, the benefits of inbreeding may 
outweigh its costs, particularly for parasites when repeated 
historical purging of deleterious alleles allows parasites, as it 
does with other non-parasitic organisms, to escape inbreed-
ing depression (Lande et al. 1994; Porcher and Lande 2016; 

Fig. 4   Transmission bottlenecks 
are a key, underappreciated 
process affecting a parasite’s 
ability to respond to selection. 
The size, genetic identity, and 
genetic diversity of parasite 
individuals transmitting from 
host a to host b determine the 
outcome of interactions on the 
subsequent host (i.e., sibling co-
transmission facilitates sibling 
mating). Small, genetically dep-
auperate founding populations, 
a result of narrow transmission 
bottlenecks, weaken the force 
of selection and increase the 
importance of genetic drift 
relative to selection. Transmis-
sion bottlenecks may occur at 
the scale of infrapopulations or 
between populations. The graph 
depicts linear relationships to 
illustrate the predicted direction 
of association, but the actual 
shape of these relationships 
could take several forms such as 
asymptotic
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Caballero and Criscione 2019). In fact, it is possible that 
some level of inbreeding may be an essential parasite mat-
ing system characteristic that facilitates rapid evolutionary 
change in response to host immune systems or environmen-
tal stochasticity. Inbreeding also maintains locally adapted 
gene complexes which outcrossing disrupts (Peer and Tabor-
sky 2005). Elucidating the transmission dynamics that either 
facilitate or reduce inbreeding rates in wild populations is 
therefore fundamental to our understanding of host-parasite 
coevolutionary dynamics.

Despite its importance, there remain few studies that 
address the effects of parasite transmission, and none that 
directly address the impact of host social behavior, on para-
site mating system. Theory suggests that spatial structuring 
of parasite transmission among hosts, as we predict would 
be generated by host social behaviors, significantly increases 
parasite inbreeding by increasing the probability of multiple 
parasites from one infrapopulation being contracted by a 
host in the next generation, and thus the probability that 
infrapopulations will contain multiple closely related para-
sites (Dharmarajan 2015). Empirical estimates of parasite 
inbreeding to test these ideas are limited. Significantly posi-
tive FIS values and deficits of heterozygotes, both indicators 
of inbreeding, have been detected among cestodes (Lymbery 
et al. 1997), nematodes (Picard et al. 2004; Churcher et al. 
2008), ticks (Dharmarajan et al. 2011), and trematodes (Vilas 
et al. 2012). Inbreeding depression has been demonstrated 
among some tapeworms (Christen et al. 2002; Christen and 
Milinski 2003; Benesh et al. 2014), while other species of 
tapeworm exhibit none, despite high rates of both selfing and 
sibling mating (Detwiler and Criscione 2017; Caballero and 
Criscione 2019). By contrast, trematodes infecting salmon 
(Criscione and Blouin 2006), European conger eel (Vilas 
and Paniagua 2004), and tapeworms infecting salmonid and 
coregonid fishes (Šnábel et al. 1996), all parasites with com-
plex life cycles and aquatic transmission, appear to outcross 
whenever possible and self only when hosts are infected 
with a single individual. The mating system, as well as the 
ecological and life history characteristics that influence mat-
ing systems, remains largely unknown for most parasites. 
Generally, parasite mating systems represent a substantial 
knowledge gap: a deeper understanding of this fundamen-
tal aspect of parasite biology is urgently needed. The task 
will not be a small one: parasites include organisms from a 
huge phylogenetic range (Flatworms, which alone include 
130,000 described species, Nematodes and insects to name 
a few), which infect a massive diversity of hosts in terrestrial 
and aquatic habitats. Substantially more empirical examina-
tions of the parasite mating system, and how it is affected 
by transmission and host social behavior, are sorely needed. 
It is important to note as well, that technical artifacts such 
as null alleles and sampling biases can also generate high 
FIS values and heterozygote deficits in non-model organisms 

(see de Meeus (2017) for a discussion in detecting the pres-
ence of null alleles and Prugnolle and De Meeus (2010) 
for the importance of sampling biases). Thus, both sam-
pling scheme and marker development should be carefully 
designed in future studies.

