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Abstract
From diagnostics to prognosis to response prediction, new applications for radiomics are rapidly being developed. One of 
the fastest evolving branches involves linking imaging phenotypes to the tumor genetic profile, a field commonly referred 
to as “radiogenomics.” In this review, a general outline of radiogenomic literature concerning prominent mutations across 
different tumor sites will be provided. The field of radiogenomics originates from image processing techniques developed 
decades ago; however, many technical and clinical challenges still need to be addressed. Nevertheless, increasingly accurate 
and robust radiogenomic models are being presented and the future appears to be bright.

Keywords  Radiomics · Quantitative imaging · Radiogenomics · Genomics · Brain neoplasms · Lung neoplasms · Breast 
neoplasms · Kidney neoplasms · Liver neoplasms · Colorectal neoplasms · Prostate neoplasms

Introduction

Medical imaging plays a major role in the clinical decision-
making process in oncology. In the past, that role was limited 
to diagnosis and staging. However, in recent years, imaging 
markers derived from routine clinical images have increas-
ingly been researched to provide insight into the tumor in a 
non-invasive manner.

Imaging features may be either qualitative, sometimes 
referred to as semantic [1–3], where a reader, often an expe-
rienced radiologist, will assign a score to certain parameters 

stemming from expertise-based observation, or quantitative, 
for example, tumor dimensions, attenuation, or radiomics 
where the values are derived directly from the image. In 
radiomics, features are extracted mathematically with the 
aid of specialized computer algorithms. Radiomic features 
reflect a wide array of parameters in the image and have been 
shown to capture distinct imaging phenotypes beyond what 
is discernible to the naked eye [2].

Radiomics is the rapidly growing field of radiological 
research where routine patient images/scans are converted 
into mineable quantitative data [4] that can then be lever-
aged to decode the tumor phenotype for applications ranging 
from improved diagnostics to prognostication to therapeutic 
response prediction [5]. Radiomics refers to the general field 
in which patient scans are converted into quantitative data 
while radiogenomics is a specific application where imag-
ing features, radiomic or otherwise, are linked to genomic 
profiles [6]. For the purpose of this review, we will focus on 
the above definition.

Interestingly, the term “radiogenomics” initially belonged 
to the realm of radiation oncology where it reflected the pre-
diction of radiotherapy-induced toxicity based on the genetic 
profile of the tumor [7]. In recent years, radiogenomics has 
come to carry the connotation of linking radiomic features to 
even broader biological parameters beyond genomics such as 
proteomics and metabolomics [8]. While this is most likely 
the ultimate destiny of the field, it has yet to become the 
standard definition.

CME activity This article has been selected as the CME activity 
for the current month. Please visit https​://ce.mayo.edu/node/83629​ 
and follow the instructions to complete this CME activity.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s0026​1-019-02028​-w) contains 
supplementary material, which is available to authorized users.

 *	 Regina Beets‑Tan 
	 r.beetstan@nki.nl

1	 Department of Radiology, The Netherlands Cancer Institute, 
Amsterdam, The Netherlands

2	 GROW School for Oncology and Developmental Biology, 
Maastricht University, Maastricht, The Netherlands

3	 Institute of Diagnostic and Interventional Radiology, 
University Hospital Zurich, Zurich, Switzerland

4	 Scientific Information Service, The Netherlands Cancer 
Institute, Amsterdam, The Netherlands

http://orcid.org/0000-0002-2617-8128
http://orcid.org/0000-0002-5714-289X
http://orcid.org/0000-0001-9888-0453
http://orcid.org/0000-0003-1470-9515
http://crossmark.crossref.org/dialog/?doi=10.1007/s00261-019-02028-w&domain=pdf
https://ce.mayo.edu/node/83629
https://doi.org/10.1007/s00261-019-02028-w


1961Abdominal Radiology (2019) 44:1960–1984	

1 3

The radiomics pipeline

The workflow where quantitative features are extracted 
from radiological images and linked to specific outcomes 
has often been termed in literature as the “radiomics pipe-
line” [9–11]. This workflow is composed of a number of 
broad steps, beginning with image acquisition. Based on 
the device [12], image reconstruction algorithm [13], and 
protocol settings [14], the value of the extracted radiomic 
features can differ greatly. Following the image acquisi-
tion step, two broad approaches emerge, depending on 
how radiomic features are derived and at what step arti-
ficial intelligence is applied, if at all: classical radiomics 
[15, 16], with or without machine learning [17–19], and 
deep learning radiomics [20, 21].

Classical/conventional radiomics

Considering that radiomics is a novel field, the term “classi-
cal radiomics” may be something of a misnomer. Alternate 
descriptions such as “conventional radiomics” have been 
put forth [22]; however, the majority of literature still refers 
to this method as “classical.” In this approach, regions of 
interest are delineated, either manually or automatically, and 
handcrafted features are extracted using specialized algo-
rithms (see Fig. 1a). Handcrafted imaging features attempt to 
describe lesions by capturing intuitive parameters reflecting 
the shape, morphology, and texture [23]. This dependence 
on delineation and handcrafted features is characteristic of 
conventional radiomics.

The image-derived features are then processed, either 
using statistical models or machine learning, to link them 
to specific outcomes. Statistical models, such as univari-
ate and multivariate analysis, are largely used to determine 
mathematical relationships between variables and outcomes, 
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Fig. 1   Outline of the two kinds of radiomics pipeline. a The classi-
cal/conventional radiomics model where, after image acquisition, 
areas of interest are delineated and handcrafted features are extracted. 
Subsequently, models are built around these predefined features using 

either statistical or machine learning methodologies. b The deep 
learning radiomics pipeline where, after image acquisition, neural 
networks automatically perform feature extraction, selection, and 
classification
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whereas machine learning is primarily focused on the con-
struction of systems capable of learning from the data with-
out explicitly programmed instructions. Machine learning 
models are widely considered superior for predictive pur-
poses and rely on fewer mathematical assumptions, are built 
from more comprehensive datasets, and require minimal 
human involvement.

Deep learning radiomics

Newer deep learning radiomic workflows (Fig. 1b) can now 
process the image, automatically extract features, and per-
form classification without the need for a detailed delinea-
tion, if at all [24]. This approach is founded on the concept 
that deep learning classifiers should not only be used for data 
mining but also for data generation [25]. Convolutional neu-
ral networks (CNNs), a class of deep learning networks, have 
risen to prominence in the field of medical image analysis 
due to their independence from humans in feature design. 
The number of quantitative features extracted within a CNN 
is several orders of magnitude greater than older handcrafted 
feature extraction algorithms used in classical/conventional 
radiomics. Another significant advantage is that within the 
same convolutional neural network, feature extraction, selec-
tion, and classification occur across different layers.

Value of the genetic profile in cancer

Genomic instability and mutations are a hallmark of cancer 
and the accumulation of genetic and epigenetic mutations 
results in unchecked cell proliferation [26]. Gene profiles are 
often used to predict survival, as a prognostic biomarker, or 
response to treatment, as a predictive biomarker, helping to 
guide clinical decisions, particularly treatment selection [27].

Genetic mutations have been shown to be predictive of 
response/resistance to or recurrence after chemotherapy 
in breast cancer [28], hepatocellular carcinoma [29], and 
ovarian cancer [30] among others. In addition to traditional 
chemoradiotherapy, targeted molecular therapy has become 
a mainstay in the management of a wide range of tumors. 
Targeted therapy harnesses tumor-specific biology to inhibit 
the action of particular enzymes, target tumor-associated 
proteins, mutated receptors, or leverages other oncogenic 
molecular vulnerabilities. Detailed knowledge of the genetic 
composition, for instance driver mutations, resistance signa-
tures, and so on can provide much-needed guidance on the 
selection of an optimal therapy.

