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Abstract

Purpose Prediction of immunotherapy response and outcome in patients with non-small cell lung cancer (NSCLC) is chal-
lenging due to intratumoral heterogeneity and lack of robust biomarkers. The aim of this study was to systematically evaluate
the methodological quality of radiomic studies for predicting immunotherapy response or outcome in patients with NSCLC.
Methods We systematically searched for eligible studies in the PubMed and Web of Science datasets up to April 1, 2021.
The methodological quality of included studies was evaluated using the phase classification criteria for image mining stud-
ies and the radiomics quality scoring (RQS) tool. A meta-analysis of studies regarding the prediction of immunotherapy
response and outcome in patients with NSCLC was performed.

Results Fifteen studies were identified with sample sizes ranging from 30 to 228. Seven studies were classified as phase II,
and the remaining as discovery science (n=2), phase 0 (n=4), phase I (n=1), and phase III (n=1). The mean RQS score of
all studies was 29.6%, varying from 0 to 68.1%. The pooled diagnostic odds ratio for predicting immunotherapy response in
NSCLC using radiomics was 14.99 (95% confidence interval [CI] 8.66-25.95). In addition, radiomics could divide patients
into high- and low-risk group with significantly different overall survival (pooled hazard ratio [HR]: 1.96, 95%CI 1.61-2.40,
p <0.001) and progression-free survival (pooled HR: 2.39, 95%CI 1.69-3.38, p <0.001).

Conclusions Radiomics has potential to noninvasively predict immunotherapy response and outcome in patients with NSCLC.
However, it has not yet been implemented as a clinical decision-making tool. Further external validation and evaluation
within clinical pathway can facilitate personalized treatment for patients with NSCLC.
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Introduction

Lung cancer is the most common cancer and remains the
Qiuying Chen and Lu Zhang have contributed equally to this work leading cause of cancer-related death, despite continuous
progresses in the diagnosis and therapy [1]. Non-small cell
lung cancer (NSCLC) accounts for 80-90% of primary lung
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tumor cells by rescuing pre-existing tumor-specific cytotoxic
T cells in the tumor sites and have revolutionized the treat-
ment of NSCLC due to their favorable toxicity profiles and
their ability to produce durable clinical responses [3-5].
Nowadays, immune checkpoint inhibitors (ICIs) targeting
the programmed cell death ligand 1 (PD-1)/programmed cell
death ligand L1 (PD-L1) axis are the standard of care for
treatment of patients with advanced NSCLC without targ-
etable genetic alterations [6-8].

As immunotherapy is costly and may lead to immune-
related toxicity, it is of great importance to accurately iden-
tify the patients who would benefit from immunotherapy.
The percentage of tumor cells expressing PD-L1 is the
routinely used biomarker to select candidates for this addi-
tional therapeutic option [9]. Patients with positive PD-L1
status generally have higher objective response rates [10,
11]. However, the reliability of PD-L1 expression as a
biomarker of treatment response is controversial [12—-14].
Although PD-L1 expression is positively related with the
response to immunotherapy, there are cases of nonrespon-
sive PD-L1—positive tumors and responsive PD-L1-nega-
tive tumors [15]. Additionally, identifying PD-L1 expression
status via immunohistochemical analysis is time-consuming
and cannot reflect dynamic PD-L1 expression. Consequently,
the potential of other biomarkers has been investigated.

The emergence of new technologies and the requirements
of precision medicine prompt a new promising field, that is,
radiomics [16, 17]. Radiomics refers to the comprehensive
quantification of tumor phenotypes on radiographic images
in a high-throughput manner. The primary goal of radiomics
analysis is to develop clinically relevant models that can cap-
ture intratumoral heterogeneity using bioinformatics tools.
Radiomics is particularly attractive since it represents a non-
invasive, repeatable, and cost-effective method of extract-
ing molecular information from medical images. '*F-FDG
PET/CT and CT are widely used for baseline staging and
response evaluation in NSCLC. The medical images can be
analyzed quantitatively with radiomic approach to identify
more tumor characterizations beyond human eyes. Unlike
traditional biopsy-based assays that represent only a local
region of the tumor, images can reflect the entire tumor bur-
den, and thus not subject to sampling bias. This is obvious in
NSCLC treated by immunotherapy, where different lesions
can have distinct microenvironments, potentially result-
ing in heterogeneous response patterns [18]. The radiomic
features contain information that reflects underlying tumor
pathophysiology and allow evaluation of tumor heterogene-
ity [19, 20].

