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Abstract
Correlations between behavioral, physiological, and morphological traits linked to life history have been given the label Bpace-of-life
syndrome^ (POLS), hypothesized to arise through variation in the resolution of a trade-off between present and future reproduction.
However,other trade-offsoverenergyallocationmayalsohaveeffectsandinfluencethepresent-future trade-off.Weanalyzedanoptimality
model of basal metabolic rate (BMR) across variation in food availability and two types of mortality. The model contained three major
features: (1) feedback between activity and energy acquisition, (2) links between BMR and the use of energy for other traits, and (3)
allocation trade-offs betweenBMRand all other traits, between activity and defense, and between defense against activity-related risk and
activity-independent risk. The model produced an intermediate optimal BMR that was usually highest at an intermediate level of food
availability. Food availability and both types of mortality risk interacted to influence the exact value of optimal BMR. Trait correlations
expected in thePOLSexistedunder someenvironmental conditions,but thesecorrelations flippedsignunderdifferent conditionsandwere
not always strong. Our model reproduces trait correlations consistent with the POLS, but also generated a Bsloppy^ syndrome with
considerable non-POLS-like variation. In addition, among-individual, non-adaptive variation in BMRproduced adjustments of the other
traits. These fit a best-of-a-bad job strategy, and the adjustments furtherweakened trait correlations. The results emphasize that variation in
resourcesandmortality riskcreatesadiversityofcorrelationstructures.Thiscomplexitymeans thePOLSis likely tobeavariableconstruct.

Significance statement
Many attributes important for reproduction and survival are associated. Such associations may arise through common physio-
logical processes and correlated selection.Wemodeled metabolic rate within a system in which foraging behavior both depended
on and mediated the acquisition of resources necessary for metabolism, while energy was allocated among multiple attributes.
Variation in several environmental variables (food availability and two types of mortality risk) influenced basal metabolic rate,
activity, and defenses against mortality risk. This variation affected the correlations between the traits in complex ways. When
basal metabolic rate was non-optimal, evolution of the allocation of energy to other traits partially compensated, but this further
eroded consistent trait correlations. Our results indicate that complexity in how energy is acquired and used can potentially
disrupt trait correlations normally associated with the pace-of-life syndrome.
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Introduction

Many organisms exhibit correlated suites of characters, such
as fast growth rates or rapid and early reproduction, higher
activity, greater risk-taking, higher aggression, lower alloca-
tion to immune responses, and a higher basal metabolic rate
(BMR), while others feature an opposite set of characters
(Careau et al. 2009; Réale et al. 2010). Such correlations
among characters may exist both within or between species
and have been labeled the Bpace-of-life syndrome^ (POLS;
Ricklefs and Wikelski 2002; Biro and Stamps 2010; Réale
et al. 2010; Careau and Garland 2012). The POLS thus
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characterizes suites of traits along a fast-slow continuum, and
indeed, comparative studies in fish (Goodwin et al. 2006;
Bjørkvoll et al. 2012), reptiles (Bauwens and Diaz-Uriarte
1997), birds (Sæther 1987; Sæther and Bakke 2000), mam-
mals (Oli 2004; Gaillard et al. 2005; Bielby et al. 2007), and
even plants (Adler et al. 2014; Salguero-Gómez et al. 2016)
reveal correlated traits linked to life history. The idea of a
POLS is compelling because it integrates aspects of physiol-
ogy, behavior, reproduction, and performance in a suite of
traits that may form the central explanatory axis for much of
the diversity in living organisms.

The dominant hypothesis to explain the correlated nature of
these suites of traits is that selection acting on components of a
trade-off between current and future reproduction produces cor-
related selection on many traits, favoring combinations that
perform best (e.g., Réale et al. 2010; Galliard et al. 2013;
Royauté et al. 2015). Conditions favoring current reproduction
thus favor Bfast^ life histories and associated traits, whereas
conditions favoring long-term survival, maintaining high resid-
ual reproductive value, favor Bslow^ life histories (Ricklefs and
Wikelski 2002; Biro and Stamps 2010; Réale et al. 2010;
Mathot and Frankenhuis 2018, topical collection on Pace-of-
life syndromes). An alternative, but not mutually exclusive hy-
pothesis, is that because metabolism provides the energy need-
ed to express multiple kinds of traits, strong positive correla-
tions might exist with metabolism (Careau et al. 2008, 2010,
2011; Krams et al. 2013; Turbill et al. 2013; Shearer and Pruitt
2014; Mathot et al. 2015, but see Le Galliard et al. 2013;
Mathot et al. 2013; Gifford et al. 2014; Royauté et al. 2015).
For instance, circumstances favoring a higher metabolic rate
would produce more energy for a variety of traits such as ac-
tivity, immune function, and reproduction (Burton et al. 2011;
Martel et al. 2014).

Although the idea of a syndrome linking life history, be-
havior, and physiology captures what we generally know
about variation among species in the array of attributes com-
monly comprising the POLS, two recent reviews and several
empirical studies suggest that the POLS idea over-simplifies
what may be a more loosely linked constellation of traits.
Réale et al. (2010) noted multiple contrary examples in which
a predicted component of the POLS did not vary as expected,
in both intra- and inter-specific studies. For example, risk-
taking in the face of predation was not associated with most
life history characters in a comparative study of birds
(Blumstein 2006) and in a separate study was negatively as-
sociated with BMR (Møller 2009). Závorka et al. (2015) did
not find support for the POLS hypothesis in brown trout
(Salmo trutta). Instead, they posited that food availability
played a key role in determining the relationship between
growth rate and activity level, and cited other empirical work
that supports this claim (Biro et al. 2004, 2006; Adriaenssens
and Johnsson 2011; Höjesjö et al. 2011). Equivocal support
such as this suggests that either the idea of POLS is flawed in

some way or that other complexities of the traits involved are
not adequately incorporated into the idea (Montiglio et al.
2018, topical collection on Pace-of-life syndromes).

Careau and Garland (2012) presented several ideas for why
imperfect or Bsloppy^ syndromes might be expected.
Although metabolic rate should positively correlate with all
other activities that require energy (the Bperformancemodel^),
it also depends on finite resources that must be acquired.
Given trade-offs over how to acquire food and what to do with
the energy produced (the Ballocation model^; Careau et al.
2008), we expect antagonistic relationships between some at-
tributes predicted to be positively correlated by the pace-of-
life hypothesis. An intriguing possibility is that combinations
of processes that fit either the performance or the allocation
models (Careau and Garland 2012) may influence the suite of
trait correlations that have been labeled as POLS.