In the rapidly evolving field of cancer immunology and 
immunotherapy, high tumor mutational load, a measure of 
the number of mutations within the tumor genome, has been 
associated with increased potential response to immunother-
apy, especially immune checkpoint blockade [31, 32]. This 
association has been explained by the fact that an increased 

mutational burden results in a wider variety of neoantigens, 
to which the immune system has not been exposed, being 
expressed by the tumor [33, 34]—making them more recog-
nizable by the immune system as foreign.

With the increased use of precision medicine and the 
establishment of guidelines around biomarkers, knowledge 
of the tumor genetic profile is advantageous to clinicians. 
Normally, insight into the tumor genome requires biopsies, 
an invasive procedure that may increase patient morbidity. 
The field of science that has risen to non-invasively identify 
specific imaging features (or signatures) that can predict 
tumor genomic alterations is termed “radiogenomics.”

Review of radiogenomic studies

Between 2017 and 2018 alone, there have been more than 
five hundred radiomics publications listed in the PubMed/
MEDLINE database. Radiogenomics forms a rapidly grow-
ing subset of this research activity and as such, a general 
overview of the accumulating literature is needed. This 
review aims to provide a broad outline of the radiogenomic 
literature. Considering that cancer mutations are very often 
shared among different abdominal and extra-abdominal 
tumors, we have opted to study the various projects that have 
aimed to correlate imaging features with specific genetic 
signatures across different tumor types. (Literature search 
methodology in “Appendix 1” and Supplemental Fig. 1).

Brain

The overwhelming bulk of literature within radiogenomics 
has concerned the brain (Table 1). As early as 2008, Diehn 
et al. combined glioblastoma multiforme (GBM) neuroim-
aging with microarray DNA data in order to non-invasively 
map gene expression within the tumor [35]. Colen et al. 
subsequently used the scans of 82 treatment-naïve TCGA 
(The Cancer Genome Atlas) GBM patients to successfully 
correlate semantic imaging features to gene and microRNA 
expression—specifically those associated with edema-gen-
esis, cell migration, and increased inflammatory response 
[36]. Alongside semantic and radiomic imaging features, 
even volumetrics—the analysis of volumes within the tumor 
compartments—have been associated with PERIOSTIN 
expression, a gene linked with decreased survival, shorter 
time to recurrence (p < 0.001), and the mesenchymal GBM 
subtype (p < 0.0001) [37].

Radiogenomics research in the brain was initially focused 
on the use of imaging features for molecular subtype pre-
diction. Molecular subtypes are based on genome-wide 
profiling and large-scale genomic analysis and can used to 
provide diagnostic, prognostic, and therapeutic options [38]. 
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Table 1   General overview of radiogenomic literature on brain tumors

Tumor Reference Molecule(s) of 
interest

Method Feature type Approach Identified features Imaging 
Modal-
ity

Brain Diehn et al. [35] General gene expres-
sion

Correlative Qualitative – “Infiltrative” imag-
ing phenotype

MRI

Colen et al. [36] microRNA expres-
sion

Correlative Qualitative – Edema phenotype MRI

Zinn et al. [37] PERIOSTIN Correlative Volumetric – FLAIR volumes MRI
Yang et al. [39] Molecular subtype Predictive Radiomic Classical with 

Machine Learning
– MRI

Czarnek et al. [40] Molecular subtype Correlative Radiomic Classical Edge complexity MRI
Mazurowski et al. 

[41]
Molecular subtype Correlative Radiomic Classical Angular standard 

deviation
MRI

Grossmann et al. 
[42]

Molecular subtype Correlative Volumetric – Necrotic core, con-
trast enhancement, 
abnormal tumor 
volume, tumor-
associated edema, 
and total tumor 
volume

MRI

Beig et al. [74, 212] Hypoxia-associated 
genes

Correlative Radiomic Classical Radiomic signatures MRI

Hassan et al. [48] Mutational burden Predictive Radiomic Classical with 
Machine Learning

– MRI

Rathore et al. [79] Molecular subtype Correlative Radiomic Classical Radiomic signatures MRI
Li et al. [80] MGMT methylation Predictive Radiomic Classical with 

Machine Learning
– MRI

Gutman et al. [213] TP53, RB1, NF1, 
EGFR, and PDG-
FRA

Correlative Volumetric – Contrast enhance-
ment, necrosis, 
edema volumes

MRI

Lee et al. [70] EGFR mutational 
status

Predictive Radiomic Classical Radiomic signatures MRI

Cho et al. [71] BCAT​ Correlative Quantitative – Normalized cerebral 
blood volume

MRI

Gevaert et al. [44, 
45]

General gene expres-
sion

Correlative Radiomic Classical Radiomic signatures MRI

Colen et al. [214] Molecular subtype Correlative Volumetric Classical “Edema” radiophe-
notype

MRI

Hu et al. [47] EGFR, PDGFRA, 
PTEN, CDKN2A, 
RB1, and TP53

Predictive Radiomic Classical with 
Machine Learning

– MRI

Maraka et al. [72] PDGFR2a Predictive Radiomic Classical with 
Machine Learning

– MRI

Akbari et al. [69] EGFRvIII Predictive Radiomic Classical with 
Machine Learning

– MRI

Li et al. [73] ATRX Predictive Radiomic Classical with 
Machine Learning

– MRI

Jeon et al. [76] CD49d RNA expres-
sion

Correlative Quantitative Classical ADC MRI

Narang et al. [77] CD3 mRNA expres-
sion

Predictive Radiomic Classical Radiomic signatures MRI

Zinn et al. [46] TP53, PTEN, and 
EGFR

Correlative Radiomic Classical Radiomic signatures MRI

Li et al. [67] EGFR Predictive Radiomic Classical with 
Machine Learning

– MRI
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Table 1   (continued)

Tumor Reference Molecule(s) of 
interest

Method Feature type Approach Identified features Imaging 
Modal-
ity

Kickingereder et al. 
[68]

EGFR Predictive Radiomic Classical with 
Machine Learning

– MRI

Lehrer et al. [78] IL8, PTEN, PI3K/
Akt, Neuregulin, 
ERK/MAPK, 
p70S6 K and EGF 
signaling path-
ways. (proteins)

Predictive Qualitative – VASARI imaging 
features

MRI

Li et al. [75] Ki67 expression 
levels

Predictive Radiomic Classical Spherical dispropor-
tion

MRI

Li et al. [20] IDH1 Predictive Radiomic Deep Learning 
Radiomics

– MRI

Eichinger et al. [51] IDH1 Predictive Radiomic Classical with 
Machine Learning

– MRI

Hsieh et al. [52] IDH1 Predictive Radiomic Classical with 
Machine Learning

– MRI

Lohmann et al. [53] IDH1 Predictive Radiomic Classical with 
Machine Learning

– MRI

Lohmann et al. [54] IDH1 Predictive Radiomic Classical with 
Machine Learning

– MRI

Bisdas et al. [55] IDH1 Predictive Radiomic Classical with 
Machine Learning

– MRI

Hong et al. [56] IDH1 Correlative Qualitative/Radi-
omic

Classical Normalized CBV 
and ADC volumes

MRI

Zhang et al. [57] IDH1 Predictive Radiomic Classical with 
Machine Learning

– MRI

Arita et al. [58] IDH1 Predictive Radiomic Classical with 
Machine Learning

– MRI

Jakola et al. [59] IDH1 Predictive Radiomic Classical Homogeneity, tumor 
volume

MRI

Papp et al. [60] IDH1 Predictive Radiomic Classical with 
Machine Learning

– MRI

Zhang et al. [61] IDH1 Predictive Radiomic Classical with 
Machine Learning

– MRI

Shofty et al. [62] IDH1, 1p/19q co-
deletion

Predictive Radiomic Classical with 
Machine Learning

– MRI

van der Voort et al. 
[63]