Parasite primary mating system has important genetic 
implications at the between-host scale. In populations 
in which host social behavior results in low contact rates 
between hosts, when contact does occur, the accumulation 
of closely related and clonal individuals on a host between 
transmission events increases the probability that siblings 
and clones will transmit together to subsequent hosts. The 
founder effects resulting from such transmission bottlenecks 
have been documented in a number of systems: sibling co-
transmission has been implicated as an important charac-
teristic of infrapopulation composition for many nematodes 
(Cole and Viney 2018), and the co-transmission of closely 
related strains of Plasmodium falciparum in the definitive 
mosquito host is increasingly recognized as an important 
factor in shaping malaria infection outcomes (Wong et al. 
2018; Nkhoma et al. 2020). Infection of the next host by 
clumps of multiple genetically identical or genetically 
closely related individuals further increases the probabil-
ity of non-random, inbred mating within infrapopulations 
across multiple generations of hosts. These processes can 
significantly increase the frequency of selectively advanta-
geous rare parasite genotypes (Cornell et al. 2003), or con-
versely increase the importance of genetic drift and reduce 
the strength of selection. Co-transmission of clonemates in 
natural systems also has important ramifications for models 
that incorporate kin selection (e.g., as a mechanism for the 
evolution of host manipulation) (Poulin and Maure 2015) 
or kin shading (kin shading as a mechanism for virulence 
evolution) (Cressler et al. 2016). Clumped transmission to 
subsequent hosts will likely increase FIS within the infrap-
opulation and, assuming variation between parasite lineages 
in their reproductive success, should increase the degree of 
genetic differentiation, measurable as high FST, among infra-
populations (Prugnolle et al. 2005).

In summary, individual host social behaviors can shape 
the number and identity of individual parasites that infect 
them. Future research using fine-scale population genetics 
data to quantify parasite infrapopulation structure and pri-
mary mating system will shed much-needed light on how 
non-selective evolutionary processes act in concert with 
selection to shape host-parasite coevolution.
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How might population‑level differences 
in host social behavior interact with habitat 
configuration to alter parasite evolutionary 
trajectories?

Spatial variation in the distribution of resources, conspecif-
ics, communities, and the physical structure of the environ-
ment can result in significant differences in social behav-
iors between populations. In this section, we explore how 
population-level differences in host social behaviors alter 
the distribution of parasite genotypes among hosts, shifting 
the relative dominance of evolutionary processes. We also 
discuss how the location of the host and parasite popula-
tions in the landscape, coupled with host dispersal, contrib-
ute to the relative rates of host and parasite gene flow, and 
can also contribute to the maintenance and distribution of 
genetic diversity for both species. We draw from population-
level variation in Trinidadian guppy social behaviors, and 
the structure of the dendritic rivers they inhabit, to examine 
how these features could influence parasite mating systems 
and gene flow across the landscape. In the first subsection, 
we focus on population-level variation in behavior and trans-
mission opportunities and draw from theory and data from 
free-living organisms to present general, testable predictions 
about how this variation shapes parasite mating system. In 
the second subsection, we discuss how the effects of den-
dritic habitat configurations and unidirectional stream drift 
in rivers alter coevolutionary dynamics and local adaptation.