Recently, a growing body of studies have examined the
potential clinical utility of radiomic features derived from
CT or '®F-FDG PET/CT images of NSCLC and correlated
these features with immunotherapy response or outcome.
The purpose of this study was to analyze the current status
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of radiomic studies for predicting immunotherapy response
or outcome in patients with NSCLC via a systematic review
and to evaluate the quality of radiomic studies according
to the phase classification criteria for image mining studies
and the radiomics quality scoring (RQS) tool. In addition,
quantitative analysis was also conducted to assess the perfor-
mance of radiomics in predicting immunotherapy response
and outcome.

Materials and methods

This study was performed according to the Preferred
Reporting Items for Systematic Reviews and Meta-analyses
(PRISMA) statement [21]. The PRISMA checklist is pro-
vided in Supplementary Table 1. The study protocol has
been registered in International prospective register of sys-
tematic reviews (CRD42021246068).

Literature search strategy

A comprehensive literature search for potentially relevant
articles was conducted in PubMed and Web of Science data-
bases from the inception to April 1, 2021. The keywords and
Medical Subject Headings (MeSH) terms were used as fol-
lows: “non-small cell lung cancer,” “lung cancer,” NSCLC,
adenocarcinoma, squamocellular, radiomic, radiomics, tex-
tural, texture, histogram, “magnetic resonance imaging”,
“magnetic resonance”, MRI, MR, “computed tomography,”
CT, “positron emission tomography,” PET, PD-1, PD-L1,
immunotherapy, “immune checkpoint inhibitor,” “immune
checkpoint blockade,” nivolumab, and pembrolizumab.

Study selection

After the removal of the duplicates, two reviewers (FW
and JF) independently performed an initial screening of the
identified titles and abstracts; disagreements were solved by
consensus or a third reviewer (BZ). We included all eligi-
ble studies which evaluated quantitative radiomic features
extracted from CT or '*F-FDG PET/CT scans against immu-
notherapy response or outcome in patients with NSCLC.
Full text was available and articles were written in English.
The criteria for excluding studies were as follows: (a) stud-
ies focused purely on methodological aspects of radiom-
ics; (b) studies in phantom or animal models; and (c) case
reports or small case series (< 10 patients), reviews, poster
presentations, letters, and meeting abstracts. Subsequently,
the reviewers retrieved the full text of the selected titles/
abstracts and performed an independent second-step selec-
tion. Additionally, additional research studies of possible
interest were identified from the reference list of relevant
articles and reviewed for eligibility.
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Data extraction

Two reviewers (QYC and LZ) extracted the information
from each included study: publication year, sample size,
study population, study design, imaging modality, research
question, treatment, software, segmentation, clinical charac-
teristics, imaging features, validation, endpoints, reference
standard, and classifiers. Clinical endpoints of interest were
overall survival (OS) and progression-free survival (PFS),
as well as the power of models to predict immunotherapy
response. OS was defined as the time from cancer immuno-
therapy until death from any cause. PFS was defined as the
time from cancer immunotherapy to progression of disease
or death from any cause. The evaluation of immunotherapy
response was according to the response evaluation criteria
in solid tumors 1.1 (RECIST 1.1) and its modified version.
The comparison of RECIST 1.1 and iRECIST is shown in
Supplementary Table 2.

Quality assessment

Figure 1 shows the workflow of radiomics in NSCLC
treated by immunotherapy. The methodological quality of
the included studies was independently assessed by the two
reviewers (QYC and LZ) using the phase classification cri-
teria for image mining studies [22] and the RQS, which is a
radiomics-specific quality assessment tool [23]. The param-
eters for phase categorization were sample size (< 100 or
>100), study design (retrospective or prospective), type
of validation approach (internal or independent), and the
development stage (pre- or post-marketing) (Supplementary
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Table 3). The phase classification criteria assign image min-
ing studies to the discovery science and phases 0-IV. The
16-component RQS tool evaluates the validity and bias of
the radiomic studies (Supplementary Table 4). Each study
was assigned a number of points per RQS component and
summed to give a total score (range — 8 to +36). A score of
— 8 to 0 points correspond to 0% and 36 points correspond to
100%. Mean scores of the two evaluations are presented as a
percentage. Agreement between the reviewers was assessed
by means of a weighted kappa statistic.