To date, relatively little theory has been generated to ex-
plore how the present-future trade-off is associated with the
POLS (Mathot and Frankenhuis 2018, topical collection on
Pace-of-life syndromes) and none has explored how underly-
ing trade-offs dealing with energy allocation might influence
the POLS. The classic analysis of van Noordwijk and de Jong
(1986) investigated the correlation between two life history
traits and showed that its sign depended on the among-
individual variation in resource acquisition (a condition of
the environment) and allocation; however, their approach
did not incorporate metabolism. Some more recent work in-
cluded metabolism in models of behavior (e.g., Wolf and
McNamara 2012; Houston and McNamara 2014). Wolf and
McNamara (2012) found that including metabolism in a mod-
el of aggression led to stronger between-trait correlations.

Two recent models directly address energy metabolism and
its effect on behavior. Houston (2010) derived the conditions
affecting optimal resting metabolic rate (RMR) when a forager
experiences predation risk while foraging. Einum (2014)
modeled optimal RMR and explored how it tracked with var-
iation in food availability. Both models contained two central
constraints supported by empirical findings. First, behavior
and metabolism were involved in a feedback relationship;
energy could not be obtained without activity, so energy must
be expended to acquire more energy. Second, they both in-
cluded a correlation between RMR and activity or metabolism
during activity, a mathematical version of the performance
model (Careau et al. 2008), also called the Bincreased-intake
model^ (Careau and Garland 2012). By this mechanism,
higher levels of activity demand a higher RMR, despite the
fact that RMR is measured when there is no activity. The
underlying reason proposed for this is that the systems func-
tioning when the organism is active demand maintenance. For
example, the performance of a cardiovascular system capable
of allowing more strenuous activity for longer periods of time
may require more energywhile at rest. Similarly, a higher food
intake needed to support higher activity demands more
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capacity for digestion, by way of larger alimentary tract organs,
such as the gut, intestines, and liver, which have high metabolic
costs and contribute significantly to BMR (Konarzewski and
Diamond 1995; Nespolo et al. 2002; Konarzewski and
Książek 2013). The models thus captured the essential feed-
backs that occur between metabolism and activity.

Houston’s (2010) and Einum’s (2014) models, despite
some structural differences, produced several intriguing re-
sults. First, optimal RMR was neither zero nor very large,
but intermediate, reflecting the trade-off between the benefit
of increased energy intake with increased activity versus the
cost of increased energy demand due to RMR. Einum (2014)
further found that optimal RMR varied across food availabil-
ities and was highest at an intermediate food availability, pre-
sumably because the activity necessary to acquire the more
abundant food required less RMR in support, since it was
easier to acquire. This contrasted with a previous hypothesis,
which posited that individuals with high RMR should be at an
advantage when environmental conditions are favorable (e.g.,
food availability is high, Biro and Stamps 2010; Burton et al.
2011). It also provided a compelling ecological hypothesis for
variation in RMR, both among individuals and among spe-
cies, documented in numerous taxa (Gillooly et al. 2001).

Both Houston (2010) and Einum (2014) necessarily sim-
plified the potential selection acting on metabolism. Several
well-known complexities concerning energy allocation might
affect the ways selection acts on metabolic rate and could
impact our understanding of variation in attributes linked to
POLS. For example, the energy provided by metabolism is
used for a variety of fitness-enhancing traits besides foraging
activity, as recognized by Careau et al. (2008). Houston
(2010) incorporated the well-known fact that foraging activity
exposes the organisms to mortality risk via predators (e.g., Sih
1987; Lima and Dill 1990; Werner and Anholt 1993; Skelly
1994) or parasites (Barber and Dingemanse 2010; Wengström
et al. 2016), but the effect of this was to shift activity budgets
from being active to non-active with corresponding effects on
RMR. However, energy expenditure and the mechanisms for
its acquisition are subject to an expanded array of trade-offs
concerning either the allocation of energy or opposing fitness
effects of how it is acquired, including effects on survival as
well as reproduction and/or growth. We thus explore how
multiple trade-offs involving energy allocation influence some
of the attributes linked to the POLS.

We build on Houston’s (2010) and Einum’s (2014) basic
approach and develop a model of optimal metabolic rate that
places metabolism at the heart of a set of potentially correlated
traits, but with feedbacks and allocation decisions creating
some necessary positive and negative relationships among
them. These allocations affect traits that impact total fitness,
which is a product of survival and reproduction, and so we
explore the role of energy allocation underlying the trade-off
between present and future reproduction. However, we focus

on complexities in the selection acting within a life stage or
across a lifetime but with constant schedules of reproduction
or mortality to keep the model tractable. Also, to better align
our terminology with that of metabolic physiologists (e.g.,
McNab 1997; Speakman et al. 2004; White and Kearney
2013), we model BMR. BMR is distinguished from RMR
by being the metabolism that occurs when an endotherm is
thermally neutral, at rest, non-reproductive, and post-
absorptive (not digesting any food) in order to better represent
a minimum, mandatory metabolic cost of maintenance.

We asked four questions of our model:

1. Does optimizing multiple allocation decisions regarding the
energy obtained from metabolism affect the optimal BMR?

2. How does selection act on BMR in environments that
vary in both food availability and risk of mortality?

3. If food supply and multiple sources of mortality matter,
how might trait correlations that typically comprise the
POLS change with environmental variation in resources
and extrinsic mortality risk?

4. How might non-adaptive variation in BMR, either due to
selection for a different optimum in the past or from
among-individual variation, affect the other traits in-
volved in energy allocation?

Answering these questions provides new insight into pro-
cesses affecting both the evolution of metabolic rate and
within- and among-species variation in correlated suites of
traits linked to POLS.

Methods

The Model

The core of our model is an energy budget for a hypothetical
organism (Fig. 1). The organism takes in food, from which
energy is obtained at a particular assimilation rate, S, then
partitions that energy among various functions. Basal meta-
bolic rate, B, as discussed above, is an obligate cost that the
organism must pay to maintain essential anatomical structures
and physiological systems, so the energy consumed through
BMR is deducted from the assimilation rate first. What re-
mains is the net energy gain rate, N, of the organism, which
is allocated among activity, A, defense, D, and growth/repro-
duction, G. To maintain tractability and avoid non-essential
complexity, we do not distinguish in this model between
growth and reproduction, but subsume them both into the
productivity term, G. These relationships can be expressed as

N ¼ S−B ð1Þ
and
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G ¼ N−A−D: ð2Þ

Activity is the Bgeneral level of physical activity of an indi-
vidual in terms of muscular movement leading to locomotion^
(Careau and Garland 2012). In this model, activity is the rate at
which an organism expends energy by moving through its en-
vironment. We assume that our organism feeds opportunistical-
ly as it moves, so that assimilation rate is a function of activity:
more active individuals move through their environment more
quickly and thus assimilate food more rapidly (Fig. 1).
Assimilation rate also increases with increasing food

availability in the environment, since in this case, an organism
will encounter and consume more food items over the same
movement distance.

