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Abstract
Purpose Prediction of immunotherapy response and outcome in patients with non-small cell lung cancer (NSCLC) is chal-
lenging due to intratumoral heterogeneity and lack of robust biomarkers. The aim of this study was to systematically evaluate 
the methodological quality of radiomic studies for predicting immunotherapy response or outcome in patients with NSCLC.
Methods We systematically searched for eligible studies in the PubMed and Web of Science datasets up to April 1, 2021. 
The methodological quality of included studies was evaluated using the phase classification criteria for image mining stud-
ies and the radiomics quality scoring (RQS) tool. A meta-analysis of studies regarding the prediction of immunotherapy 
response and outcome in patients with NSCLC was performed.
Results Fifteen studies were identified with sample sizes ranging from 30 to 228. Seven studies were classified as phase II, 
and the remaining as discovery science (n = 2), phase 0 (n = 4), phase I (n = 1), and phase III (n = 1). The mean RQS score of 
all studies was 29.6%, varying from 0 to 68.1%. The pooled diagnostic odds ratio for predicting immunotherapy response in 
NSCLC using radiomics was 14.99 (95% confidence interval [CI] 8.66–25.95). In addition, radiomics could divide patients 
into high- and low-risk group with significantly different overall survival (pooled hazard ratio [HR]: 1.96, 95%CI 1.61–2.40, 
p < 0.001) and progression-free survival (pooled HR: 2.39, 95%CI 1.69–3.38, p < 0.001).
Conclusions Radiomics has potential to noninvasively predict immunotherapy response and outcome in patients with NSCLC. 
However, it has not yet been implemented as a clinical decision-making tool. Further external validation and evaluation 
within clinical pathway can facilitate personalized treatment for patients with NSCLC.

Keywords NSCLC · Radiomics · Immunotherapy · Radiomics quality scoring · Systematic review

Introduction

Lung cancer is the most common cancer and remains the 
leading cause of cancer-related death, despite continuous 
progresses in the diagnosis and therapy [1]. Non-small cell 
lung cancer (NSCLC) accounts for 80–90% of primary lung 
cancers [1], and around 50% of patients are diagnosed at an 
advanced stage (stage III or IV), with 5-year survival rate 
of only 18% [2].

In recent years, immune checkpoint therapy has been 
a research hotspot in the field of cancer since the increas-
ing understanding of the mechanisms of immune evasion 
by cancer cells [2]. Susceptibilities in immune checkpoint 
pathways allow tumor cells to escape immune surveillance, 
causing tumor propagation. Monoclonal antibodies target-
ing these pathways reinvigorate the host immunity against 
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tumor cells by rescuing pre-existing tumor-specific cytotoxic 
T cells in the tumor sites and have revolutionized the treat-
ment of NSCLC due to their favorable toxicity profiles and 
their ability to produce durable clinical responses [3–5]. 
Nowadays, immune checkpoint inhibitors (ICIs) targeting 
the programmed cell death ligand 1 (PD-1)/programmed cell 
death ligand L1 (PD-L1) axis are the standard of care for 
treatment of patients with advanced NSCLC without targ-
etable genetic alterations [6–8].

As immunotherapy is costly and may lead to immune-
related toxicity, it is of great importance to accurately iden-
tify the patients who would benefit from immunotherapy. 
The percentage of tumor cells expressing PD-L1 is the 
routinely used biomarker to select candidates for this addi-
tional therapeutic option [9]. Patients with positive PD-L1 
status generally have higher objective response rates [10, 
11]. However, the reliability of PD-L1 expression as a 
biomarker of treatment response is controversial [12–14]. 
Although PD-L1 expression is positively related with the 
response to immunotherapy, there are cases of nonrespon-
sive PD-L1–positive tumors and responsive PD-L1–nega-
tive tumors [15]. Additionally, identifying PD-L1 expression 
status via immunohistochemical analysis is time-consuming 
and cannot reflect dynamic PD-L1 expression. Consequently, 
the potential of other biomarkers has been investigated.