Meta-analysis

Two meta-analyses were performed within the included
studies: (1) a meta-analysis of studies investigating the use
of radiomics to compare immunotherapy outcome (e.g., PFS
and OS) between high- and low-risk group in the validation
datasets, which was measured by pooled hazard ratio (HR)
and 95% confidence interval (CI), and (2) a meta-analysis
of studies investigating the use of radiomics for predicting
immunotherapy response in the validation datasets of the
optimal radiomic model, which was measured by pooled
sensitivity, specificity, positive likelihood ratio (PLR), nega-
tive likelihood ratio (NLR), and diagnostic odds ratio (OR)
and corresponding 95%Cls.

Data of all included studies were independently
extracted by two reviewers (XKM and ZJ); discrep-
ancy was solved by consensus or a third reviewer
(BZ). Studies reported HR and 95%CI directly
or their estimation following the methodology as
described by Parmar et al. [24] were included in
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the first meta-analysis. Only studies, from which a
2 x 2 contingency table could be directly extracted or
reconstructed, were included in the second meta-anal-
ysis. If multiple models were reported in a study, only
the one with the highest area under the curve (AUC)
or Youden’s index was extracted. If multiple vali-
dation datasets of the optimal model were reported,
we extracted the data from each validation dataset.
In case of multiple publications deriving from one
study, only the article with better methodological
quality was included for analysis.

Statistical analysis

Random effects meta-analysis was performed using
the Mantel-Haenszel model. Forest plots were used
for visualization of the results. We used I*> metric to
assess the heterogeneity across studies; an /> value
of 0-25% represents insignificant heterogeneity,
>25-50% low heterogeneity, > 50-75% moderate
heterogeneity, and > 75% high heterogeneity [25].
Two-sided p < 0.05 were considered as statisti-
cally significant. All analyses were performed using
STATA version 12.0 (Stata Corporation, USA) and
Meta-DiSc version 1.4 (https://meta-disc.software.
informer.com/1.4/).

Results
Study selection

Figure 2 shows the PRISMA flowchart of the included
studies of this systematic review and meta-analysis. The
search strategy yielded 42 studies from PubMed and 79
from Web of Science. After exclusion of 38 duplicates, 83
titles/abstracts were screened and 21 eligible studies were
retrieved as full text. Finally, 15 peer-reviewed articles pub-
lished from 2019 to 2021 were included in this systematic
review [19, 26-39]. Ten articles were eventually included in
the meta-analysis, and reasons for exclusion were as follows:
one study [35] only identified patients at risk of hyperpro-
gression and four studies [30, 31, 33, 36] could not extract
or reconstruct data.

Study characteristics

Tables 1 and 2 demonstrate the characteristics of the
included studies. All studies focused on advanced NSCLC
except for three studies [33, 34, 39] that focused on all
stages. All patients received anti-PD-1/PD-L1 therapy with
at least one ICI agent. The most common imaging modality
was contrast-enhanced CT (12 out of 15), followed by '3F-
FDG PET/CT (3 out of 15). There were three, eight, and
four radiomic studies predicting immunotherapy response,
immunotherapy outcome, and both, respectively.

Fig.2 PRISMA flowchart of
included studies
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Quality analysis

The sample size of the included studies ranged from 30 to
228, of which nine (60%) studies enrolled more than 100