1p/19q co-deletion Predictive Radiomic Classical with 
Machine Learning

– MRI

Yu et al. [64] 1p/19q co-deletion Predictive Radiomic Classical with 
Machine Learning

– MRI

Zhou et al. [65] 1p/19q co-deletion Predictive Qualitative/Radi-
omic

Classical with 
Machine Learning

– MRI

Dasgupta et al. [83] Molecular subtype Correlative Qualitative – Horizontal tumor 
location, involve-
ment of dorsal 
brainstem, perifo-
cal edema, intratu-
moral calcification

MRI

Brisse et al. [84] General gene expres-
sion

Correlative Qualitative/Volu-
metric

– Tumor volume, 
number of lesions

MRI

Bi et al. [81] Molecular subtype Predictive Qualitative/Radi-
omic

Classical with 
Machine Learning

– MRI
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MRI-derived texture features were shown to non-invasively 
predict whether a tumor would belong to one of four dis-
tinct molecular subtypes: classical (AUC = 0.72), neural 
(AUC = 0.75), proneural (AUC = 0.82), or mesenchymal 
(AUC = 0.70) [39]. Tumor shape [40, 41] and tumor-associ-
ated edema on T2-FLAIR (AUC = 0.61) [42] have also been 
reported as possible imaging discriminators of molecular 
subtype in GBM.

With the promising results of radiomics in molecular 
subtype prediction, more specific biological associations 
were pursued. The attention of the field turned towards the 
prediction of gene mutations that were already being used 
as biomarkers in daily clinical practice.

A number of prominent somatic mutations (namely 
TP53, RB1, NF1, EGFR, and PDGFRA) were found to be 
associated with volumetric parameters on T1 contrast and 
T2 FLAIR MR images [43]. The first purely quantitative 
analysis integrated GBM “multi-omics” data, containing 
multiple “-omes” such as the genome, transcriptome, and 
proteome, from the TCGA and their corresponding images 
from The Cancer Imaging Archive (TCIA) [44, 45]. Zinn 
et al. identified “radiomic profiles” that helped to discrimi-
nate the mutational landscape (i.e., TP53, PTEN, and EGFR) 
on a dataset of 29 TCGA patients [46]. Hu et al. performed 
an exceptional study where multiparametric MRI features 
extracted specifically from biopsy sites were used to predict 
various driver mutations (namely EGFR, PDGFRA, PTEN, 
CDKN2A, RB1, and TP53) via random forest [47]. This 
approach cleverly mitigated the impact of tumor heteroge-
neity and was one of only two radiogenomic studies to do 
so. Radiomics features were also identified that directly cor-
related with the overall mutational burden/load [48].

Different groups quickly moved away from broad genetic 
analyses to the characterization of imaging phenotypes for 
specific mutations in GBM. Isocitrate dehydrogenase-1 
(IDH) mutation is commonly used in the clinic to stratify 
patients, often in conjunction with other co-mutations [49] 
and it received the most attention in brain radiogenomic 
research. IDH-mutated gliomas occurred most frequently 
in the rostral extension of the lateral ventricles of the frontal 
lobe [50] and were linked to tumor size [51], local pattern 
of intensities [52], PET features [53, 54], angular standard 

deviation (tumor boundary irregularity) [41], mean dif-
fusional kurtosis [55], and apparent diffusion coefficient 
(ADC) [56] as well as part of “radiomic signatures” in arti-
ficial intelligence models [20, 57–62]. Similarly, 1p/19q 
co-deletion [62–65], a widely used prognostic biomarker 
for brain tumors [66], and EGFR mutation [67–70] were 
thoroughly covered by different teams, having been linked 
to a wide array of MRI features. Additional imaging mark-
ers were also found that were predictive for the expression 
of clinically relevant genes such as BCAT [71], PDGFR2a 
[72], ATRX [73], hypoxia-associated genes [74], Ki67 [75], 
CD49d [76], and CD3RNA expression [77]. Going beyond 
genomic parameters, Lehrer et al. performed a “radioprot-
eomics” study where semantic MRI features were correlated 
with proteins expressed in lower grade glioma [78].

Interestingly, attempts were made to subgroup these 
tumors with radiomics alone, irrespective of their muta-
tional landscape and clinical features [79]—strongly sug-
gesting that much more information than anticipated could 
be extracted from quantitative features. In support of this 
point, MGMT methylation status, another prognostic bio-
marker [66], predicted by AI models even when clinical data 
were excluded and only radiomics were used [80].

Other brain tumors have also been studied where, espe-
cially in meningioma, radiomic features were shown to 
be capable of good patient stratification, based on grade 
(AUC = 0.86) [81], phenotype [81], or risk of relapse 
(AUC = 0.72, p = 0.28) [82]. Semantic features were also 
correlated with the molecular subtype in medulloblastoma 
[83] and to the genomic profile of neuroblastoma [84].

As the site that was most extensively studied, brain 
radiogenomic literature reflects what is seen across a wide 
variety of tumor types, namely that the field is still in its 
early stages. Radiogenomic features have been linked to 
genomics-derived molecular subtypes, gene groups, and 
specific somatic mutations. Most studies, however, are per-
formed on limited, usually single-center, patient cohorts 
in an exploratory, proof-of-concept manner. Agreement 
between studies on independent radiogenomic features 
remains to be achieved before mainstream clinical applica-
tion can be pursued.

Table 1   (continued)

Tumor Reference Molecule(s) of 
interest

Method Feature type Approach Identified features Imaging 
Modal-
ity

Corroller et al. [82] Chromosomal copy 
number variation 
(CNV)

Predictive Radiomic Classical with 
Machine Learning

– MRI
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Lung

In non-small cell lung cancer (NSCLC), genetic muta-
tional status plays a pivotal role in the clinical deci-
sion-making process—especially since targeted agents 
received FDA approval in NSCLC [85]. Around 10–15% 
of NSCLC patients have an activating EGFR mutation 
[86], where receptor blockers or tyrosine kinase inhibi-
tors (TKIs) would be valid treatment options. Moreover, 
a quarter of lung adenocarcinoma patients have a KRAS 
mutation [87], which would confer resistance to the 
aforementioned treatments (see Fig. 2). KRAS and EGFR 
mutations are mutually exclusive [88] and the presence of 
one or the other strongly influences the choice of treat-
ment. Furthermore, up to 7% of NSCLC patients harbor 
an ALK rearrangement, potentially making them can-
didates for crizotinib, a multi-targeted tyrosine kinase 
inhibitor with potent activity against ALK [89].

Given the fact that genomic analysis is becoming 
more routine in this cohort of patients, there has been 
significant research interest in seeing whether radiomics 
could predict the genetic status of the tumor, especially 
in KRAS, EGFR, and ALK. (Table  2). Gevaert et  al. 
started the flurry of radiogenomic lung research by cor-
relating PET/CT features to metagenes, aggregated pat-
terns of gene expression, with encouraging preliminary 
results [90]. However, the first article that most resembled 

a conventional radiogenomics study by linking specific 
imaging features to specific mutations was the work of 
Halpenny et al, investigating the predictive value of CT 
radiomics for ALK rearrangements [91]. Early on, differ-
ent projects selected clinically relevant mutations, like 
ALK [92], EGFR [93, 94], and KRAS [88]), with various 
technical methodologies (purely correlative studies vs. 
predictive models [95]).

As a predictive marker, KRAS has been linked to round 
shape [96], nodules in non-tumor lobes [96], multiple small 
nodules [97], as well as general radiomic profiles [98, 99]. 
Interestingly, some studies reported the ability to predict 
EGFR, but not KRAS [100, 101]. ALK rearrangement was 
linked to pleural effusion [96] and lobulated margin [102]. 
HER2, a gene often amplified during acquired resistance to 
EGFR-targeting therapy, was also studied [103]. Halpenny 
et al. also studied qualitative features in the prediction of a 
BRAF mutation in lung cancer—citing pleural metastases 
as a key difference (p = 0.045) [104].