The emergence of new technologies and the requirements 
of precision medicine prompt a new promising field, that is, 
radiomics [16, 17]. Radiomics refers to the comprehensive 
quantification of tumor phenotypes on radiographic images 
in a high-throughput manner. The primary goal of radiomics 
analysis is to develop clinically relevant models that can cap-
ture intratumoral heterogeneity using bioinformatics tools. 
Radiomics is particularly attractive since it represents a non-
invasive, repeatable, and cost-effective method of extract-
ing molecular information from medical images. 18F-FDG 
PET/CT and CT are widely used for baseline staging and 
response evaluation in NSCLC. The medical images can be 
analyzed quantitatively with radiomic approach to identify 
more tumor characterizations beyond human eyes. Unlike 
traditional biopsy-based assays that represent only a local 
region of the tumor, images can reflect the entire tumor bur-
den, and thus not subject to sampling bias. This is obvious in 
NSCLC treated by immunotherapy, where different lesions 
can have distinct microenvironments, potentially result-
ing in heterogeneous response patterns [18]. The radiomic 
features contain information that reflects underlying tumor 
pathophysiology and allow evaluation of tumor heterogene-
ity [19, 20].

Recently, a growing body of studies have examined the 
potential clinical utility of radiomic features derived from 
CT or 18F-FDG PET/CT images of NSCLC and correlated 
these features with immunotherapy response or outcome. 
The purpose of this study was to analyze the current status 

of radiomic studies for predicting immunotherapy response 
or outcome in patients with NSCLC via a systematic review 
and to evaluate the quality of radiomic studies according 
to the phase classification criteria for image mining studies 
and the radiomics quality scoring (RQS) tool. In addition, 
quantitative analysis was also conducted to assess the perfor-
mance of radiomics in predicting immunotherapy response 
and outcome.

Materials and methods

This study was performed according to the Preferred 
Reporting Items for Systematic Reviews and Meta-analyses 
(PRISMA) statement [21]. The PRISMA checklist is pro-
vided in Supplementary Table 1. The study protocol has 
been registered in International prospective register of sys-
tematic reviews (CRD42021246068).

Literature search strategy

A comprehensive literature search for potentially relevant 
articles was conducted in PubMed and Web of Science data-
bases from the inception to April 1, 2021. The keywords and 
Medical Subject Headings (MeSH) terms were used as fol-
lows: “non-small cell lung cancer,” “lung cancer,” NSCLC, 
adenocarcinoma, squamocellular, radiomic, radiomics, tex-
tural, texture, histogram, “magnetic resonance imaging”, 
“magnetic resonance”, MRI, MR, “computed tomography,” 
CT, “positron emission tomography,” PET, PD-1, PD-L1, 
immunotherapy, “immune checkpoint inhibitor,” “immune 
checkpoint blockade,” nivolumab, and pembrolizumab.

Study selection

After the removal of the duplicates, two reviewers (FW 
and JF) independently performed an initial screening of the 
identified titles and abstracts; disagreements were solved by 
consensus or a third reviewer (BZ). We included all eligi-
ble studies which evaluated quantitative radiomic features 
extracted from CT or 18F-FDG PET/CT scans against immu-
notherapy response or outcome in patients with NSCLC. 
Full text was available and articles were written in English. 
The criteria for excluding studies were as follows: (a) stud-
ies focused purely on methodological aspects of radiom-
ics; (b) studies in phantom or animal models; and (c) case 
reports or small case series (≤ 10 patients), reviews, poster 
presentations, letters, and meeting abstracts. Subsequently, 
the reviewers retrieved the full text of the selected titles/
abstracts and performed an independent second-step selec-
tion. Additionally, additional research studies of possible 
interest were identified from the reference list of relevant 
articles and reviewed for eligibility.
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Data extraction

Two reviewers (QYC and LZ) extracted the information 
from each included study: publication year, sample size, 
study population, study design, imaging modality, research 
question, treatment, software, segmentation, clinical charac-
teristics, imaging features, validation, endpoints, reference 
standard, and classifiers. Clinical endpoints of interest were 
overall survival (OS) and progression-free survival (PFS), 
as well as the power of models to predict immunotherapy 
response. OS was defined as the time from cancer immuno-
therapy until death from any cause. PFS was defined as the 
time from cancer immunotherapy to progression of disease 
or death from any cause. The evaluation of immunotherapy 
response was according to the response evaluation criteria 
in solid tumors 1.1 (RECIST 1.1) and its modified version. 
The comparison of RECIST 1.1 and iRECIST is shown in 
Supplementary Table 2.