We model the assimilation rate, S, of energy by the organ-
ism as the assimilation efficiency, ε (energy food−1), multi-
plied by the feeding rate, expressed as a modified type II
functional response function of food availability, F (food ar-
ea−1) (Holling 1959):

S ¼ εθAF
1þ γθAF; ð3Þ

where γ is the handling time of food items (time food−1) and
θA is the attack rate, expressed as the product of the attack
coefficient, θ (area energy−1), and the activity level, A (energy
time−1). The assimilation rate changes non-linearly as a func-
tion of activity level and food availability (Fig. S1).

We assume, as did Houston (2010) and Einum (2014),
that an organism’s activity level is positively related to its
BMR, following the performance model (Careau et al.
2008); we express activity level as a power function of
BMR. This model conceptualizes BMR as the Bidling
cost^ of a metabolic Bengine:^ a larger engine has higher
idling costs but can also generate higher sustained energy
output necessary to accommodate greater performance
(Biro and Stamps 2010). Although there are other models
concerning how BMR may relate to activity, such as the
compensation model and the substitution model (Careau
and Garland 2012), the performance model has received
the most empirical support. For example, in a review of
31 studies, Careau and Garland (2012) found that about
half reported a positive relationship between BMR and
activity. Both Houston (2010) and Einum (2014) assumed
that activity is linearly proportional to BMR. We relaxed
this assumption in some versions of our model, allowing
for non-linear (but positive) activity-BMR relationships
using a power function (see below), although in most
cases we retained the linear relationship.

In our model, Bdefense^ is a broad category comprising
both anti-predator (e.g., vigilance, camouflage, armor, use
of refuge), immune defenses, and traits that may buffer
against poor environmental conditions (e.g., insulation,
water-saving mechanisms). These defenses consume ener-
gy, but they also reduce the organism’s extrinsic mortality
rate by mitigating the impacts of environmental risk factors,
thereby increasing fitness. We assume that defense positive-
ly relates to BMR, using a power-function formulation as
for activity. Mounting a defense requires some form of un-
derlying biological machinery, which, even when not in use,
incurs a maintenance cost contributing to BMR. We assume
that the higher the maintenance cost, the more vigorous and
effective the resulting defense. Support for this assumption

Fig. 1 Conceptual framework of the model as an extension of Fig. 1 in
Biro and Stamps (2010). Solid arrows indicate energy flows, and dashed
arrows show quantitative causal relationships, with equation numbers
referring to the equations in the text. The bolded, dotted lines indicate
the fundamental constraint that basal metabolic rate imposes on
maximum activity and defense. The four key trade-offs over the
allocation of energy are indicated by numbers; each proposes that a unit
of energy can be used for one or the other task shown in the downstream
box. Equations described in the text define key relationships; Eq. 3
defines the assimilation rate (S), Eq. 4 the constraint of BMR (B) on
activity (A), Eq. 5 the constraint of BMR on defense (D), and Eqs.
6 and 7 define the effects on survival (L). Optimal basal metabolic rate
and all downstream allocation decisions combine to affect fitness (the
product of excess energy going to growth/reproduction (G) and survival
(L), Eq. 8), and the model solves for the combination of trait values that
maximizes fitness in a given environmental context
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comes from studies demonstrating energetic costs associat-
ed with predator defense strategies (Villagra et al. 2002;
Møller 2009; Harrison and Preisser 2016) and immune re-
sponse (Ots et al. 2001; Derting and Compton 2003; Martin
et al. 2003; Martin et al. 2017).

Allocation of energy to activity and defense increases with
net energy intake, N, with diminishing returns, scaled by a
power function of basal metabolic rate, B:

A ¼ αa1Bb1 1−e−β1N
� � ð4Þ

and

D ¼ 1−αð Þa2Bb2 1−e−β2N
� � ð5Þ

where a1 and a2 are the coefficients, and b1 and b2 are the
exponents that determine the strength of the relationship be-
tween activity or defense, respectively, and BMR (Fig. S2)
and capture the mathematical relationship of the performance
model. The exponent β sets the rate at which the functions
converge on their upper bounds as functions of net energy
intake rate, N, and α is the proportion of the energy that flows
to activity, with the proportion 1 −α going to defense. Thus,
the magnitude of α expresses the balance of an energetic
trade-off between activity and defense. Einum’s (2014) pro-
portional relationship between RMR and activity metabolism,
q, is equal to 1/a1 and is a special case of Eq. 4, with b1 = 1 and
β1N very large.

To account for the wide variety of mechanisms under the
umbrella category of defense, we recognized two sub-cate-
gories: activity-related defense and activity-independent de-
fense (Fig. 1). An animal’s environment contains both: (a)
exposure to mortality risk that scales with activity level
(activity-related risk) and (b) mortality risk that is indepen-
dent of activity level (activity-independent risk). For exam-
ple, predation risk generally increases with activity, because
greater movement speed increases encounter rates with and
detectability by predators (e.g., Werner and Anholt 1993),
and a higher density of predators would presumably mean a
higher exposure to mortality risk due to activity. However,
some sources of mortality (parasites obtained at roosts, pre-
dation while at rest, weather) may not arise from being ac-
tive. We assume that organisms are capable of developing
and directing defenses towards both activity-related and
activity-independent risks, yet the specific adaptations may
be suitable for only one type of risk. For example, vigilance
against predators may be an activity-related defense mecha-
nism (either because it is increased during active periods or
because activity interferes with it), while a cold-tolerance
mechanism such as thick fur or an enhanced immune system
when pathogens are prevalent in the environment would be
unrelated to activity. The trade-off between activity-related
and activity-independent defenses is captured in the mortal-
ity rate equation. Here, mortality rate, μ, is comprised of

three components (cf. Werner and Anholt 1993):

μ ¼ μ0 þ a3Ab3e−pA D=D0ð Þ þ Re− 1−pAð Þ D=D0ð Þ ð6Þ

The first term μ0 represents background mortality indepen-
dent of activity or deterrable environmental risks; we did not
vary this term in the analyses presented here. The second term
contains a coefficient a3 that translates activity and activity-
related defense, pAD, into a component of mortality rate. This
parameter defines how activity exposes the organism to mor-
tality risks in the environment, shaped by factors like the den-
sity of predators or the availability of cover that alter mortality
risk as the organism becomes more active. We therefore treat
a3 as a key environmental variable in our analysis. Equation 6
also contains an exponent b3 that produces non-linear effects
of activity on mortality risk. In the default, this exponent is set
to a value of 1, making realized activity-related risk propor-
tional to activity. The third term in Eq. 6 contains a parameter,
R, indicating the magnitude of environmental mortality risk
that the organism experiences independent of activity. The
parameter R is another key environmental attribute that we
vary in different versions of the model. The pA contained in
the exponential portion of both second and third terms denotes
the proportion of energy allocated to ameliorating activity-
related mortality risk and so represents an additional allocation
trade-off. pAD is the level of activity-related defense. The term
1− pA is the proportion of defense allocated to responding to
activity-independent mortality risk. Hence, (1 −pA)D is the
level of activity-independent defense.