Population‑level differences in host social behavior 
may drive population‑level differences in parasite 
evolution

Social behaviors are shaped by interactions between con-
specifics, the broader community, and the physical envi-
ronment. Resources, mates, predators, and competitors are 
unevenly distributed across the landscape due to complex 
multispecies interactions and geographic features which 
facilitate physical movement for some species but act as 
dispersal barriers for others. Separation of populations 
across this complex landscape both imposes differential 
selection through a set of given environmental and eco-
logical conditions and can result in non-uniform gene flow 
among spatially separated subpopulations. As a result of 
these landscape-scale processes, guppies from popula-
tions experiencing high levels of predation risk exhibit a 
dramatic, sometimes 12-fold increase in time spent shoal-
ing, and have larger, more cohesive shoals, compared 
to guppies from populations experiencing low levels of 
predation risk (Magurran and Seghers 1990; Seghers and 
Magurran 1991). Variation in predation risk also signifi-
cantly alters fine-scale social interactions and the degree 

of connectedness in fission–fusion social systems, such 
as guppies: high predation guppies have stronger, non-
random affiliations, and more tightly connected networks, 
perhaps promoting parasite transmission (Kelley et al. 
2011). Similarly, males from high predation populations 
exhibit more structured networks, indicative of greater 
subdivision of interactions within high predation popula-
tions, and fewer male-male interactions (Edenbrow et al. 
2011). On the other end of the spectrum, low predation 
populations would generate less stable social networks 
which would act to decrease FST and FIS through move-
ment among shoals. While the guppies offer an extreme 
example of population-level differences in social behavior, 
other coevolved host-parasite systems such as the Spin-
turnix-bat system or lice and their avian hosts may pre-
sent opportunities to develop a comparative framework to 
understand the effects of host social behavior on parasite 
genetic structuring. In reality, many host social behaviors 
will vary between populations on a continuum rather than 
a dichotomy, thus generating a multitude of possible out-
comes for their infecting parasite populations. Quantifying 
the genetic consequences of population-level variation in 
social behaviors is essential to our understanding of host-
parasite coevolutionary dynamics.

Divergence of animal social behavior between geo-
graphically separate populations likely results in spatial 
variation in the non-random transmission of parasites. 
Host populations that differ in the transmission oppor-
tunities their social behavior provides to their parasites 
will likely have significantly different distributions of 
parasite infection and prevalence, as has been found 
across high and low predation guppy populations (Ste-
phenson et al. 2015a,b). In populations such as low pre-
dation guppy populations, in which host social behav-
ior likely causes isolated infrapopulations and clumped 
transmission, we predict higher FST values among infra-
populations, indicative of parasite population subdivi-
sion, and positive FIS values associated with increased 
inbreeding. Population-level variation in network struc-
ture and the resulting clustered transmission opportu-
nities would alter infrapopulation composition by con-
centrating parasite infection within a subset of the total 
host population, increasing the size and diversity of the 
infrapopulations of just a few individuals. Such local 
variation in stable network modularity can generate dif-
ferences in fine-scale population substructure, which has 
significant impacts on the local maintenance of genetic 
variation and decreases in the effective population size 
(Whitlock and Barton 1997).

In addition to shaping variation in transmission 
opportunity, we propose that population-level variation 
in host social behavior, and thus parasite transmission 
opportunities, will generate geographic variation in the 
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distribution of parasites within host populations, para-
site population structure, and ultimately, mating system 
(Criscione and Blouin 2006; Detwiler et al. 2017). Our 
ideas are informed from theory and empirical work 
mostly available for free-living systems: geographic var-
iation in mating systems has yet to be directly addressed 
in metazoan parasites, despite the fact that many are 
capable of outcrossing, selfing, and parthenogenesis 
(e.g., gyrodactylids). However, potential support for 
geographical variation in parasite mating systems can 
be indirectly inferred from phylogeographical studies 
when populations vary in FIS (for example, see, Beesley 
et al. 2021 and Lymbery et al. 1997).