Quality assessment

Figure  1 shows the workflow of radiomics in NSCLC 
treated by immunotherapy. The methodological quality of 
the included studies was independently assessed by the two 
reviewers (QYC and LZ) using the phase classification cri-
teria for image mining studies [22] and the RQS, which is a 
radiomics-specific quality assessment tool [23]. The param-
eters for phase categorization were sample size (< 100 or 
> 100), study design (retrospective or prospective), type 
of validation approach (internal or independent), and the 
development stage (pre- or post-marketing) (Supplementary 

Table 3). The phase classification criteria assign image min-
ing studies to the discovery science and phases 0–IV. The 
16-component RQS tool evaluates the validity and bias of 
the radiomic studies (Supplementary Table 4). Each study 
was assigned a number of points per RQS component and 
summed to give a total score (range − 8 to + 36). A score of 
− 8 to 0 points correspond to 0% and 36 points correspond to 
100%. Mean scores of the two evaluations are presented as a 
percentage. Agreement between the reviewers was assessed 
by means of a weighted kappa statistic.

Meta‑analysis

Two meta-analyses were performed within the included 
studies: (1) a meta-analysis of studies investigating the use 
of radiomics to compare immunotherapy outcome (e.g., PFS 
and OS) between high- and low-risk group in the validation 
datasets, which was measured by pooled hazard ratio (HR) 
and 95% confidence interval (CI), and (2) a meta-analysis 
of studies investigating the use of radiomics for predicting 
immunotherapy response in the validation datasets of the 
optimal radiomic model, which was measured by pooled 
sensitivity, specificity, positive likelihood ratio (PLR), nega-
tive likelihood ratio (NLR), and diagnostic odds ratio (OR) 
and corresponding 95%CIs.

Data of all included studies were independently 
extracted by two reviewers (XKM and ZJ); discrep-
ancy was solved by consensus or a third reviewer 
(BZ).  Studies repor ted HR and 95%CI direct ly 
or their estimation following the methodology as 
descr ibed by Parmar et  al.  [24] were included in 

Fig. 1  Workflow of radiomics in NSCLC treated with immunotherapy
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the first meta-analysis. Only studies, from which a 
2 × 2 contingency table could be directly extracted or 
reconstructed, were included in the second meta-anal-
ysis. If multiple models were reported in a study, only 
the one with the highest area under the curve (AUC) 
or Youden’s index was extracted. If multiple vali-
dation datasets of the optimal model were reported, 
we extracted the data from each validation dataset. 
In case of multiple publications deriving from one 
study, only the ar ticle with better methodological 
quality was included for analysis.

Statistical analysis

Random effects meta-analysis was performed using 
the Mantel–Haenszel model. Forest plots were used 
for visualization of the results. We used I2 metric to 
assess the heterogeneity across studies; an I2 value 
of 0–25% represents insignif icant heterogeneity, 
> 25–50% low heterogeneity, > 50–75% moderate 
heterogeneity, and > 75% high heterogeneity [25]. 
Two-sided p  < 0.05 were considered as stat ist i-
cally significant. All analyses were performed using 
STATA version 12.0 (Stata Corporation, USA) and 
Meta-DiSc version 1.4 (https:// meta- disc. softw are. 
infor mer. com/1. 4/).

Results

Study selection

Figure 2 shows the PRISMA flowchart of the included 
studies of this systematic review and meta-analysis. The 
search strategy yielded 42 studies from PubMed and 79 
from Web of Science. After exclusion of 38 duplicates, 83 
titles/abstracts were screened and 21 eligible studies were 
retrieved as full text. Finally, 15 peer-reviewed articles pub-
lished from 2019 to 2021 were included in this systematic 
review [19, 26–39]. Ten articles were eventually included in 
the meta-analysis, and reasons for exclusion were as follows: 
one study [35] only identified patients at risk of hyperpro-
gression and four studies [30, 31, 33, 36] could not extract 
or reconstruct data.

Study characteristics

Tables  1 and 2 demonstrate the characteristics of the 
included studies. All studies focused on advanced NSCLC 
except for three studies [33, 34, 39] that focused on all 
stages. All patients received anti-PD-1/PD-L1 therapy with 
at least one ICI agent. The most common imaging modality 
was contrast-enhanced CT (12 out of 15), followed by 18F-
FDG PET/CT (3 out of 15). There were three, eight, and 
four radiomic studies predicting immunotherapy response, 
immunotherapy outcome, and both, respectively.