To examine how BMR is optimized in any given environ-
ment, we assess fitness as a function of all trait values. We do
this by first calculating survival, L:

L ¼ e−μtg ; ð7Þ

where tg represents the organism’s generation time, which we
hold constant for all investigations. We then express fitness,w,
as the multiplicative product of productivity and survival:

w ¼ GL: ð8Þ

Therefore, fitness is proportional to productivity, G (=N −
A −D in Eq. 2) (see also Einum 2014).

The standard or default parameter values we used for most
runs of the model are listed in Table 1. We note here that Eq. 8
captures an emergent trade-off between survival and
productivity.

Optimal basal metabolic rate

We defined the optimal magnitude of a variable as the value
that maximized fitness. Using our default parameter set
(Table 1), we conducted three nested, numerical hill-climbs
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in MATLAB to find the three-way optimum of basal meta-
bolic rate, B, allocation to activity versus defense, α, and
allocation to activity-related versus activity-independent de-
fense, pA. These values represent an organism’s best strategy
with regard to allocating energy among five main characters
(BMR, activity, activity-related defense, activity-independent
defense, and productivity). Our model applies to any level of
phenotypic variance (within individuals, among individuals,
or among populations or species). Because it is an optimality
model, the level at which it could act depends on the level at
which there is environmental variation. Thus, the outcome
of the model could represent an optimal genotype, in which
the individual is fixed for these values (because the popula-
tion only experiences one combination of environments).
Scaling up to among-species variation follows the same log-
ic. Alternatively, the model could be interpreted as produc-
ing points on an optimal reaction norm, in which the organ-
ism can adjust to different environments because all individ-
uals in a population are experiencing an array of environ-
mental conditions. Regardless, we found this optimization
for ten levels of food availability, F, and of each of the
two types of risk, a3 and R, to determine how these charac-
teristics of an organism’s environment influence its optimal
BMR. In each case, we extracted fitness to show how it
varies across a range of BMR values. The MATLAB pro-
gram used to generate these and the other results presented
here is available on request from the authors.

Ecological effects on syndrome structure

We assessed the consequences of the modeled relation-
ships for the set of phenotypic traits commonly linked
with the POLS (BMR, activity, activity-related defense,
activity-independent defense, and productivity). To do
this, we ran the model to generate the optimal allocations
of energy across variation in each of three environmental
conditions, the coefficient of exposure to mortality risk
due to activity, a3, mortality risk that is independent of
activity, R, and food availability, F. A syndrome would be
indicated by strong correlations among the five traits that
persist across differences in the environment, and here we
examine variation in environment occurring along three
axes. To do this, we estimated correlations by generating
variation in one environmental axis (e.g., food availabili-
ty) and then calculated the correlations for all ten pairs of
the five optimal trait values that were generated across
that environment. We then assessed how those correla-
tions changed along a second environmental axis (while
holding the third environmental parameter at the default
value) for all six combinations of the three environments.
In order to produce non-zero trait values that would skew
correlations in non-relevant ways, we examined the pa-
rameter space of F > 1.02 (the minimum value that pro-
duced non-zero traits, Fig. 2) and a3 and R ≥ 1 (the min-
imum values that produced non-zero traits, Fig. 3a, b). To
assess how these correlations changed across environmen-
tal space, we had to use the same minimum F value (1.02)
to avoid trait values of zero, but could use a minimum
risk of zero for both types of risk (a3 and R). These slices
of three-dimensional environmental space provide a view
of the optimal trait combinations that should be expressed
by individuals in a population experiencing variation in
all three axes, or species that are distributed across varia-
tion in all three axes. Because the model generates the
suite of optimal trait values, the results can be relevant
to variation occurring within individuals, among individ-
uals within a population, or among populations or higher
taxa, depending on the scale of environmental variation.

Constraints on BMR, pleiotropic effects,
and best-of-a-bad job

One application of the POLS hypothesis has been to as-
sess variation within a population (Niemelä et al. 2013;
Løvlie et al. 2014; Rádai et al. 2017). Because all traits
are mechanistically linked to BMR, we wondered how
within-population variation in BMR might then influence
these traits and the correlations between them. We used
our model to impose variation in BMR in a single envi-
ronmental circumstance (defined by the defaults in
Table 1); that is, BMR was constrained to one of a range

Table 1 Default parameter values and descriptions

Parameter
Description (units, if any) Default

value

F Food availability (food area−1) 5

ε Assimilation coefficient (energy food−1) 10

γ Food handling time (time food−1) 1

θ Attack coefficient (area energy−1) 1

a1 Coefficient for the BMR-activity power
function

1

b1 Exponent for the BMR-activity power function 1

β1 Activity energetic exponent (time energy−1) 0.5

β2 Defense energetic exponent (time energy−1) 0.5

D0 Standard defense level (energy time−1) 0.5

a2 Coefficient for the BMR-defense power
function

1

b2 Exponent for the BMR-defense power function 1

a3 Exposure to environmental risk due to activity
(time−1)

1

b3 Activity-related risk exponent 1

R Activity-independent environmental risk
(time−1)

3

tg Generation time (time) 1

μ0 Background mortality (time−1) 0.2
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of values, which included the optimal BMR. Others have
assessed reasons for this variation (McNab 2009;
Konarzewski and Książek 2013; White and Kearney
2013; McNab 2015); here we focus on the consequences
if it is present. For each constrained BMR, we assessed
the relative fitness of four versions of the model. The first
case simulated the most extreme circumstance where all
allocation decisions were fixed at optima associated with
the optimal BMR and did not vary across the range of
selected BMR values (e.g., they were non-optimal with
respect to BMR except at optimal BMR). This would,
for example, simulate the case of genetic variation that
had major pleiotropic effects on the whole system. In
the second case, we constrained only the allocation be-
tween the two types of defense (pA) and allowed the allo-
cation between activity and overall defense (a) to opti-
mize (partial pleiotropy). In the third case, we allowed
the two types of defense to optimize while constraining
the allocation between activity and defense. The final case
was the full model, in which we allowed both trade-offs to
optimize, but conditional on the chosen value of BMR.
We assessed the fitness achieved across an array of pre-
determined BMR values.

To explore the consequences of such constraints on POLS,
we used the model that produced the highest fitness and cal-
culated the other trait values. We assessed these across an
array of BMR values, simulating a population of individuals
with differing BMR and potentially other traits as well.