Theory predicts geographic variation in mating sys-
tem, such as “geographic parthenogenesis,” should result 
from variation in metapopulation dynamics and the prob-
ability of encountering a potential mate (Glesener and 
Tilman 1978; Haag and Ebert 2004). Local extinction 
and recolonization events both reduce the probability of 
encountering another individual and increase the probabil-
ity of inbreeding when another individual is encountered 
(Haag and Ebert 2004; Rossi and Menozzi 2012). Mating 
systems dominated by selfing sometimes avoid the poten-
tially deleterious effects of geographically imposed small 
populations and high rates of inbreeding (Hartfield 2016). 
Geographic parthenogenesis can generate clear patterns 
in population genetic data: where inbreeding and parthe-
nogenesis are common, populations exhibit low genetic 
diversity and smaller effective population sizes, experi-
ence greater genetic drift, and are more genetically isolated 
(Haag and Ebert 2004; Tilquin and Kokko 2016; Laine 
et al. 2019; Wu et al. 2020). By contrast, populations domi-
nated by outcrossing have high local diversity, high het-
erozygosity, and increased generation of novel multilocus 
genotypes (Laine et al. 2019). There is strong evidence that 
free-living organisms with mating system flexibility exhibit 
geographic variation in the dominant mating systems, 
including plants, plant pathogens (including aphids and 
fungi), snails, insects, and planarian flatworms (D’Souza 
et al. 2004; Haag and Ebert 2004; Laine et al. 2019).

For gyrodactylids, like other parasites, geographic parthe-
nogenesis will likely be tied to the opportunity for outcrossing 
and coinfection (Gorton et al. 2012; Laine et al. 2019). Varia-
tion in parasite primary mating system generates hot spots and 
cold spots of genetic variation, parasite effective population 
sizes, and the relative importance of genetic drift and selection 
(Laine et al. 2019). The generation of novel genetic diversity 
also increases the evolutionary potential of outcrossing popula-
tions as they adapt to both hosts and the abiotic environment 
(Greischar and Koskella 2007; Wolinska and King 2009). 
Parasites are often predicted to have an adaptive advantage 
relative to hosts due to their short generation time, larger popu-
lation sizes, and higher migration rates (Price 1977; Gandon 

and Michalakis 2002). However, high rates of inbreeding and 
parthenogenesis, small effective population sizes, low genetic 
diversity, and high population subdivision in populations of 
geographic parthenogens represent a substantial caveat to this 
idea. Elucidating parasite mating systems across the landscape 
is an important and almost entirely uninvestigated prerequi-
site to understanding the geographic mosaic of coevolution 
(Thompson 2005).

Host social behavior and habitat configuration may 
both influence parasite gene flow and evolutionary 
trajectories across the landscape

The landscape itself, and the configuration of host and para-
site habitat within that landscape, shapes the extent to which 
host social behaviors drive parasite evolutionary trajecto-
ries (Fig. 2c). Dispersal of both host and parasite across the 
landscape, and subsequent mating events, underpin gene 
flow within metapopulations. Dispersal of infected hosts 
increases infection persistence within the metapopulation 
as well as facilitates parasite gene flow (Tadiri et al. 2018). 
Recent models that explicitly account for both landscape 
structure and variation in group size of social hosts indicate 
that pathogen persistence increases with landscape complex-
ity and competition-induced host dispersal (Scherer et al. 
2020). Indeed, migration rates for both host and parasite 
vary across the landscape due to variation in host move-
ments and landscape resistance, and these processes result 
in asymmetry in host and parasite gene flow in some but 
not all populations (Gandon and Michalakis 2002; Louhi 
et al. 2010; Blasco-Costa and Poulin 2013; Paz-Vinas et al. 
2013). Host-parasite coevolutionary dynamics are dependent 
on the relative migration rates of host and parasite (Gandon 
et al. 1996b). When migration rate is high among hosts and 
low among parasites, as occurs if infected hosts are unable 
to disperse, hosts will be locally adapted and the parasites 
will not (Gandon et al. 1996a; Gandon and Michalakis 2002; 
Johnson et al. 2021). Parasite transmission bottlenecks that 
result from the dispersal of only a few infected individuals 
will increase the importance of drift and weaken the effects 
of selection (Fig. 4). Quantifying both host and parasite 
migration and population connectivity, as can be inferred 
through population genetic data, is thus key to understanding 
host-parasite coevolution.