Fig. 2  PRISMA flowchart of 
included studies
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Quality analysis

The sample size of the included studies ranged from 30 to 
228, of which nine (60%) studies enrolled more than 100 
patients. Thirteen (86.7%) studies were retrospective, only 
one study [34] was prospective, and one study [19] was a 
mix of retrospective training and prospective validation. 
Notably, two retrospective studies [37, 38] collected data 
from multicenter clinical trials but retrospectively analyzed. 
Thirteen (86.7%) studies performed validation analysis, but 
only two [27, 30] were externally validated. According to the 
phase classification criteria for image mining studies, seven 
(46.7%) studies were classified as phase II, and the remain-
ing as discovery science (n = 2), phase 0 (n = 4), phase I 
(n = 1), and phase III (n = 1) (Fig. 3a).

Table 3 shows the single and total RQS scores of all 
included studies evaluated by two reviewers and the mean 
RQS score of two evaluations. The mean score of 15 studies 
was 29.6% (range 0–68.1%), and three studies were assigned 
a quality score of < 10% (Fig. 3b, c). Most studies reported 
well-documented image acquisition protocols. Four (26.7%) 
studies acquired images from the same machine, whereas 
eight (53.3%) studies obtained images from different scan-
ners. Five (33.3%) studies detected inter-scanner differences 
and vendor-dependent features to ensure generalizability of 
the derived predictive models. All studies except for one 
[19] acquired images from baseline scans, four [27, 36, 38, 
39] of which conducted imaging at additional time points 
during follow-up. Nine (60%) studies used manual segmen-
tation, three (20%) used semiautomatic segmentation, one 
(6.7%) used automatic segmentation, and two (13.3%) used 
two segmentation methods. Feature dimension reduction 
or adjustment was performed in 11 (73.3%) studies. Five 
(33.3%) studies [19, 27, 34, 37, 39] added clinical features 
to the radiomic models and three of which suggested that 
integration of the clinical data and radiomic features could 
improve the predictive performance of the models. The 
clinical characteristics included gender, smoking, histol-
ogy, Eastern Cooperative Oncology Group (ECOG) scale 
of performance status, metastasis, previous lines of systemic 
therapies, and blood tests. The correlation between tumor 
biology and radiomic features were detected and discussed 
in six (40%) studies. Most studies performed cutoff analysis 
to stratify patients into low- and high-risk groups. For model 
assessment, discrimination statistics were usually provided, 
whereas calibration statistics were less mentioned. Valida-
tion of radiomics signatures was performed in 13 (86.7%) 
studies and two (13.3%) employed external datasets from 
other institutes. However, only one study [19] prospectively 
validated radiomic biomarker. Regarding the clinical util-
ity, most studies compared their models with gold stand-
ard. Only three studies [19, 26, 39] evaluated whether their 
models were ready for clinical practice by decision curve Re
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1 3

Fig. 3  a Histogram of the phase 
of all studies according to the 
phase classification criteria for 
image mining studies; b bar 
chart of the mean score of each 
study according to the radiom-
ics quality scoring tool; and c 
pie chart of the mean score of 
studies according to the radiom-
ics quality scoring tool
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analysis, but none performed cost-effectiveness analysis. In 
terms of open science and data, one study [27] obtained radi-
omic features on a set of representative regions of interest 
(ROIs), and the calculated features as well as representative 
ROIs were open access.

Table 4 shows the inter-observer agreement of RQS 
domains between two reviewers. The inter-reviewer reli-
ability of five domains was strong to very strong (weighted 
kappa coefficient ranges from 0.60 to 1.00) but moderate 
in the “open science and data” (weighted kappa coeffi-
cient = 0.595). The RQS scores on the remaining domains 
were completely consistent between the two reviewers.

The value of radiomics in predicting 
immunotherapy response/outcome

The patients could be stratified into low- and high-risk 
groups by radiomic models.