Data availability There are no data associated with this publi-
cation to be archived.

Results

Optimal basal metabolic rate

Across all food levels, an intermediate BMRwas optimal, and
this optimal BMR was maximal at an intermediate food level
(Fig. 2) regardless of the parameters of the power function
relating BMR to activity. This is a similar result to Einum
(2014), but over a broader range of conditions. Our results
also suggest that BMR is highly sensitive to food availability.
The other trait values were also sensitive to food availability,
though they increased or decreased steadily across the viable
range of food (Fig. 2). We found that when food availability
was below 1, the model produced trait values of zero and
therefore we considered only F > 1.02 as viable parameter
space.

BMR also varied with respect to variation in both environ-
mental influences on mortality risk (Fig. 3a, b). When food
availability was held constant at the default, intermediate level
(F = 5), increases in mortality risk in the environment (regard-
less of type) increased the optimal BMR with diminishing
slope (Fig. 3a, b). Activity decreased with both types of risk
(Fig. 3a, b). As expected, activity-independent defense de-
creased with a3 (Fig. 3a), but increased with R (Fig. 3b),
whereas activity-related defense did the opposite. Increasing
either type of mortality risk decreased productivity.

Food and both mortality risk parameters interacted to influ-
ence optimal BMR (Fig. 4a, b). BMR continued to show an
intermediate optimum with food availability across most
levels of both types of mortality risk (but see below), and
BMR increased with both parameters of mortality risk

Fig. 2 Plot of optimal trait values
(solid lines) for BMR (B, black),
activity (A, red), activity-related
defense (pAD, purple), and
activity-independent defense ((1
− pA)D, green) and the two fitness
components (dashed lines),
growth/reproduction (G, light
blue) and survival (L, orange)
with respect to food availability
(F). The model was run under
default conditions (Table 1) for all
other parameters except for food
availability. The box around F = 5
highlights the default condition
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regardless of food availability. However, the two mortality
risk parameters modulated the impact of food availability on
BMR in different ways. In the case of mortality risk incurred
when active (Fig. 4a), the model produced higher BMR as risk
increased, but the pattern of optimal BMR over different food
availabilities changed dramatically from the case of no
activity-related risk to some risk (dashed compared with
solid lines in Fig. 4a). The curves at higher mortality risk also
have slightly different shapes, with the peak in BMR

occurring at higher food availability as activity-related risk
increases, implying that the slope of the curve of BMR over
food changes with increasing risk.

A more complex response was produced when both food
availability and activity-independent risk were varied but
activity-related risk was held constant (Fig. 4b). At lower levels
of activity-independent risk, the optimal BMR across variation
in food availability exhibited a pattern similar to that seen in
Figs. 2 and 4a, with an intermediate maximum optimal BMR.

Fig. 3 Plot of optimal trait values
(solid lines) for BMR (B, black),
activity (A, red), activity-related
defense (pAD, purple), and
activity-independent defense
((1 − pA)D, green) and the two
fitness components (dashed
lines), growth or reproduction (G,
light blue) and survival (L,
orange) as a function of the
magnitude of a) the coefficient of
activity-related risk (a3) and b)
activity-independent risk (R). The
model used the default values of
all other parameters (Table 1).
The boxes around a3 = 1 and
R = 3 highlight the default
conditions
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However, at higher levels of activity-independent risk, the max-
imum optimal BMR occurs at very low food availability, nearly
at the level that first produces positive values for BMR.

Ecological effects on syndrome structure

Our model produced a sloppy syndrome, with the magni-
tudes and directions of correlations strongly influenced by
the environment. The correlations between trait values of
BMR, activity, the two types of defense, and productivity
were strong when measured across some environments, but

not others (Fig. 5, Table S1, Figs S3A, B). For example, we
obtained strong positive correlations between optimal BMR
and activity (B, A), optimal BMR and activity-related de-
fense (B, pAD), activity and activity-related defense (A,
pAD), and productivity and activity-independent defense
(G, (1 − pA) D) when the correlations were measured across
the level of exposure to activity-related mortality risk, a3
(Table S1). Trait correlations were also strong and generally
consistent when measured across levels of activity-
independent mortality risk, R, but several, including be-
tween BMR, activity, or productivity and both types of

Fig. 4 Optimal BMR curves
across levels of food availability
(F) for differing levels of a)
activity-related risk (a3) and b)
activity-independent risk (R).
Note the slight shifts in slope of
the lines indicate an interaction
between food and activity-related
risk on BMR in a. The interaction
between food and activity-
independent risk is much stronger
as indicated in b with a shift to-
wards the highest optimal BMR
occuring at low food and dramatic
shifts in the shape of the curves as
risk increases
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defense were of opposite sign than occurred across a3
(Table S1). Interestingly, correlations across either type of
risk were strongly positive or negative at most levels of food
availability, but when food dropped to low levels, these
correlations collapsed to near 0 (Table S1). This is because
when F becomes low, the lack of energy produces rapid
changes in some traits, which can quickly change the corre-
lations between traits.

The dynamics of these correlations emerged most clearly
when they were measured across variation in food and

plotted against either type of risk (Fig. 5a, b). Most of the
correlations were closer to 0, and both types of mortality
risk modulated them, in some cases quite substantially.
The only correlation in these conditions that showed stabil-
ity was that between activity and activity-independent de-
fense, which was always strongly negative. We note that the
correlation between BMR and activity was highly variable.
When assessed across activity-related risk (a3), the correla-
tion started positive and steadily decreased, eventually be-
coming negative at high levels of mortality risk (Fig. 5a).

Fig. 5 Plots of six bivariate trait
correlation coefficients for four
traits (BMR (B), activity (A),
activity-related defense (pAD),
and activity-independent defense
(1 − pA)D), calculated across the
optimized values obtained at
points along the range of food (F)
levels. These correlation values
were then obtained and are plotted
here for different levels of a)
activity-related risk (a3) and b)
activity-independent risk (R). For
each graph, there are three curves
that start at a risk level of 1
because the corresponding
defense trait has a zero value
while the risk is also zero, thus
producing inappropriate
correlation coefficients
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Across activity-independent mortality risk (R), the correla-
tion was much higher, declined at low levels of mortality
risk, but then began increasing again at higher levels of R
(Fig. 5b). Some of the other trait correlations also either
decreased or increased with R only to switch direction in
the middle of the range. Finally, the correlation between
BMR and productivity was weak and changed across both
types of mortality risk (Figs S3A, B).