By far, the most researched genetic mutation in NSCLC 
was EGFR (both exon 19 and exon 21 mutations) having 
been linked to contrast [105], Laws-Energy [94], median 
Hounsfield Unit (HU) [88], SUVmax [106], pleural retrac-
tion [96], small size [96, 97], speculation [97], irregular nod-
ules [107], poorly defined margins [107], ground glass [107, 
108], emphysema [109], locoregional infiltration [109], 
“normalized inverse difference moment” [101], as well as 
combined radiomic profiles [98–100, 110–113].

a b c

Fig. 2   An illustration of the role of genetic mutational status in treat-
ment decisions. a The RAS pathway connects EGFR to cell prolifera-
tion and survival (via transcription of effector genes). b Anti-EGFR 
based treatments block signal transduction from the receptor and 

hence counter the effects of the pathway. c Activating mutations in 
KRAS allow the cell to constantly exert the effect of this pathway 
irrespective of whether the ligand has bound to the receptor. Such 
mutations could mediate resistance to anti-EGFR therapies
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Table 2   General overview of radiogenomic literature on lung cancer

Tumor Reference Molecule(s) of 
interest

Method Feature type Approach Identified features Imaging Modality

Lung Gevaert et al. [90] Metagenes Predictive Radiomic Classical with 
Machine Learn-
ing

Radiomic signa-
tures

PET/CT

Halpenny et al. 
[91]

ALK Correlative Qualitative – Lymph 
nodes > 1.5 cm, 
Multifocal lym-
phadenopathy

CT

Yoon et al. [92] ALK, ROS1, and 
RET

Predictive Qualitative/Radi-
omic

Classical Advanced tumor 
stage, solid 
tumor on CT, 
SUV(max), 
tumor mass, kur-
tosis, and inverse 
variance

PET/CT

Caramella et al. 
[93]

EGFR Correlative Radiomic Classical Skewness CT

Aerts et al. [94] EGFR Correlative Radiomic Classical Laws-Energy CT
De Jong et al. [88] EGFR and KRAS Correlative Radiomic Classical Radiomic signa-

tures
CT

Weiss et al. [95] KRAS Predictive Radiomic Classical with 
Machine Learn-
ing

Skewness and 
kurtosis

CT

Ozkan et al. [105] EGFR Correlative Radiomic Classical Contrast, correla-
tion, inverse dif-
ference moment

CT

Rizzo et al. [96] EGFR, KRAS, and 
ALK

Correlative Qualitative – Air bronchogram, 
pleural retrac-
tion, small lesion 
size, absence of 
fibrosis

CT

Lv et al. [97] EGFR and KRAS Correlative Qualitative – Speculation, mul-
tiple small meta-
static nodules

CT

Zhou et al. [107]. Metagenes Correlative Qualitative – Numerous, includ-
ing: nodule 
attenuation, 
margins, ground 
glass opacity, 
and nodule 
irregularity

CT

Gevaert et al. [108] EGFR and KRAS Predictive Qualitative – Ground glass 
opacity, emphy-
sema, airway 
abnormality, 
tumor margin

CT

Sacconi et al. 
[109]

EGFR Correlative Qualitative/Radi-
omic

Classical Emphysema, 
necrosis, air 
bronchogram, 
locoregional 
infiltration, 
mean, standard 
deviation, skew-
ness

CT

Yip et al. [101] EGFR and KRAS Correlative Radiomic Classical InvDiffmomnor CT
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Interestingly, the semantic features “small size” and 
“ground glass appearance” were the only two imaging mark-
ers that were reproducibly shown to be associated with the 
EGFR mutation [96, 97, 107, 108]. Quantitative features are 
often referred to as being more objective, however, based on 
image acquisition and feature extraction methods, the values 
can vary greatly [12–14]. In addition to large multicenter 
studies, the methods used at different points of the radiomics 
pipeline need to be standardized, otherwise a direct com-
parison may not possible. Achieving direct comparison is 
especially helpful in the case of other, less prevalent, tumors 

that would share the same driver mutation. A model trained 
on more easily acquired data from lung cancer may in the 
future be generalized to a different less prevalent tumor.

In addition to mutational status prediction, radiomic as 
well as genomic parameters have been combined in prognos-
tication models [114]. Emaminejad et al. reported that while 
radiomics (AUC = 0.78) and genomics (AUC = 0.78) models 
were capable of predicting survival, accuracy significantly 
improved (AUC = 0.84) when both data were integrated 
[115]. The future of data-driven diagnostics will be the 
integration of complementary data generated from different 

Table 2   (continued)

Tumor Reference Molecule(s) of 
interest

Method Feature type Approach Identified features Imaging Modality

Sorensen et al. 
[98]

EGFR Predictive Qualitative/Radi-
omic

Classical with 
Machine Learn-
ing

Tumor cavitation, 
pleural effusion, 
ground glass 
opacity, tumor 
margins, radi-
omic signatures

CT

Rios Velazquez 
et al. [110]

EGFR Predictive Qualitative/Radi-
omic

Classical Combinations of 
semantic and 
radiomic features 
(signatures)

CT

Jia et al. [111] EGFR Predictive Radiomic Classical with 
Machine Learn-
ing

– CT

Rios Velazquez 
et al. [99]

EGFR and KRAS Predictive Radiomic Classical Radiomic signa-
tures

CT

Yip et al. [100] EGFR and KRAS Predictive Radiomic Classical Numerous, includ-
ing: GLCM 
features, Shape 
features, and 
RLM features.

CT

Clay et al. [112] EGFR Predictive Radiomic Classical Radiomic signa-
tures

CT

Zhang et al. [113] EGFR Predictive Radiomic Classical Radiomic signa-
tures

CT

Sawan et al. [103] HER2 Correlative Qualitative – Smaller lesions, 
pleural tags, 
pleural retrac-
tions, ipsilateral 
hilar, scalene/
supraclavicular 
adenopathy

CT

Kim et al. [102]. ALK and EGFR Correlative Qualitative – Lobulated margin, 
solid lesion, and 
hypoattenuation

CT

Halpenny et al. 
[104]

BRAF Correlative Qualitative – Solid, spiculated, 
peripheral loca-
tion, pleural 
metastases

CT

Moon et al. [106] EGFR Correlative Radiomic Classical Entropy and 
SUVmax

PET/CT

Grossmann et al. 
[114]

General gene 
expression

Predictive Radiomic Classical Radiomic signa-
tures

CT
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sources (the “-omics”) to improve the performance of pre-
dictive models by unlocking further hidden information.

As in brain radiogenomic literature, lung studies seldom 
agreed on features, either semantic or radiomic, that were 
predictive for specific genetic mutations. This lack of repro-
ducibility/generalizability is one of the largest hurdles for 
radiogenomics to overcome in order to be implemented into 
the clinical workflow. Until recently, most studies relied on 
monocentric patient cohorts using basic statistical meth-
odologies to identify associations between certain features 
and the gene/molecule of interest. In order to identify truly 
reproducible radiogenomic features or signatures, large het-
erogeneous patient cohorts would need to be collected from 
multiple centers, ideally prospectively and would need to 
be analyzed using modern methods capable of addressing 
data heterogeneity.