The first meta-analysis of comparing the immunotherapy 
outcome between the two groups showed that the pooled HR 
was 1.96 (95%CI 1.61–2.40, p < 0.001) for OS (five studies, 
n = 562; Fig. 4a) and 2.39 (95%CI 1.69–3.38, p < 0.001) for 
PFS (five studies, n = 520; Fig. 4b). The I2 statistic implied 
low heterogeneity among the studies (I2 = 42.8% and 47.7% 
for OS and PFS, respectively). The second meta-analysis 
involving four radiomic studies (n = 392) for predicting the 
response to immunotherapy achieved a pooled diagnostic 
OR of 14.99 (95%CI 8.66–25.95) (Fig. 5). The sensitiv-
ity ranged from 63 to 89% and specificity ranged from 53 

to 89%. The pooled sensitivity and specificity were 76% 
(95%CI 68–83%) and 84% (95%CI 79–89%), respectively 
(Supplementary Fig. 1a, b). The pooled PLR and NLR 
were 3.63 (95%CI 2.18–6.04) and 0.29 (95%CI 0.20–0.44), 
respectively (Supplementary Fig. 1c, d). The I2 statistic 
results indicated low heterogeneity in the diagnostic OR 
(I2 = 0%) and NLR (I2 = 27.0%), but moderate heterogene-
ity in the sensitivity (I2 = 55.0%), specificity (I2 = 71.1%), 
and PLR (I2 = 57.8%).

Discussion

This present systematic review and meta-analysis explored 
whether radiomics could predict the immunotherapy 
response/outcome in patients with NSCLC and evaluated 
the quality of included studies using the phase classifica-
tion criteria for image mining studies and the RQS tool. In 
addition, our meta-analysis, for the first time, combined and 
interpreted distinct independent investigatory data quanti-
tatively and might provide key clues for its clinical applica-
tion and further research. Despite promising results, these 
radiomic studies were far from providing definitive conclu-
sions for clinical implementation and widespread use due to 
immature phases and relatively poor methodological quality.

The translation of image mining research in the clini-
cal arena is limited by the huge variability of the meth-
ods used for image analysis together with the impasse to 
reproduce the results when tested in a different cohort 

Table 4  The inter-observer 
agreement of the radiomics 
quality score tool

NA, not applicable
* The value of the weighted kappa ranges from − 1.0 to 1.0, and values can be roughly interpreted as poor 
(< 0.20), fair (0.21–0.40), moderate (0.41–0.60), strong (0.61–0.80), and very strong (0.81–1.00). If all rat-
ings are the same for the two reviewers, the weighted kappa value cannot be calculated

RQS domains Weighted kappa* 95%CI p value

Image protocol quality NA NA NA
Multiple segmentations NA NA NA
Phantom study on all scanners NA NA NA
Imaging at multiple time points NA NA NA
Feature reduction or adjustment for multiple testing NA NA NA
Multivariable analysis with non-radiomic features 0.867 (0.127) 0.618–1.116 0.001
Detect and discuss biological correlates 0.706 (0.185) 0.343–1.069 0.004
Ct-off analyses 0.842 (0.151) 0.546–1.138 0.001
Discrimination statistics 0.898 (0.098) 0.706–1.090 < 0.001
Calibration statistics 0.762 (0.223) 0.325–1.199 0.002
Prospective study registered in a trial database NA NA NA
Validation NA NA NA
Comparison to gold standard NA NA NA
Potential clinical utility NA NA NA
Cost-effectiveness analysis NA NA NA
Open science and data 0.595 (0.244) 0.117–1.073 0.012
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of patients [22]. Researchers should assess whether the 
model is predictive for the target patient population or just 
for a specific subset of samples. Validation techniques are 
useful tools to assess model performance; valid models 
should exhibit statistical consistency between the train-
ing and validation datasets. Therefore, internal validation 
(e.g., cross-validation and bootstrapping) and external 
validation (e.g., temporal and geographic) are beneficial 
to be performed. Typically, the internal validation, used 
for a preliminary evaluation or for the fine-tuning of the 

model under development, overestimates the performance 
[40]. An externally validated model is more reliable than 
an internally validated model because data obtained from 
other institutions are considered more independent, which 
reinforces the validation. External validation is crucial to 
verify the generalizability of the models [40]; and the 
random patient selection is an essential prerequisite, as 
well as the balance in patient characteristics. In particular, 
the geographic validation, which accounts for technical 
variability aspects (scanners, acquisition parameters, and 

Fig. 4  Forest plots of the predictive performance of radiomics in a 
overall survival and b progression-free survival of NSCLC patients 
treated with immunotherapy. Note: Hazard ratio for each study is pre-

sented as a black dot, with the horizontal line indicating the 95% con-
fidence interval. Pooled result for all studies is presented as a black 
diamond
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protocols) [40], is expected to be more representative of 
the clinical setting. However, two studies [31, 34] included 
in this systematic review were classified as discovery sci-
ence due to lack of validation analysis. For example, one 
prospective study [34] with 228 patients only demon-
strated the potential utility of radiomics to predict rapid 
disease progression phenotypes, with the highest AUC of 
0.87; these results need to be replicated in the independent 
validation cohorts. Additionally, only two studies [27, 30] 
performed external validation from another center. Con-
sequently, the results are promising but still not mature 
enough for clinical application and widely used as nonin-
vasive image mining tools.