Constraints on BMR, pleiotropic effects,
and best-of-a-bad job

We asked what happens to fitness in the model if we
constrained BMR to be non-optimal and allow both, one, or
none of the other allocation decisions to be optimized. When
the results for the four combinations of optimizing or not
optimizing each of the two trade-offs across the range of
BMRs are superimposed, the contributions of each trade-off
to mitigating non-optimal BMR are clear (Fig. 6a).
Constraining BMR to be non-optimal reduces fitness.
However, compared to the case when both trade-offs are fixed
(maximum pleiotropy, black line in Fig. 6a), allowing both
trade-offs to optimize given the fixed BMR substantially in-
creases fitness (no pleiotropy, blue line in Fig. 6a). Thus, op-
timizing the allocation trade-offs can compensate in part for a
non-optimal BMR (best of a bad job, Dawkins 1976).
Intriguingly, the two trade-offs do not contribute equally, at
least under the default conditions we used. Allowing the allo-
cation between the two types of defense to optimize (and
fixing the allocation between activity and defense, red line in
Fig. 6a) is nearly as good as optimizing both trade-offs, at least
over a range of non-optimal BMRs that is close to the opti-
mum. Fixing the allocation between types of defense and
allowing the allocation between activity and defense to opti-
mize (green line in Fig. 6a) are little better than the extreme
case where nothing is optimized.

We also examined how the other traits adjusted to non-
optimal BMR using the version of the model with no pleiot-
ropy (Fig. 6b). The pattern of adjustment produces a correla-
tion structure that only partially resembles the POLS. Three of
the traits do not change consistently in one direction over the
range of BMRs that we analyzed (Fig. 6b). Productivity, G,
initially increases but then decreases. Activity-related defense
is minimized at 0 for low values of BMR and then rises only to
tail off at larger values of BMR. Similarly, activity-
independent defense also increases, but then decreases, at high
values of BMR. Only activity increases as BMR increases,
although it does so non-linearly. If this variation occurred
within a population, it would cause weaker correlations than
might be expected and create some correlations that are not
predicted by the POLS (e.g., a negative correlation between
productivity and all other traits including BMR).

Discussion

The POLS describes the case when multiple attributes of or-
ganisms co-vary (Réale et al. 2010), typically with metabolic
rate and reproductive rate as core attributes (e.g., Careau et al.
2008). Both Houston (2010) and Einum (2014) modeled op-
timal metabolic rate and explored how it would evolve under
certain conditions. We modified and extended their approach
to assess the hypothesis that metabolism exerts a central influ-
ence on energy-dependent characters hypothesized to be part
of the POLS (i.e., BMR, activity, defenses, and growth/repro-
duction), and hence might drive correlation structures among
POLS traits. We incorporated a non-energetic cost of activity
(exposure to mortality risk of, for example, predation) favor-
ing activity-related defenses, and a cost of activity-
independent mortality risk that selected for other kinds of
defense (e.g., insulation or immunity). The model thus
contained a set of allocation decisions regarding the energy
acquired through metabolism. Similarly to Houston (2010)
and Einum (2014), we modeled selection acting as if there
were no life stage differences in mortality and/or productivity.
Under some conditions, our model produces correlations char-
acteristic of the POLS. However, we examined model solu-
tions over a complex environment in which food availability
and the level of each type of mortality risk could vary. These
extensions reveal that metabolic rate evolves in some initially
non-intuitive ways in response to complex environments, and
there is considerably more complexity to the associations
among some POLS attributes than expected.

Our model confirms several previous results. Although we
incorporated a different equation for linking BMR with the
ability to achieve high levels of activity or defense (the
increased intake model, sensu Nilsson 2002; Careau and
Garland 2012, or the performance model, sensu Careau et al.
2008), we found that the trade-off between the benefits of
BMR for increased trait expression and the energetic costs
produced an intermediate optimum for BMR. The magnitude
of the linkage between BMR and performance (the parameters
a1 and b1 for activity, and a2 and b2 for defense) has the
expected effects on the magnitude of optimal BMR—with less
linkage, selection then favors a lower BMR.

Empirically, the performance model has received wide-
spread support (Daan et al. 1990; Careau et al. 2008), but
exceptions abound (e.g., Ricklefs et al. 1996; Mathot and
Dingemanse 2015). Our results draw attention to two aspects
of these empirical results. First, correlations between particu-
lar traits such as organ size and BMR may be misleading,
because we might expect variation in the link parameters
(e.g., a1 or b1) to exist among different components of the
underlying machinery driving elevated metabolic rates. For
example, larger digestive organs (e.g., Daan et al. 1990;
Selman et al. 2001; Song and Wang 2006; Konarzewski and
Książek 2013) are not the only support mechanisms for
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acquiring new energy. Foraging requires muscles for move-
ment and sensory systems for detecting prey. Each of these
components could have different link parameters. Our model
focuses on the summed linkage between the energy cost of the
underlying support mechanisms and maximal metabolism
rather than any particular component. Second, our model
combines the performance and allocation models (Careau
et al. 2008; Mathot and Dingemanse 2015), and all of our
results depend on this combined view of how energy is ac-
quired and allocated. Some form of this combination is likely

to be relevant to real organisms. If so, understanding isolated
components of this system, especially across certain types of
environmental variation, may be quite misleading.

Optimal basal metabolic rate

Our model also confirms Einum’s (2014) finding that food
availability affects optimal BMR non-monotonically, such that
optimal BMR is at a maximum at intermediate food levels in
most conditions. Einum (2014) suggested that this intermediate

Fig. 6 Analysis of four
constrained versions of the full
model. a) Fitness achieved when
BMR (B) was constrained to the
value on the x-axis. The black line
indicates fitness when we fixed
the trade-offs between activity
and defense and between both
types of defense at the values for
the optimal BMR (e.g., at B ≈
2.1), i.e., no trade-offs were
optimized. The green line tracks
fitness when we constrained only
the trade-off between types of
defense to the optimal value when
B was optimized but we allowed
the activity-defense trade-off to
optimize. The red line indicates
fitness when we allowed the
trade-off between types of
defense to optimize but fixed the
activity-defense trade-off. Finally,
the blue line indicates fitness
when we allowed both trade-offs
to optimize. All models were run
under the set of default conditions
(Table 1). b) Optimal trait values
obtained from the model
constrained only by the value of B
(e.g., blue line in Fig. 6a) over the
range of B. This simulates genetic
variation in B among individuals
in a population with a single
optimal B. Trait correlations with
Bwould switch sign passing from
left to right of the optimal B, and
correlations with G would also
switch signs across some of the
range of B, producing a sloppy
POLS within a population
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is a consequence of activity having the benefit of increasing
food intake rate while also increasing energy expenditure, so
that when food becomes sufficiently abundant, acquiring ener-
gy is easy and both activity and BMR decline. Our model
produces this same result, apparently for the same reasons, over
most (but not all) values of the other two environments (the two
levels of mortality risk exposure). A final point about the inter-
mediate maximum with food availability is that it appears to
drive substantial complexity in the correlational structure of
POLS attributes. We discuss both the interaction effects and
the impact on correlations in more detail below.