Q
é . patients. Thirteen (86.7%) studies were retrospective, only
one study [34] was prospective, and one study [19] was a
S e mix of retrospective training and prospective validation.
%“5 E Notably, two retrospective studies [37, 38] collected data
§ Q é from multicenter clinical trials but retrospectively analyzed.
; §_ s Thirteen (86.7%) studies performed validation analysis, but
k3 ? = only two [27, 30] were externally validated. According to the
% é g) phase classification criteria for image mining studies, seven
2 § 5 (46.7%) studies were classified as phase I, and the remain-
g E‘Jd ing as discovery science (n:?), phase 0 (n=4), phase I
252 (n=1), and phase III (n= 1) (Fig. 3a).
g gng Table 3 shows the single and total RQS scores of all
g £ § included studies evaluated by two reviewers and the mean
- 2 ‘go 3 . RQS score of two evaluations. The mean score of 15 studies
-é 2E g g was 29.6% (range 0-68.1%), and three studies were assigned
§_ éﬁ g 2 £ a quality score of < 10% (Fig. 3b, c). Most studies reported
-‘g ég % % well-documented image acquisition protocols. Four (26.7%)
2 % ‘g ; g studies acquired images from the same machine, whereas
& |2 eight (53.3%) studies obtained images from different scan-

ners. Five (33.3%) studies detected inter-scanner differences
and vendor-dependent features to ensure generalizability of
the derived predictive models. All studies except for one
[19] acquired images from baseline scans, four [27, 36, 38,
39] of which conducted imaging at additional time points
during follow-up. Nine (60%) studies used manual segmen-
tation, three (20%) used semiautomatic segmentation, one
(6.7%) used automatic segmentation, and two (13.3%) used
two segmentation methods. Feature dimension reduction
or adjustment was performed in 11 (73.3%) studies. Five
(33.3%) studies [19, 27, 34, 37, 39] added clinical features
to the radiomic models and three of which suggested that
integration of the clinical data and radiomic features could
improve the predictive performance of the models. The
clinical characteristics included gender, smoking, histol-
ogy, Eastern Cooperative Oncology Group (ECOG) scale
of performance status, metastasis, previous lines of systemic
therapies, and blood tests. The correlation between tumor
biology and radiomic features were detected and discussed
in six (40%) studies. Most studies performed cutoff analysis
to stratify patients into low- and high-risk groups. For model
assessment, discrimination statistics were usually provided,
whereas calibration statistics were less mentioned. Valida-
tion of radiomics signatures was performed in 13 (86.7%)
studies and two (13.3%) employed external datasets from
other institutes. However, only one study [19] prospectively
validated radiomic biomarker. Regarding the clinical util-
ity, most studies compared their models with gold stand-
ard. Only three studies [19, 26, 39] evaluated whether their
models were ready for clinical practice by decision curve

Retrospective CE-CT X2 baseline, follow-up

Study design Imaging modality

NSCLC

Sample size Population
197

Ref reference, NSCLC non-small cell lung cancer, CT computed tomography, CE-CT contrast-enhanced CT, PET positron emission tomography, DelRADx delta radiomics analysis, /CI immune

checkpoint inhibitor, TMB tumor mutational burden

Table 1 (continued)
Study ID (Refs.)

Liu [39]

(5
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Fig.3 a Histogram of the phase a

of all studies according to the 8
phase classification criteria for
image mining studies; b bar

chart of the mean score of each
study according to the radiom-
ics quality scoring tool; and ¢ 5
pie chart of the mean score of

studies according to the radiom-
ics quality scoring tool
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analysis, but none performed cost-effectiveness analysis. In
terms of open science and data, one study [27] obtained radi-
omic features on a set of representative regions of interest
(ROISs), and the calculated features as well as representative
ROIs were open access.

Table 4 shows the inter-observer agreement of RQS
domains between two reviewers. The inter-reviewer reli-
ability of five domains was strong to very strong (weighted
kappa coefficient ranges from 0.60 to 1.00) but moderate
in the “open science and data” (weighted kappa coeffi-
cient=0.595). The RQS scores on the remaining domains
were completely consistent between the two reviewers.

The value of radiomics in predicting
immunotherapy response/outcome

The patients could be stratified into low- and high-risk
groups by radiomic models.