Breast and ovaries

Since the 1970′s, mammograms have been used to assess 
breast cancer risk, through qualitative [116] and quantita-
tive analysis of the breast parenchyma [117]. However, Li 
et al. were among the very first to apply texture analysis to 
discriminate between high-risk BRCA-mutated and low-risk 
wild-type patients [118]. AI methods were subsequently lev-
eraged to improve the performance of these radiogenomic 
predictive models—first with Bayesian artificial neural 
networks, a framework for different machine learning algo-
rithms [119, 120], and then with convoluted neural networks 
(AUC = 0.86) [121].

While radiogenomic research in the breast had initially 
started with mammograms, the interest of researchers in 
this field also spanned MRIs (Table 3). Yamamoto et al. 
studied 353 patients with breast cancer and obtained their 
gene expression profiles (MRI n = 10) [122]. Given that the 
ACR does not recommend breast MRIs as screening for 
the general population, this low sample size is understand-
able [123]. Nonetheless, 21 imaging traits were found that 
were globally correlated (p < 0.05) with 71% of the genes 
measured. In the MOSCATO-01 trial, voxel intensity was 
significantly associated with HER2 amplification on a 
patient group (n = 20) composed of gastrointestinal tumors, 
HNSCC, lung cancer, breast cancer, and urogenital cancer 
[124]. Considering that a number of mutations are relevant 
across multiple tumor types, for instance BRCA and HER2 
in both breast cancer and ovarian cancer, further validation 
studies should be performed to test whether these imaging 
markers are tumor agnostic.

Quantitative imaging features were not only linked to 
specific mutations but also genomics-derived molecu-
lar subtypes [125, 126]. Wang et al. were able to further 
broaden the molecular subtypes that were predicted by 
imaging features: luminal A (p = 0.00473), HER2-enriched 

(p = 0.00277), and basal-like (p = 0.0117) [127]. Machine 
learning models capable of discerning luminal A molecu-
lar subtype (AUC = 0.697), triple-negative breast cancer 
(AUC = 0.654), estrogen receptor (ER) mutational sta-
tus (AUC = 0.649), and progesterone receptor (PR) status 
(AUC = 0.622) were subsequently built [128]. Imaging 
markers were also directly correlated with survival in breast 
cancer [129]. With increasingly thorough analyses [130], 
novel imaging markers may be found that can be readily 
used in the clinic alongside existing risk-stratification scor-
ing systems [131].

Molecular subtyping has also gained importance in ovar-
ian cancer. Due to the significant risk of recurrence in high-
grade serous ovarian carcinoma, prognostic biomarkers are 
of critical importance for clinicians [132]. A prognostic 
model called the “Classification of Ovarian Cancer” (CLO-
VAR) was developed by combining subtype and survival 
gene expression signatures in order to better profile patients 
into risk groups [133]. In one of the few radiogenomic mul-
ticenter studies, semantic features from a cohort of 92 high-
grade serous ovarian carcinoma patients were found to be 
associated with subtypes of the CLOVAR system as well 
as time to progression [134]. In epithelial ovarian cancer, 
where 5-year survival is approximately 35–40%, a similar 
need for patient stratification exists [135]. Lu et al. engaged 
in a very thorough and methodical study where machine 
learning was used to derive a score they termed as the “Radi-
omic Prognostic Vector” (RPV) [136]. The RPV was shown 
to identify patients with less than 24 months of survival. 
This is also one of the very few predictive radiogenomic 
models that has been validated on independent multicenter 
cohorts and has received further complementary genetic and 
transcriptomic analysis to rationalize the predictions.

As mentioned in the previous section, when different 
data sources are combined, further information may poten-
tially be unlocked. This was also observed when imaging 
features were combined with the recurrence scores of the 
OncotypeDX and PAM50 gene panels, the predictive perfor-
mance of models improved significantly [137]. Integration 
of data from multiple domains may well be the necessary 
next step to bring the performance of these predictive mod-
els up to a clinically feasible level.

Liver

Liver cancer is the second leading cause of cancer mortality 
worldwide [138], with 80–90% of primary liver cancer being 
hepatocellular carcinoma (HCC). Radiogenomics in HCC 
developed rather curiously in the sense that two parallel 
research lines arose simultaneously (Table 4)—one search-
ing for predictive imaging markers (therapeutic response) 
versus another searching for prognostic imaging markers 
(survival and recurrence rate).
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Table 3   General overview of radiogenomic literature on breast cancer and ovarian cancer

Tumor Reference Molecule(s) of 
interest

Method Feature type Approach Identified features Imaging Modality

Breast and 
ovaries

Li et al. [118] BRCA​ Predictive Radiomic Classical Gray scale 
parameters, 
contrast meas-
ures

Mammogram

Gierach et al. 
[119]

BRCA​ Predictive Radiomic Classical with 
machine learn-
ing

– Mammogram

Li et al. [120] BRCA​ Predictive Radiomic Classical with 
machine learn-
ing

– Mammogram

Li et al. [121] BRCA​ Predictive Radiomic Deep learning 
Radiomics

– Mammogram

Tamez-Pena et al. 
[137]

General gene 
expression

Predictive Radiomic Classical Radiomic signa-
tures

Mammogram

Yamamoto et al. 
[122]

General gene 
expression

Correlative Radiomic Classical Heterogeneous 
enhancement 
patterns, inter-
feron breast 
cancer subtype, 
radiomic signa-
tures

MRI

Mazurowski et al. 
[125]

Molecular sub-
type

Correlative Radiomic Classical Dynamic con-
trast material 
enhancement

MRI

Grimm et al. 
[126]

ER/PR/HER2 Correlative Radiomic Classical Radiomic signa-
tures

MRI

Haspinger et al. 
[124]

HER2, FGFR1/2, 
EGFR, 
PIK3CA, 
KRAS/NRAS/
HRAS

Correlative Radiomic Classical Mean voxel 
intensity

MRI

Wang et al. [127] Molecular sub-
type

Correlative Radiomic Classical Compactness, 
skewness, 
dynamic 
enhancement

MRI

Saha et al. [128] Molecular sub-
type, ER, PR, 
EGFR, Ki67

Predictive Radiomic Classical with 
Machine Learn-
ing

– MRI

Wu et al. [129] General gene 
expression

Correlative Radiomic Classical Heterogeneous 
enhancement 
patterns

MRI

Zhu et al. [130] General gene 
expression

Correlative Radiomic Classical Radiomic signa-
tures

MRI

Li et al. [131] General gene 
expression 
(Prognostic 
genetic signa-
tures)

Predictive Radiomic Classical Tumor size, 
enhancement 
texture

MRI

Vargas et al. 
[134]

CLOVAR (Gene 
clusters)

Correlative Semantic Location, lymph 
nodes, perito-
neal disease

CT

Lu et al. [136] Radiomic Prog-
nostic Vector

Predictive Radiomic Classical with 
Machine Learn-
ing

– CT
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Doxorubicin is one of the earliest developed anthracy-
clines and while systemic administration of the agent has 
shown limited benefit, 30–70% of HCC patients respond to 
transarterial chemoembolization (TACE) with doxorubicin 
[139]. Early radiogenomic studies successfully identified six 
predefined semantic imaging phenotypes on standard CE-CT 
images that were associated with doxorubicin response 
gene expression patterns [140]. West et al. subsequently 
performed the first quantitative radiogenomic study in liver 
cancer where they acquired CT images from 27 treatment-
naïve HCC TCGA patients and correlated radiomic features 
with specific genes known to confer doxorubicin chemore-
sistance (namely TP53, TOP2A, CTNNB1, CDKN2A, and 
AKT1, AUC = 0.72–0.86) [141].