Our expansions of previous models to include allocation to
defense revealed several novel results. First, our incorporation
of two types of mortality, activity-related and activity-inde-
pendent, produces some unexpected effects. Optimal BMR
increases with exposure to either type of mortality, largely
because attributes that reducemortality (defenses) cost energy,
require higher levels of active metabolism, and hence higher
BMR in support. However, optimal BMR increased over most
of the range of mortality risks we modeled (Figs. 3 and 4), in
contrast to the pattern obtained over increasing food availabil-
ity. The type of mortality risk affected the rate of increase but
not the fact that BMR always increased. While Houston
(2010) included a mortality risk of activity, this influenced
only how much time an organism spent being active, as he
did not explore allocation of energymore generally to defense.
Allocation of energy to defenses against various types of risks
has received some attention (e.g., Møller 2009; Versteegh
et al. 2012; Mathot et al. 2015) and clearly could have an
important impact on the suite of attributes involved in
POLS. In environments with higher mortality risk, an individ-
ual will benefit from greater allocation of energy to defense;
defense requires structures or systems (e.g., immunity) that
must be maintained even when defense is not employed, and
so this necessitates higher BMR. Our model thus predicts that
individuals or species vulnerable to more sources of mortality
will likely have higher BMR independent of the life history
impact of mortality if they also have a means to defend against
such mortality risks.

Empirical support for this prediction is equivocal. For ex-
ample, at the among-species level, Møller (2009) found that
bird species with higher BMR exhibited greater wariness to-
wards predators, as measured by longer flight initiation dis-
tances. He concluded that increased BMR was necessary for
sufficient alertness to potential predator attacks and facilitates
the flight response. However, in two different among-species
comparative studies, BMR was negatively associated with
immune measures in 63 species of European birds (Pap et al.
2015) and in 12 species of tropical birds (Tieleman et al.
2005). Assuming other factors were not varying across these
organisms, these results fit the context-dependent outcome of
our model for correlations between BMR and defenses
(Table S1).

Investigations of the within-species (among-individual)
level have yielded similarly ambiguous trends. Mathot et al.
(2015) found that, for free-living great tits (Parus major),
the relationship between BMR and risk-taking behavior was
context dependent. They define risk-taking behaviors as
those that Bincrease resource acquisition at the expense of
an increased risk of mortality.^ Therefore, risk-taking be-
haviors can be viewed as the opposite of defenses that, in
our context, would consume resources (energy) and, by def-
inition, decrease mortality. Under one scenario, a distur-
bance created by a human presence, there was a negative
relationship between BMR and a measure of risk-taking
behavior, which is essentially in line with our assumption
of the relationship between BMR and defense. However,
when presented with a predator model, the relationship re-
versed. A similar mixed result was found for western stutter-
trilling crickets (Gryllus integer), for which two behaviors
associated with risk-taking (boldness and exploration)
showed opposite correlations with RMR (positive and
negative, respectively; Krams et al. 2017). Versteegh et al.
(2012) found that stonechats (Saxicola torquata) exhibited
a significant, negative relationship between BMR and some
immune measures, but not others. Of the immune measures
that did not significantly correlate with BMR, trends in both
the positive and negative direction were observed.

The correlational relationship between BMR and various
defenses appears highly context dependent, which our model
produces especially if food levels vary (Fig. 5a, b). These
results depend in part on defenses requiring energy and
exerting a cost of maintenance, captured mathematically in
the model. We reaffirm the logical basis of this. To effectively
mount a defense, anatomical and/or physiological systems are
necessary, and larger systems that support higher levels of
defense should necessitate a larger maintenance cost associat-
ed with higher BMR. The empirical evidence discussed here
validates our findings that the direction and strength of corre-
lations between BMR and different types of defense will de-
pend on the specific ecological context in which the associa-
tion is investigated (Table S1).

We also found that food availability and mortality risk
interacted to affect optimal BMR. Empirically, food and
mortality risk have interactive effects on growth rates
(Arendt and Reznick 2005; Gale et al. 2013), metamorphosis
(Richter-Boix et al. 2007), reproduction (Karels et al. 2000;
Zanette et al. 2003), and behavior (Anholt and Werner 1995;
Vehanen 2003; Krause and Liesenjohann 2012), and so a
similar impact on metabolic rate would be expected.
Intriguingly, we found that the interaction between activity-
independent mortality risk and food was more complex than
that between activity-related mortality risk and food. This
could arise because activity-independent mortality risk does
not invoke as many feedbacks as activity-related mortality
risk. Activity is necessary to acquire food, yet if it exposes
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the organism to danger, further increases in activity may
have minimal net benefits, so when food is too low to mount
other defenses, activity and hence BMR are reduced (Fig.
4a). Activity-independent mortality risks, on the other hand,
always favor increasing activity so that energy for defense
can be obtained. This is evident in Fig. 4b; when food is low
and mortality risk is high, defense is strongly favored, driv-
ing up the optimal BMR.

Ecological effects on syndrome structure

The interactive effects of extrinsic mortality risk and food
availability on optimal BMR and the interaction between ac-
tivity and food availability in determining total energy budget
both appear to complicate the idea that metabolism, as a core
attribute, might produce trait correlations (Careau et al. 2008;
Biro and Stamps 2010; Réale et al. 2010). We measured trait
correlations in all possible environments. Across some slices
of the environmental space defined by any two of the envi-
ronmental parameters in our model, several key attributes are
strongly correlated and the correlations are relatively stable
(Table S1). In these combinations of environment, increasing
BMR correlated strongly with all other traits (activity, activity-
related defense, and activity-independent defense). While
some of these correlations match predictions of the POLS
(Réale et al. 2010), others do not. Furthermore, across some
other combinations of environments, the correlations became
weaker and fluctuated with other environmental factors. For
example, when food availability varies, the correlation be-
tween BMR and activity was weak and modulated by both
types of risk (Fig. 5), possibly because optimal BMR has an
intermediate maximum across food availability (Fig. 2) such
that activity level changes differently across food than does
BMR. Intriguingly, both types of extrinsic mortality risk ini-
tially reduce the correlations between BMR and activity mea-
sured across F, perhaps due to the increased value of defense
relative to activity as both mortality risk and food increase.
Again, the fact that food and activity-independent mortality
risk interact to affect optimal BMR (Fig. 4b) may influence
correlations across food as activity-independent mortality risk
is also changing. The correlation between BMR and activity
across F begins to increase again at high levels of R, perhaps
because across increases in food, BMR (Fig. 4b) and, in turn,
activity decrease as the increase in available energy is shunted
towards activity-independent defense.