The first meta-analysis of comparing the immunotherapy
outcome between the two groups showed that the pooled HR
was 1.96 (95%CI 1.61-2.40, p <0.001) for OS (five studies,
n=>562; Fig. 4a) and 2.39 (95%CI 1.69-3.38, p <0.001) for
PFS (five studies, n=520; Fig. 4b). The P statistic implied
low heterogeneity among the studies (I*=42.8% and 47.7%
for OS and PFS, respectively). The second meta-analysis
involving four radiomic studies (n=392) for predicting the
response to immunotherapy achieved a pooled diagnostic
OR of 14.99 (95%CI 8.66-25.95) (Fig. 5). The sensitiv-
ity ranged from 63 to 89% and specificity ranged from 53

to 89%. The pooled sensitivity and specificity were 76%
(95%CI 68-83%) and 84% (95%CI1 79-89%), respectively
(Supplementary Fig. la, b). The pooled PLR and NLR
were 3.63 (95%CI 2.18-6.04) and 0.29 (95%CI 0.20-0.44),
respectively (Supplementary Fig. lc, d). The I? statistic
results indicated low heterogeneity in the diagnostic OR
(?=0%) and NLR (I =27.0%), but moderate heterogene-
ity in the sensitivity (> =55.0%), specificity (I>=71.1%),
and PLR (I>=57.8%).

Discussion

This present systematic review and meta-analysis explored
whether radiomics could predict the immunotherapy
response/outcome in patients with NSCLC and evaluated
the quality of included studies using the phase classifica-
tion criteria for image mining studies and the RQS tool. In
addition, our meta-analysis, for the first time, combined and
interpreted distinct independent investigatory data quanti-
tatively and might provide key clues for its clinical applica-
tion and further research. Despite promising results, these
radiomic studies were far from providing definitive conclu-
sions for clinical implementation and widespread use due to
immature phases and relatively poor methodological quality.

The translation of image mining research in the clini-
cal arena is limited by the huge variability of the meth-
ods used for image analysis together with the impasse to
reproduce the results when tested in a different cohort

Table 4 The inter-observer

oo RQS domains Weighted kappa* 95%CI p value

agreement of the radiomics

quality score tool Image protocol quality NA NA NA
Multiple segmentations NA NA NA
Phantom study on all scanners NA NA NA
Imaging at multiple time points NA NA NA
Feature reduction or adjustment for multiple testing NA NA NA
Multivariable analysis with non-radiomic features 0.867 (0.127) 0.618-1.116 0.001
Detect and discuss biological correlates 0.706 (0.185) 0.343-1.069 0.004
Ct-off analyses 0.842 (0.151) 0.546-1.138 0.001
Discrimination statistics 0.898 (0.098) 0.706-1.090 <0.001
Calibration statistics 0.762 (0.223) 0.325-1.199 0.002
Prospective study registered in a trial database NA NA NA
Validation NA NA NA
Comparison to gold standard NA NA NA
Potential clinical utility NA NA NA
Cost-effectiveness analysis NA NA NA
Open science and data 0.595 (0.244) 0.117-1.073 0.012

NA, not applicable

“The value of the weighted kappa ranges from — 1.0 to 1.0, and values can be roughly interpreted as poor
(<0.20), fair (0.21-0.40), moderate (0.41-0.60), strong (0.61-0.80), and very strong (0.81-1.00). If all rat-
ings are the same for the two reviewers, the weighted kappa value cannot be calculated

@ Springer
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Fig.4 Forest plots of the predictive performance of radiomics in a
overall survival and b progression-free survival of NSCLC patients
treated with immunotherapy. Note: Hazard ratio for each study is pre-

of patients [22]. Researchers should assess whether the
model is predictive for the target patient population or just
for a specific subset of samples. Validation techniques are
useful tools to assess model performance; valid models
should exhibit statistical consistency between the train-
ing and validation datasets. Therefore, internal validation
(e.g., cross-validation and bootstrapping) and external
validation (e.g., temporal and geographic) are beneficial
to be performed. Typically, the internal validation, used
for a preliminary evaluation or for the fine-tuning of the

sented as a black dot, with the horizontal line indicating the 95% con-
fidence interval. Pooled result for all studies is presented as a black
diamond

model under development, overestimates the performance
[40]. An externally validated model is more reliable than
an internally validated model because data obtained from
other institutions are considered more independent, which
reinforces the validation. External validation is crucial to
verify the generalizability of the models [40]; and the
random patient selection is an essential prerequisite, as
well as the balance in patient characteristics. In particular,
the geographic validation, which accounts for technical
variability aspects (scanners, acquisition parameters, and
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0.01 1
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100.0