The other major focus in HCC radiogenomic litera-
ture was the development of a proxy imaging marker for 
Microvascular Invasion (MVI), an independent predictor 
of early recurrence and poor postoperative overall sur-
vival [142] identifiable only by histology of excised tissue. 
Having a non-invasive means of determining preoperative 
MVI would provide significant clinical benefit to these 
patients. Previous attempts were made to directly corre-
late conventional imaging features with histopathological 
MVI [143–145]. However, the most researched imaging 

marker was “Radiogenomic Venous Invasion” (RVI), a 
contrast-enhanced CT marker linked to a 91-gene HCC 
venous invasion gene expression signature that was prog-
nostic for survival following surgical resection or liver 
transplantation [146]. Banerjee et al. validated the RVI 
for its correlation with MVI (accuracy = 89%, sensitiv-
ity = 76%, specificity = 94%) and moreover for its prognos-
tic value (OS (p < 0.001), 3-year recurrence-free survival 
(p = 0.001) [146]). It should be noted that liver cirrhosis 
may impact the ability of these radiogenomic markers to 
predict MVI or even outcome [147]. Considering that the 
overwhelming majority of HCC patients have chronic liver 
disease [148], with 80–90% of cases suffering from liver 
cirrhosis [149], this is a sizable limitation. Further efforts 
would be needed in hepatic radiogenomic studies to iden-
tify cirrhosis-independent predictors.

In cholangiocarcinoma, FGFR2, a potentially suit-
able target for molecular therapy, was also studied from a 
radiogenomics perspective, albeit with conflicting results. 
An initial study (n = 66) using semantic features was una-
ble to find any significant association to the genetic muta-
tion [150]; however, a second smaller study (n = 33) using 
machine learning successfully predicted FDFR2 mutation 
in 90% of the cases (sensitivity = 87%, specificity = 94%) 

Table 4   General overview of radiogenomic literature on liver tumors and colorectal cancer

Tumor Reference Molecule(s) of 
interest

Method Feature type Approach Identified features Imaging Modality

Liver Kuo et al. [140] Doxorubicin resist-
ance genes

Correlative Qualitative – Tumor margins 
on arterial phase 
images

CT

West et al. [141] Doxorubicin resist-
ance genes

Predictive Radiomic Classical with 
Machine Learn-
ing

– CT

Segal et al. [145] General gene 
expression

Correlative Qualitative – Imaging signature CT

Banerjee et al. 
[146]

91-gene signature 
for microvascular 
invasion (MVI)

Correlative Qualitative – Radiogenomic 
Venous Inva-
sion (Imaging 
signature)

CT

DeLeon et al. [151] FGFR2 Predictive Radiomic Classical with 
Machine Learn-
ing

– CT

Aherne et al. [150] IDH1, Chromatin, 
and RAS-MAPK

Correlative Qualitative – No significant cor-
relations

CT

Colorectal Lubner et al. [170] KRAS Correlative Radiomic Classical Tumor heterogene-
ity (skewness)

CT

Lovinfosse et al. 
[175]

RAS mutations Correlative Radiomic Classical SUVmax, 
SUVmean, skew-
ness, SUVsd, 
SUVcov

PET

He et al. [174] KRAS Correlative Radiomic Classical SUVmax, SUVkur PET/CT
Yang et al. [171] KRAS, NRAS, 

BRAF
Predictive Radiomic Classical with 

Machine Learn-
ing

– CT
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despite having only half the sample size [151]. This makes 
a compelling argument in favor of using machine learning 
to build better-performing predictive models.

Kidneys

As a result of the widespread use of abdominal imaging, renal 
cell carcinoma (RCC​) is increasingly being detected at earlier 
stages where surgery is a therapeutic option [152]. Prognos-
tic biomarkers are important for treating clinicians to help 
mitigate the risk of postoperative recurrence. In the clinic, 
von Hippel–Lindau (VHL) mutational status is often used as 
both a prognostic and predictive biomarker for RCC [153], 
given its role in hypoxia signaling [154]. VHL mutations 
were found to be significantly associated with well-defined 

tumor margins (p = 0.013), nodular tumor enhancement 
(p = 0.021), and gross appearance of intratumoral vascular-
ity (p = 0.018) [155]. In addition to these features (Table 5), 
machine learning classifiers, trained on local datasets and 
validated on TCGA patients, were built that could identify 
not only mutations in VHL (accuracy = 0.75) but also in 
BAP1 (accuracy = 0.83) and PBRM1 (accuracy = 0.83) [156].

BAP1 mutation, particularly with a concomitant loss of 
PBRM1 [157], has been shown to be a significant negative 
prognostic parameter for RCC patients [158] and as such, 
has received attention in radiogenomic research alongside 
VHL [159]. BAP1-mutated RCCs tended to display CT renal 
vein invasion (p = 0.046) [155], ill-defined tumor margins 
(p = 0.002) [160], and a higher Fuhrman (pathological) 
grade (p = 0.026) [161]. BAP1 also featured in the work of 

Table 5   General overview of radiogenomic literature on prostate cancer and renal cell carcinoma

Tumor Reference Molecule(s) of 
interest

Method Feature type Approach Identified features Imaging Modality

Prostate Vander-Weele et al. 
[181]

PTEN Correlative Radiomic Classical Perfusion imaging 
contrast uptake, 
T2-weighted 
signal-intensity 
skewness

MRI

McCann et al. [180] PTEN Correlative Radiomic Classical No significant cor-
relations

MRI

Stoyanova et al. 
[182, 183]

General gene 
expression

Correlative Radiomic Classical Radiomic signatures MRI

RCC​ Shinagare et al. 
[160]

BAP1 Correlative Qualitative – Ill-defined margin, 
presence of calci-
fication, exophytic 
growth pattern

CT

Karlo et al. [155] VHL, PBRM1, 
SETD2, KDM5C, 
and BAP1

Correlative Qualitative – Well-defined tumor 
margins, nodular 
tumor enhance-
ment, renal vein 
invasion, intratu-
moral vascularity

CT

Winer et al. [161] VHL, PBRM1, 
SETD2, KDM5C, 
or BAP1

Correlative Qualitative – Renal vein involve-
ment, tumor 
necrosis, tumor 
contact with the 
renal sinus

CT/MRI

Vikram et al. [162] Chromosome num-
ber alterations

Predictive Radiomic Classical with 
Machine Learning

– CT

Chen et al. [156] BAP1, PBRM1, and 
VHL

Predictive Radiomic Classical with 
Machine Learning

– CT

Sohrabi et al. [159] VHL, BAP1, 
PBRM1, SETD2, 
and P13K

Correlative Radiomic Classical Mean gray-level 
pixel intensity, 
entropy, standard 
deviation (SD), 
mean of positive 
pixels (MPP), kur-
tosis, skewness

CT

Duddalwar et al. 
[163]

DNA methylation Correlative Radiomic Classical 2D and 3D Gray-
level difference 
method (GLDM)

CT
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Vikram et al. where they extracted quantitative features from 
78 clear cell RCC from the TCGA and used machine learn-
ing methods to predict the mutational status (AUC = 0.78, 
pre-contrast) [162]. Beyond individual genes, CT radiomic 
features were also correlated, at the epigenetic level, with 
DNA methylation in RCC [163].

Colorectal carcinoma

As in lung cancer, the RAS gene family functions as a group 
of molecular switches controlling transcription factors and 
cell cycle proteins. Deregulation of RAS signaling results 
in increased cell proliferation, angiogenesis, and heightened 
metastatic potential. In colorectal cancer (CRC​), 30–50% 
of cases are KRAS mutated [164] while 3–5% are NRAS 
mutated [165]—they are largely considered to be mutually 
exclusive [166, 167]. As in NSCLC, an activating RAS 
mutation is considered indicative of EGFR antibody resist-
ance and hence serves as a predictive biomarker in the clinic 
[168, 169] (see Fig. 2).