Animal dispersal often depends on social interactions: 
dispersal occurs when the benefits of leaving the group, such 
as reduced competition and parasite transmission, outweigh 
the costs of losing group membership (Krause and Ruxton 
2002). In many cases, dispersal is an adaptive response to 
avoid inbreeding and competition between kin and non-kin 
and to find a mate. Guppy dispersal is density-dependent, 
consistent with competition avoidance, though the pattern 
differs between age classes and throughout colonization 
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events (De Bona et al. 2019). Kinship also plays an impor-
tant role in guppy dispersal (Piyapong et al. 2011; De Bona 
et al. 2019). Once dispersal has occurred, the organization, 
social structure, and strength of individual ties in the new 
location together influence the successful gene flow of the 
disperser through social resistance (Armansin et al. 2020).

Dispersal is also influenced by habitat configuration and 
the location of a population within that configuration. The 
habitat configuration of rivers has two unique features that 
can work in concert to influence host and parasite dispersal: 
(1) unidirectional stream drift and (2) dendritic ecological 
networks (DEN) of rivers (Fig. 2c). Differences in species-
specific responses to river network architecture and unidi-
rectional drift can fundamentally alter each species’ evolu-
tionary potential (Crispo et al. 2006; Pilger et al. 2017). The 
unidirectional flow of water within streams biases down-
stream migration for organisms with short dispersal capabili-
ties (Pilger et al. 2017; Blondel et al., 2019). Headwater pop-
ulations are predicted to experience small population sizes, 
repeated local extinction, and recolonization events, leading 
to small effective population sizes and greater strength of 
genetic drift (Fig. 2c) (Thornton 2007).

Consistently, guppies in isolated headwater populations 
experience downstream dispersal bias, small effective popu-
lation sizes, and low genetic diversity (Barson et al. 2009; 
Blondel et al. 2019). Downstream guppy populations in low-
lands are both highly diverse and highly connected (Barson 
et al. 2009). Male downstream dispersal is further facili-
tated by Gyrodactylus infection (van Oosterhout et al. 2007), 
though there is likely substantial asymmetry in whether the 
host and parasite go on to contribute to the gene pool in their 
recipient populations. Work focused on lake and river three-
spined sticklebacks (Gasterosteus aculeatus) implicates dis-
tinct parasite communities in limiting the invasion success 
of downstream migrants due to local adaptation in immune 
response of the fish (Erin et al. 2019). The asymmetrical 
downstream export of migrants has ramifications for both 
upstream population persistence and the downstream move-
ment of genotypes and phenotypes (the stream drift paradox: 
Anholt 1995; Pachepsky et al. 2005). These processes are 
further magnified for parasites, whose progressive transmis-
sion bottlenecks also strengthen the effect of drift (Fig. 4).

The second feature of river habitat that interacts with 
host dispersal behaviors is the DENs formed by repeated, 
arborescent bifurcations that form landscape pathways of 
branches and nodes in a hierarchy of headwaters, tributar-
ies, streams, and reaches (Fig. 2c) (Campbell Grant et al. 
2007). Dendritic networks affect the demographic processes 
of species within them. Variation in connectivity within the 
network can promote local extinction events, especially for 
species with low dispersal abilities (Labonne et al. 2008). 
The DEN configuration drives differences in dispersal and 
demographic processes which generate two distinct genetic 

patterns: (1) population location affects the diversity of host 
and parasite genotypes and (2) network placement affects 
genetic differentiation among populations (Fig. 2) (Pilger 
et al. 2017; Whelan et al. 2019). In the simplest networks, 
genetic diversity will be lowest in headwater and tributaries 
and highest at river confluences and on mainstem branches 
(Thomaz et al. 2016). Network models predict increasing 
complexity in the arrangement of the network will generate 
increasing genetic diversity, and increased genetic differ-
entiation within the entire river network (Chiu et al. 2020). 
These predictions are empirically supported: effective popu-
lation size and thus the strength of genetic drift within popu-
lations is driven by network properties in fish assemblages 
(Pilger et al. 2017).