Fig.5 Forest plot of the effect size calculated as diagnostic odds
ratio for studies investigating the diagnostic accuracy of radiomics
in immunotherapy response prediction in NSCLC patients. Abbre-
viations: TP, number of good responders correctly diagnosed; FN,
number of good responders diagnosed as poor; FP, number of poor

protocols) [40], is expected to be more representative of
the clinical setting. However, two studies [31, 34] included
in this systematic review were classified as discovery sci-
ence due to lack of validation analysis. For example, one
prospective study [34] with 228 patients only demon-
strated the potential utility of radiomics to predict rapid
disease progression phenotypes, with the highest AUC of
0.87; these results need to be replicated in the independent
validation cohorts. Additionally, only two studies [27, 30]
performed external validation from another center. Con-
sequently, the results are promising but still not mature
enough for clinical application and widely used as nonin-
vasive image mining tools.

In the era of evidence-based medicine, rigorous research
with strict rules is the only way forward to achieve clinical
acceptance. The lack of a rigorous procedure largely leads
to low RQS scores of the radiomic studies. Two studies [30,
31] only explored the relationship of radiomic features with
immunotherapy response in NSCLC, without establishing
a simple model to facilitate clinical application. There are
only several studies [19, 26, 27, 34, 39] that have analyzed
feature robustness considering differences across machines
or temporal variability. The RQS scores were low in the
domains of prospective study, potential clinical utility, cost-
effectiveness analysis, and open science. Only Mu et al. [19]
obtained a mean RQS score above 50%. Recently, several
guidelines have been proposed to encourage description of
radiomic workflows in detail and to provide suggestions for
the construction of prediction models [41—43]. These guide-
lines may help improve the quality of radiomic works and
accelerate their clinical applications. However, as radiomics
is a work-in-progress field and is developing constantly, the

@ Springer

Cochran-Q =1.96; df = 4 (p = 0.7430)
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responders diagnosed as good; TN, number of poor responders cor-
rectly diagnosed. Note Diagnostic odds ratio for each study is pre-
sented as a black dot, with the horizontal line indicating the 95% con-
fidence interval. Pooled result for all studies is presented as a black
diamond

RQS tool may need modification to be a widely accepted
tool for radiological research methodologies [44, 45].

Controversy remains regarding the best time point of
imaging for decision-making and clinical management.
There were 10 (66.7%) studies that obtained radiomic fea-
tures from images at baseline, and only four studies [27, 36,
38, 39] explored the predictive value of radiomic features
deriving from pre- and post-treatment scans. Valentinuzzi
et al. [36] found that some features showed high predictive
value at baseline but significantly decreased at months 1 and
4 after treatment. Some studies [13, 46, 47] suggested that
tumor characteristics, such as histopathology, microenviron-
ment, and immune contexture, may affect the response to
immunotherapy. The changes in radiomic features might be
associated with treatment response in solid tumors. Longitu-
dinal features deriving from images at multiple time points
can provide complementary information and improve pre-
diction performance. Thus, analyzing features from images
at different time points (pre-, during, and post-treatment) is
useful to illuminate temporal variabilities of radiomic fea-
tures and to increase the potential of radiomics in NSCLC
treatment decision.

There are some limitations in this study. First, the het-
erogeneity of the studies included in this meta-analysis
should be mentioned. The included studies differed in
terms of the methodology of the used image reconstruc-
tion, feature extraction, and the algorithms used. Second,
due to the limited studies included, subgroup analysis was
not performed to investigate the influence of various condi-
tions on radiomic findings. Further reviews including more
studies with increased sample size are needed to address the
issue. Finally, although RQS is a useful tool for the quality
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assessment of radiomic studies, it has limitations. Radiomics
is a young field and RQS is inevitably immature. It is neces-
sary to improve RQS items in response to actual practical
needs.

Conclusions

In summary, the radiomic approach shows potential for
the prediction of immunotherapy response and outcome in
patients with NSCLC. However, the immature phases and
unsatisfactory quality of the studies imply that the proposed
models are not currently available for clinical implementa-
tion. Before radiomics can be successfully introduced into
NSCLC clinical settings, further prospective studies with
strict adherence to existing guidelines and multicenter vali-
dation need to be performed. Additionally, some technical
barriers should be faced when considering implementing
image mining tools into the everyday practice. Persistent
efforts are required to make this tool to be widely used in
clinical practice.
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