Different imaging modalities have been tested to provide 
predictive imaging markers for KRAS mutational status. On 
CT, conventional radiomics has shown that KRAS mutations 
are associated with skewness (p = 0.02) [170]. More robust 
machine learning classifiers have also identified radiomic 
signatures capable of predicting KRAS (AUC = 0.829), 
NRAS (AUC = 0.686), and BRAF mutations (AUC = 0.857) 
in a cohort of 117 CRC patients [171]. Magnetic resonance 
imaging has also been analyzed where it was observed that, 
in rectal cancer, KRAS mutations were associated with N 
stage, axial tumor length, and a polypoid pattern [172]. DCE 
MR parameters, however, were not associated with either 
KRAS mutation or microsatellite instability, an important 
prognostic and predictive biomarker for colorectal cancer 
[173]. F18 FDG PET/CT imaging has also been tested in 
the search for colorectal radiogenomic markers albeit with 
mixed results. On one hand, first-order features such as max-
imum SUV [174], mean SUV, SUV standard deviation, and 
SUV coefficient of variation [175], have been significantly 
associated with KRAS mutation. On the other hand, a grow-
ing body of literature is reporting that uptake may not be 
reflective of KRAS mutational status [176, 177].

EGFR, KRAS, and BRAF mutations are clinically rel-
evant in a number of carcinomas; however, due to lack of 
standardization, direct comparison of radiomic features 
linked to the same mutation across different tumor types is 
not meaningful. Tumor agnostic radiogenomic features need 
to be found using large multicenter datasets and harnessing 
advanced classification methods.

Outside the domain of image analysis, Pershad et al. 
used a purely text-based approach to process the descrip-
tive words used by radiologists in their reports in order to 

predict KRAS mutational status [178]. The trained classifier 
determined the word frequency within both mutant and wild-
type radiology report. Tumors with a KRAS mutant were 
described more often as “innumerable,” “confluent,” and 
“numerous,” whereas wild-type tumors were more “few,” 
“discrete,” and “[no] recurrent.”

Prostate

Radiogenomics carries great potential in the setting of pros-
tate cancer given that clinical outcome is closely linked to 
one prominent tumor suppressor gene, PTEN (Table 5). Loss 
of PTEN in prostate cancer has been correlated with a clini-
cally aggressive phenotype and increased mortality [179]. 
While multiparametric MR scans failed to yield any predic-
tive/correlated features [180], contrast uptake on DCE-MRI 
(p < 0.01) and T2-weight signal-intensity skewness (p < 0.1) 
were correlated with PTEN expression [181].

Stoyanova et al. took a unique approach and performed 
radiogenomic analysis on patients with prostate cancer who 
had undergone MR-guided biopsies. The biopsy site was 
identified on the scan and radiomic features were extracted 
only from the specific area of interest—allowing for a more 
accurate radiomic–biological correlation to be made. Radi-
omic features associated with prognostic biomarkers were 
identified with this approach [182, 183].

Limitations and challenges facing 
radiogenomics

While the field of radiogenomics holds great promise, there 
are a number of limitations that the field, as a whole, needs 
to overcome [184].

Radiomics pipeline

Up until fairly recently, the radiomic pipeline consisted 
of image acquisition, delineation of regions of interest, 
extraction of handcrafted features, and correlation with 
simple statistics. Every step in the pipeline is prone to 
error, which can accumulate in a phenomenon known as 
“propagation of the error.” Manual delineations require 
significant time commitment by trained radiologists, often 
serving as a rate limiting step for the number of scans/
patients included in a study. Furthermore, inter-observer 
variability of manual segmentations is hard to control—
impacting the features derived from the image [185]. Not-
withstanding the annotation/delineation step, the process 
of handcrafted feature extraction introduces an element 
of bias since they are built on predefined mathematical 
formulas meant to capture specific morphological and 
textural phenotypes. Based on the extraction technique 
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and software used, these features can change [186]. Most 
handcrafted features were designed in the realm of com-
puter vision for general image decoding tasks and were not 
intended to address clinical research questions.

At the model building step of the pipeline, more robust 
classification methods need to be leveraged. Simple cor-
relative studies often are not reproducible, leading to con-
flicting results from different datasets meant to predict 
the same mutation in the same disease. With such simple 
statistical methodologies, basic radiomic studies run the 
risk of overfitting (i.e., being protocol-specific, scanner-
specific, or hospital-specific or all of the above) or under-
fitting (i.e., exploring only linear models).

Reproducibility of radiomic features

In order for radiomics to gain clinical application, the 
identified imaging biomarkers need to be independent, 
informative, and reproducible. Typically, robust biomark-
ers are derived from large heterogeneous datasets with a 
methodical testing process and external validation. Cur-
rently, literature has shown that radiomic features can be 
influenced by many parameters such as scanning equip-
ment [187, 188], image pre-processing [189], acquisition 
protocols [190, 191], image reconstruction algorithms [13, 
192, 193], and delineation [194, 195] among others. These 
changes can subsequently impact the radiomic predictive 
models. In lung cancer, the diagnostic performance of a 
radiomic signature for solitary pulmonary nodules fluctu-
ates based on slice thickness, contrast enhancement, and 
the convolutional kernel [196]. Changes in pixel resolu-
tion and contrast injection rates decreased the proportion 
of reproducible features in liver cancer [197]. Reproduc-
ibility testing is becoming more routine in the radiomic 
biomarker identification process [187, 198–203]. Associa-
tions such as the Quantitative Imaging Biomarker Alliance 
have begun to advocate for the technical standardization 
of patient scans to help ensure inter- and intra-machine 
reproducibility of imaging features [204, 205].

Tumor heterogeneity

From the biological perspective, radiogenomic studies 
rely on information derived from a biopsy to serve as a 
gold standard. In addition to being invasive, biopsies suf-
fer from a bias where it is assumed that the sample reflects 
entire tumor burden. Tumor heterogeneity poses a serious 
challenge to this approach and the clinical decisions based 
on them. Radiogenomics aims to bypass both the issue of 
invasiveness and the sampling bias by using non-invasive 
radiological images to analyze the full tumor burden. If 
predictive radiogenomic models are built using biopsies 

where the sampling bias is passed on, one could argue 
that the second objective has yet to be achieved. This is 
a critical challenge for radiogenomics as the reliability of 
predictive models is dictated by the credibility of ground 
truth biological data. The next generation of radiogenomic 
research has become more acutely aware of this where Hu 
et al. and Stoyanova et al. extracted radiomic features only 
from the biopsy sites in brain and prostate tumors, respec-
tively [47, 182, 183]. Better radiomic–biological correla-
tions are built with such an approach and would be the next 
step forward in identifying robust radiogenomic features.

Need for multidisciplinarity

The difference of approach to radiomics, seen between 
clinical and technical researchers, should also be taken into 
consideration. Groups that are more clinically oriented tend 
to look at problems from a very clinical perspective, often 
at the sacrifice of the methodology. This would explain the 
continued presence of simple correlative radiogenomic stud-
ies despite numerous methodological disadvantages, such 
as multiple comparison errors, difficulty to make decisions 
based on a feature, and lack of robustness. Conversely, highly 
technical groups often tend to be driven by the development 
of novel methodologies, whereas the clinical relevance is of 
secondary importance. Due to limited direct translational 
potential, technical studies often suffer from being limited 
to a niche. Better inter-disciplinary collaboration will help 
bring about technically novel research that serves a greater 
clinical impact—to the benefit of everyone involved.

Future directions

The technical challenges listed in the previous section can 
be mitigated, to varying degrees, with the implementation 
of novel artificial intelligence techniques.