While the effects of DEN complexity have not been 
explicitly tested in guppies, guppy populations are highly 
structured among upland river drainages and contempo-
rary migration rates vary between rivers facilitated by dif-
ferences in physical riverine features (Barson et al. 2009). 
Guppy populations in the Caroni drainage exist in a com-
plex metapopulation of source-sink dynamic (Barson et al. 
2009). Lowland populations experience generally down-
stream-biased geneflow among rivers in the Caroni River 
drainage basin (though upstream between the Lopinot and 
Caura Rivers; Barson et al. 2009). Corresponding informa-
tion on G. turnbulli and G. bullatarudis population structure 
is currently limited to two studies. Konczal et al. (2020) 
used resequencing data and polymorphic SNPs from 11 G. 
bullatarudis individuals from three rivers (Lopinot, Santa 
Cruz, and Laura River) to suggest parasite population sub-
divisions among the rivers. Konczal et al. (2021) also used 
resequencing data from 30 individuals of G. turnbulli from 
three rivers (Aripo, Caura, and Lopinot) and found a signifi-
cant population subdivision associated only with the Caura 
River. Based on the available evidence, there are therefore 
discordant patterns of gene flow for guppies, G. turnbulli 
and G. bullatarudis within the Caroni drainage in northern 
Trinidad. However, small sample sizes and limited geo-
graphic sampling of parasites limits our understanding of 
how characteristics of riverine habitat (i.e., number of tribu-
taries, confluence position, river length, and stream drift) 
interact with host social behavior to drive host and parasite 
population genetic structure and local adaptation across the 
landscape (Thomaz et al. 2016; Pilger et al. 2017).

Conclusions

Host social behaviors are essential to the transmission 
of many parasites. As such, they shape parasite ecology 
and evolution through complex interactions within the 
context of the landscape. At a time where social distanc-
ing is widely recognized for its importance in limiting 
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transmission among individuals and between popula-
tions, the ecological and evolutionary consequences of 
these behaviors for infectious parasites that extend beyond 
selection need to be investigated (Stockmaier et al. 2021). 
Fine-scale spatial patterns in parasite infection are com-
mon across wildlife parasites of social organisms, even 
within very small areas (under 0.01 km2) yet the mecha-
nism which generates these patterns, and their ecological 
and evolutionary consequences are extremely understudied 
(Albery et al. 2020). Several recent reviews have called for 
integrating animal behavior, spatial analysis, and parasite 
transmission data to better understand parasite ecology 
and evolution in wild systems (He et al. 2019; Albery et al. 
2020, 2021). These data are required to understand emerg-
ing infectious diseases in wildlife and human systems 
(Townsend et al. 2020). The realized outcomes of parasite 
evolution in complex socio-spatial systems will be highly 
influenced by variation in mating systems, gene flow, and 
population demographics. With this review, we aimed 
to highlight the need for incorporating parasite molecu-
lar ecology with host behavioral research to more fully 
understand the bidirectional eco-evolutionary interactions 
between sociality and parasites. Understanding deviations 
from panmixia in parasite populations across scales is 
fundamental to our understanding of parasite evolution 
because parasites routinely do not respond in predictable 
ways (Criscione et al. 2011; Criscione et al. 2010; Betts 
et al. 2016). Population genetics tools allow us to both 
identify these deviations and design and implement new 
research questions to better understand how and why para-
site population genetics may deviate from our predictions. 
We argue that while the limited empirical data and theory 
we review here strongly suggest that host social behavior 
should generate certain patterns of parasite population 
connectivity and genetic diversity, testing these predic-
tions is urgently needed. We acknowledge that the field is 
complex and remains largely unexplored. We highlight the 
opportunity provided by the guppy-Gyrodactylus system 
to test these ideas, but ideally, future research from multi-
ple systems should integrate host social behavior, parasite 
genetic data, and multi-scale spatial analysis to understand 
and mitigate parasite evolution in social organisms.
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