The allocation trade-offs within the model also have dra-
matic effects on trait correlations. Consider the correlations
between activity-independent defense (e.g., immunity) and
both metabolism and activity. Many discussions of the
POLS suggest that organisms with a faster life history (high
metabolism, high activity) should have lower allocation to
immunity, and indeed, some studies show the expected nega-
tive correlation (e.g., Pap et al. 2015). Our model indicates that

under some conditions, the correlations with activity-
independent defense indeed are strongly negative (Table S1).
However, these correlations shift to being strongly positive
when activity-independent mortality risk varies. Moreover,
the correlation between metabolism and activity-independent
defense is quite weak across different levels of food availabil-
ity (Fig. 5b). Again, food availability has a hump-shaped ef-
fect on the optimal BMR, whereas the effect of food on
activity-independent defense is consistently positive. Thus,
values for BMR and for activity-independent defense change
positively with each other over low food values and then shift
to a negative correlation once food becomes more abundant.
Low food also has big and unexpected effects on trait corre-
lations across most of the three-dimensional environmental
space we considered. This suggests that organisms living in
harsh environments (i.e., when energy assimilation is difficult)
may show very different trait correlations than organisms liv-
ing in more benign environments. Our model thus suggests
that the correlation structure among POLS attributes is likely
to be quite sensitive to which aspects of the environment are
varying. The variation in relationships that has emerged in the
empirical literature (e.g., Tieleman et al. 2005; Careau et al.
2011; Niemelä et al. 2012, 2013; Versteegh et al. 2012; White
et al. 2016) might be one predicted outcome from our model.
Whether or not this variation is due to the specific factors we
explored in the model needs to be tested.

Constraints on BMR, pleiotropic effects,
and best-of-a-bad job

Because metabolism is so central to most other organismal
processes, constraints on the evolution of metabolic rate have
been proposed as important drivers of correlated traits (Brown
et al. 2004; Careau et al. 2008). We explored how our model
might behave when parts of it were constrained. Naturally, a
BMR displaced from its optimum results in lower overall fit-
ness, and for the parameter values we have used, fitness drops
off quite rapidly. We compared models in which the other allo-
cation decisions were allowed to evolve conditional on a sub-
optimal BMR or were also constrained to set values (in all cases
we chose values that would have been optimal if BMR was
optimal). Allowing the allocation trade-offs to optimize rescued
some fitness, suggesting that constraints in one part of the sys-
tem can be partially compensated for by other components. We
note as well that while a constrained metabolic rate might limit
the total energy flowing through the system, and so influence
absolute trait values, if the mechanisms that drive these other
allocation decisions are free to evolve, the relative trait values
might not be constrained. Our model thus illustrates an impor-
tant potential aspect of real organisms; those complex systems
under selection may still be optimizing components even if
portions of the system are non-optimal. This also produces a
sloppy syndrome. Because trade-offs acting within individuals
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may produce patterns that differ from processes acting among
individuals, our model, because of its potential to capture ef-
fects at both levels, reminds us of the importance of measuring
trait correlations at the appropriate level of variance
(Dingemanse and Dochtermann 2013).

Some caveats

As with all models, we made some simplifying assumptions
that are worth re-examining briefly. First, we assumed that
any energy allocated to one task could not satisfy the need for
energy for another task. That is, the trade-offs were absolute.
This is probably extreme, as biological solutions to one prob-
lem could also ameliorate another problem. For example, dark,
cryptic body coloration may reduce both activity-related mor-
tality (e.g., predation) and activity-independent mortality risk
(e.g., extreme cold) (Clusella Trullas et al. 2007). Traits that
solve multiple problems might further complicate the correla-
tion structure between traits that makes up the POLS.

A second caveat is that we used arbitrary values for the key
parameters. Some of our results appear only in extreme parts of
the range of values we chose to explore. It is not clear how com-
mon such conditions might be in the real world. While we are
comfortablewith the insights theseparametervaluesprovide,we
suggest thatspecificapplicationof thepredictionsofourmodel to
real systemswill require assessing parameter values and explor-
ing empirically supported regions of the parameter space.

Finally, although the trade-offs explicitly embedded in this
model produce a trade-off between productivity, G, and sur-
vival, L, we have not included any additional variation in life
history, such as a terminal life stage or differential mortality or
performance with age that would drive more complex selec-
tion. Given the lack of theory on the POLS (Mathot and
Frankenhuis 2018, topical collection on Pace-of-life syn-
dromes ), it is not clear if we have omitted the main selective
force verbally proposed for the POLS (Stearns 1989; Ricklefs
and Wikelski 2002; Réale et al. 2010). Adding more complex
patterns of mortality or reproductive success with age might
be a next step for models like ours. However, as we have
attempted to show here, attributes affecting the trade-off be-
tween present and future reproduction are also likely to be
involved in trade-offs with each other. Our model illustrates
that such nested trade-offs may drive the complexity of pace-
of-life-like suites of correlated traits (see also Montiglio et al.
2018, topical collection on Pace-of-life syndromes, Royauté
et al. 2018, topical collection on Pace-of-life syndromes).

Advice for empiricists

Our model makes several general predictions about some of
the potential forces acting on trait correlations associated with

the POLS. A key issue is the level (within-individual, among-
individual, or among-population/among-species) at which en-
vironmental variation occurs. Our model does not specify a
particular level, but its results could apply at any of them if
mortality risks and food supply vary at that level. So an im-
mediate goal for empiricists is to assess the level at which their
target organism experiences environmental variation.

Second, trait correlations will be dramatically different if
the range of food availabilities includes the intermediate max-
imal optimal BMR or not. We know very little about the scale
of variation in BMRwithin a species, let alone within individ-
uals. Thus, another major goal of empiricists would be to
document both among-individual and within-individual vari-
ance in BMR with respect to environmental conditions, espe-
cially food abundance.

Finally, more information about types of mortality risk and
the influence of activity on realized risk is likely to be important
in parsing out why trait correlations are strong or weak in a
given organism. We have lumped such risk into two categories
and have assumed that traits that ameliorate one type of risk are
useless for another. Empirical information documenting these
assumptions and the scale of variation in risks of different types
will be very useful for providing a more precise version of our
model that can generate specific predictions.

In summary, our analysis of the role of metabolism in
providing the energy to allocate among several fitness-
enhancing tasks within a world that can vary along three
environmental dimensions (e.g., food, predators, and path-
ogens) produces a much more nuanced understanding of
both metabolic rate and the suite of potentially correlated
characters referred to as the POLS. The combination of
multiple trade-offs and a multivariate environment make
for some complex patterns in trait combinations. We con-
clude that the POLS should not be viewed as an invariant
construct arising from only one simplified type of selection.
Instead, the combinations of traits that make up real organ-
isms are almost certainly emerging from multiple factors
interacting in diverse ways. Untangling these both empiri-
cally and theoretically remains a major challenge.
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