Deep learning radiomics

As highlighted earlier, the radiomics pipeline currently 
exists in a loosely dichotomous state between the two dif-
ferent approaches in radiomics. Classical/conventional 
radiomics relies on tumor delineations followed by the 
extraction of predefined handcrafted imaging features. 
Early radiomics research has been hindered by a lack of 
reproducibility partly due to different extraction algorithms 
being used to derive the features. Deep learning neural 
networks, specifically CNNs, have enjoyed significantly 
increased interest in medical imaging analysis. CNNs are 
capable of “learning” important features from within the 
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image directly without needing to manually define them. 
The added advantage of CNNs is that the classification 
process, where the extracted features are linked to each 
other as well as the desired outcomes, is fully automated.

Deep learning is not without its own set of challenges. 
As the entire process of feature extraction and classifica-
tion takes place within the same network, a great number 
of samples are needed to build robust models with satis-
factory performance. For purposes like facial recognition, 
deep learning models are ordinarily trained on datasets 
numbering in the tens of thousands. However, in onco-
logical imaging, the availability of standardized imaging 
data suitable for AI purposes remains rather limited. In 
this review, the overwhelming majority of radiogenomic 
studies had low sample sizes (n < 100). Data augmenta-
tion strategies that are optimized for medical images need 
to be developed to overcome this limitation [206].

Another concern raised by researchers using this newer 
generation radiomics pipeline is the fear of an “artifi-
cial intelligence black box” where even neural network 
architects are unsure how the most relevant features are 
selected and the predictions are made. Regardless of 
accuracy, clinicians are unlikely to embrace a technol-
ogy that requires blind faith.

Various approaches have been proposed to shed light on 
this black box. Saliency mapping has gained attention in 
AI research, where the impact of each individual pixel on 
the prediction is measured and “areas of importance” for 
the prediction of the neural network are visualized [207]. 
This effectively generates a heat-map highlighting where 
in the image the model bases its prediction. An alternative 
approach put forth was the decoupling of the segmentation 
and classification tasks into two different neural networks 
[208]. This would allow the clinician to inspect and con-
firm the automatically segmented area prior to the feature 
extraction and subsequent diagnosis/prediction.

Automated segmentation

Tumor delineation is considered a bottleneck in the radiomics 
pipeline [209], as it can only be reliably performed by expe-
rienced radiologists, who are already burdened with clinical 
duties. AI can address this problem in two ways: automatic 
segmentation and deep learning. Automatic segmentation 
uses the algorithm’s ability to detect patterns to delineate 
structures, pathological, or otherwise. These automatically 
segmented areas would then have their features extracted 
and would flow into the next step of the radiomics pipeline. 
This approach has the added advantage of minimizing inter(/
intra)-observer variability—where obtaining agreement on 
the delineations is notoriously difficult [210].

Another way the delineation bottleneck can be bypassed 
is with the use of convolutional neural networks in image 

processing. The network can either process the entire image 
to detect “global” imaging markers on the whole image or, 
if a region of interest is needed, the lesion is simply “pointed 
out” as opposed to being fully delineated. Within a convolu-
tional neural network, feature extraction/selection happens 
automatically, on a much grander scale than any number of 
handcrafted features, and enjoys consistent optimization with 
each iteration. The malleability of these networks allows for 
the construction of more complex, robust, and generalizable 
architectures which can correct for known biases.

Experimental radiology

While the overwhelming majority of radiogenomic research 
is performed on routine clinical scans, there is a limit on the 
type of analyses that can be performed on patient-derived 
obtained tissue samples and patient scans. As in the case 
of fundamental oncology, preclinical experiments may also 
be advantageous considering that the whole tumor burden 
can be modulated, excised, and studied [211]. There is still 
a debate on the usefulness of preclinical models in the drug 
development process especially considering the differences 
in physiology, tumor heterogeneity, and disease progression. 
However, preclinical tumor models may prove to be a valu-
able development platform for imaging protocols dedicated 
to specific biological situations, for example, oxygenation 
that might not be readily induced in a human subject.

As our understanding of imaging markers improves, 
preclinical experiments can help identify better radio-
logical–biological correlates to help provide non-invasive 
insight into the tumor biology. Once the inner workings of 
the neural networks are better elucidated, we may transcend 
the need to constantly link the imaging marker back to a 
biological parameter.

Integration systems in healthcare

Radiomic predictive models have the potential to assist 
clinical teams make more precise diagnoses, more rapidly, 
with less time needed to be spent on each scan. In addition 
to patient stratification, radiogenomics could potentially 
have a major impact on selection of candidates for targeted 
therapies where expression of the target molecule can be 
measured non-invasively for the entire tumor burden, with-
out having to rely on a single biopsy to represent all the 
cancer lesions within a patient. Before this can happen 
though, a number of challenges and growth opportunities 
need to be addressed.

As mentioned in the brain section, most of the research 
performed in radiogenomics was exploratory or proof-of-
concept in nature using simple methods on single-center 
data. Large-scale multicenter projects are needed to iden-
tify reproducible radiomic features that might be not only 
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scanner/protocol/hospital independent but ultimately 
tumor agnostic. Artificial intelligence provides a unique 
opportunity to not only extract more meaningful features 
and create better predictive models but also to integrate 
multiple data sources. A number of projects have begun 
to see the value of combining complementary informa-
tion, such as radiomics and genomics, to boost predictive 
performance [114, 115, 137]. Within such an integration 
system, a future could be envisioned where computational 
biologists would work in close collaboration with radiolo-
gists to select the most suitable patient image, validate the 
region of interest generated by the AI prior to prediction, 
and lead discussions in the multidisciplinary tumor boards.

Conclusions

In this review, we endeavored to encapsulate all the major 
radiogenomic research and cover the challenges that lie 
ahead along with what we believe to be the future pros-
pects. While the field of radiogenomics does have its roots 
in research performed decades ago, it is still very much in 
its infancy. Many challenges still need to be addressed, 
however, there has already been significant progress made 
across a number of tumor types. With the rise of artifi-
cial intelligence in medicine, especially deep learning, 
more complex models combining multiple data sources 
could overcome many of the challenges that stand between 
radiogenomics and clinical implementation. Radiologists 
need to embrace this new technology and adapt to the 
changes that it will bring to the clinical workflow.
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Appendix 1

Methodology

For the purpose of this review, MEDLINE (PubMed), 
EMBASE, and Scopus served as the basis for our literature 
search. The search terms and strategies used for each of the 
databases are listed in Appendix 1. All literature searches 
were performed on August 17, 2018. The search results 

were compiled and saved as a standardized result list for 
further analysis, during the review process, specific topics 
of literature were included. Additional literature from later 
timepoints was included based on feedback from review-
ers. Due to the specific nature of our research topic, no 
time frame filters were applied. Supplemental Fig. 1 is a 
schematic depiction of the enforcement of the inclusion/
exclusion criteria on the search results from the respective 
databases. The end result of the flow chart is the number of 
articles that would undergo a thorough evaluation.

Search terms and strategies used in the literature search
(a) MEDLINE/PubMed

Search Query

#19 Search (#15 OR #18)
#18 Search (#16 AND #17)
#17 Search ((texture analys* [tiab] 

OR radiomic* [tiab]))
#16 Search (“Genomics” [Mesh] OR 

genomic* [tiab] OR “Muta-
tion” [Mesh] OR mutation* 
[tiab] OR “Mutagenesis” 
[Mesh] OR mutagenes* [tiab])

#15 Search radiogenomic* [tiab]

(b) EMBASE

Search Query

#7 5 or 6
#6 radiogenomics.ti,ab.
#5 3 and 4
#4 (texture analys* or radiomic*).

ti,ab.
#3 1 or 2
#2 (genomic* or mutation* or 

mutagenes*).ti,ab.
#1 exp genomics/or exp mutation/

(c) Scopus
(TITLE-ABS-KEY (radiogenomic*)) OR ((TITLE-ABS-

KEY (genomic* OR mutation* OR mutagenes*) AND 
TITLE-ABS-KEY (“texture analys*” OR radiomic*)))
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