In the era of evidence-based medicine, rigorous research 
with strict rules is the only way forward to achieve clinical 
acceptance. The lack of a rigorous procedure largely leads 
to low RQS scores of the radiomic studies. Two studies [30, 
31] only explored the relationship of radiomic features with 
immunotherapy response in NSCLC, without establishing 
a simple model to facilitate clinical application. There are 
only several studies [19, 26, 27, 34, 39] that have analyzed 
feature robustness considering differences across machines 
or temporal variability. The RQS scores were low in the 
domains of prospective study, potential clinical utility, cost-
effectiveness analysis, and open science. Only Mu et al. [19] 
obtained a mean RQS score above 50%. Recently, several 
guidelines have been proposed to encourage description of 
radiomic workflows in detail and to provide suggestions for 
the construction of prediction models [41–43]. These guide-
lines may help improve the quality of radiomic works and 
accelerate their clinical applications. However, as radiomics 
is a work-in-progress field and is developing constantly, the 

RQS tool may need modification to be a widely accepted 
tool for radiological research methodologies [44, 45].

Controversy remains regarding the best time point of 
imaging for decision-making and clinical management. 
There were 10 (66.7%) studies that obtained radiomic fea-
tures from images at baseline, and only four studies [27, 36, 
38, 39] explored the predictive value of radiomic features 
deriving from pre- and post-treatment scans. Valentinuzzi 
et al. [36] found that some features showed high predictive 
value at baseline but significantly decreased at months 1 and 
4 after treatment. Some studies [13, 46, 47] suggested that 
tumor characteristics, such as histopathology, microenviron-
ment, and immune contexture, may affect the response to 
immunotherapy. The changes in radiomic features might be 
associated with treatment response in solid tumors. Longitu-
dinal features deriving from images at multiple time points 
can provide complementary information and improve pre-
diction performance. Thus, analyzing features from images 
at different time points (pre-, during, and post-treatment) is 
useful to illuminate temporal variabilities of radiomic fea-
tures and to increase the potential of radiomics in NSCLC 
treatment decision.

There are some limitations in this study. First, the het-
erogeneity of the studies included in this meta-analysis 
should be mentioned. The included studies differed in 
terms of the methodology of the used image reconstruc-
tion, feature extraction, and the algorithms used. Second, 
due to the limited studies included, subgroup analysis was 
not performed to investigate the influence of various condi-
tions on radiomic findings. Further reviews including more 
studies with increased sample size are needed to address the 
issue. Finally, although RQS is a useful tool for the quality 

Fig. 5  Forest plot of the effect size calculated as diagnostic odds 
ratio for studies investigating the diagnostic accuracy of radiomics 
in immunotherapy response prediction in NSCLC patients. Abbre-
viations: TP, number of good responders correctly diagnosed; FN, 
number of good responders diagnosed as poor; FP, number of poor 

responders diagnosed as good; TN, number of poor responders cor-
rectly diagnosed. Note Diagnostic odds ratio for each study is pre-
sented as a black dot, with the horizontal line indicating the 95% con-
fidence interval. Pooled result for all studies is presented as a black 
diamond
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assessment of radiomic studies, it has limitations. Radiomics 
is a young field and RQS is inevitably immature. It is neces-
sary to improve RQS items in response to actual practical 
needs.

Conclusions

In summary, the radiomic approach shows potential for 
the prediction of immunotherapy response and outcome in 
patients with NSCLC. However, the immature phases and 
unsatisfactory quality of the studies imply that the proposed 
models are not currently available for clinical implementa-
tion. Before radiomics can be successfully introduced into 
NSCLC clinical settings, further prospective studies with 
strict adherence to existing guidelines and multicenter vali-
dation need to be performed. Additionally, some technical 
barriers should be faced when considering implementing 
image mining tools into the everyday practice. Persistent 
efforts are required to make this tool to be widely used in 
clinical practice.
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