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Abstract
Purpose This study aimed to investigate the deep learning model (DLM) combining computed tomography (CT) images and
clinicopathological information for predicting anaplastic lymphoma kinase (ALK) fusion status in non-small cell lung cancer
(NSCLC) patients.
Materials and methods Preoperative CT images, clinicopathological information as well as the ALK fusion status from 937
patients in three hospitals were retrospectively collected to train and validate the DLM for the prediction of ALK fusion status in
tumors. Another cohort of patients (n = 91) received ALK tyrosine kinase inhibitor (TKI) treatment was also included to evaluate
the value of the DLM in predicting the clinical outcomes of the patients.
Results The performances of the DLM trained only by CT images in the primary and validation cohorts were AUC =
0.8046 (95% CI 0.7715–0.8378) and AUC = 0.7754 (95% CI 0.7199–0.8310), respectively, while the DLM trained
by both CT images and clinicopathological information exhibited better performance for the prediction of ALK
fusion status (AUC = 0.8540, 95% CI 0.8257–0.8823 in the primary cohort, p < 0.001; AUC = 0.8481, 95% CI
0.8036–0.8926 in the validation cohort, p < 0.001). In addition, the deep learning scores of the DLMs showed
significant differences between the wild-type and ALK infusion tumors. In the ALK-target therapy cohort (n = 91),
the patients predicted as ALK-positive by the DLM showed better performance of progression-free survival than the
patients predicted as ALK-negative (16.8 vs. 7.5 months, p = 0.010).
Conclusion Our findings showed that the DLM trained by both CT images and clinicopathological information could effectively
predict the ALK fusion status and treatment responses of patients. For the small size of the ALK-target therapy cohort, larger data
sets would be collected to further validate the performance of the model for predicting the response to ALK-TKI treatment.
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Introduction

Non-small cell lung cancer (NSCLC) is one of the malignant
tumors with the highest incidence and mortality [1]. At the
time of the diagnosis, over 60% of the patients present with
advanced lung cancer. Currently, treatments with targeting
drugs can achieve substantial responses for advanced lung
cancer patients with gene mutations. Anaplastic lymphoma
kinase (ALK) fusion gene is the driver gene with the highest
incidence of variation, following EGFR andKRASmutations,
which account for about 5–7% of all lung adenocarcinoma [2,
3]. To date, several ALK fusion gene-targeting inhibitors have
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already been applied in clinical practice, substantially improv-
ing the survival time and life quality of patients [4–8].

FISH, immunohistochemistry, and NGS are the currently
recommended methods for the detection of ALK fusion gene
[9–12]. Most of these techniques require tissue or liquid sam-
ples. In addition, the intra- and inter-tumor heterogeneities and
tumor microenvironments could also influence the detection
results. Therefore, new non-invasive, dynamic, low-price
methods which could cover the global tissues and tumor mi-
croenvironment are needed for the detection of ALK fusion
gene in clinical practice.

Previous studies have demonstrated that ALK inhibitors,
including the first, second, and third generations of inhibitors,
have high treatment responses [4–8]. However, there are still
some patients who are not sensitive to ALK inhibitors. For
instance, although treating ALK fusion gene-positive patients
with crizotinib could achieve a high response rate of 60–70%,
primary resistance to crizotinib is still found in about 10–20%
of the patients [7, 8]. Nonetheless, there are no effective
methods that could predict the responses to ALK inhibitors,
and no non-invasive effective methods that could be used to
dynamically monitor the responses to ALK inhibitors and
predict drug resistance.

CT scanning is a commonly used technique for the diag-
nosis of lung cancer, which provides a non-invasive method
for the analysis of lung cancer. Recent studies have shown that
features obtained from CT images are associated with the
status of genes, including EGFR and KRAS, and have predic-
tive values for the ALK fusion gene [13–16]. In addition, CT
imaging could cover the complete area of tumors, including
the tumor microenvironments and attached tissues, which
could allow us to include tumor heterogeneity when
predicting ALK gene status. In addition, CT scanning is
non-invasive, and data of CT imaging could be easily
accessed during the overall treatment procedures.

Associations between radiomics and patient outcomes have
been shown for NSCLC [17–19]. Previous studies have dem-
onstrated that the characteristics obtained by radiomics
methods have predictive values for genes, including ALK,
EGFR, and KRAS [13–16, 20, 21]. In addition, there are
several studies which identified the association between
PDL1 and radiomics features [22, 23]. However, such
radiomics-based methods based on feature engineering can
only reflect the general features, which lack the specificity of
the ALK fusion gene. Also, radiomics methods rely on precise
outlining of tumor borders, which can only be done manually.
Such radiomics characteristics only consider the tumor areas,
while the microenvironments and attached tissues are largely
ignored. In comparison, advanced artificial intelligence (AI),
such as deep learning, could overcome such disadvantages
due to the powerful learning capability of deep learning.
Currently, deep learning models have shown expert-level per-
formances in various medical image-based diagnostic tasks

[24–26]. Deep learning methods have achieved high perfor-
mance in predicting EGFR mutation [27, 28].

In this study, large-scale data (from 937 patients) were
collected from three independent hospitals, and the CT images
and clinicopathological information were used to train the
DLMs for the prediction of ALK gene status and evaluate
the model performances in an independent validation cohort.
In addition, this study also analyzed the tumor areas strongly
associated with ALK fusion on the CT images, which could
validate the reliability of the models and help the clinicians to
further make clinical decisions. Another group of patients un-
dergoing ALK-TKI treatment was included in the study to
evaluate the potential of the DLM in predicting the responses
of patients to targeting therapy.

Materials and methods

Patients

The institutional review board of Zhejiang Cancer Hospital,
Fujian Cancer Hospital, and the 900th Hospital in China ap-
proved this retrospective study and waived the need to obtain
informed consent from the patients. Patients older than
18 years who meet the following inclusion criteria were in-
cluded in the study: (1) pathologic examination of tumor spec-
imens carried out with proven records of ALK gene status; (2)
preoperative CT data obtained; and (3) recorded clinicopath-
ological information, including smoking history, age, gender,
and histological type of lung cancer.

Patients were excluded if (1) clinical data including age,
gender, and stage were missing; (2) preoperative treatment
was received; and (3) the duration between CT examination
and subsequent surgery exceeded 1 month. Finally, 937 pa-
tients from three hospitals were enrolled in this study. We
allocated the patients into a primary cohort and an indepen-
dent validation cohort, according to the hospital. The primary
cohort included 651 patients from Zhejiang Cancer Hospital
between January 2013 and July 2018. The validation cohort
included 286 patients from Fujian Cancer Hospital and 900th

Hospital between January 2016 and December 2018. The pri-
mary and validation cohorts were used for developing and
validation of the proposed models, respectively.

Collection of ALK-targeting therapy data

Data of the patients with advanced NSCLC who were diag-
nosed as ALK fusion gene-positive in the Zhejiang Cancer
Hospital between 2014 and 2018 were retrospectively collect-
ed. The inclusion criteria were as follows: (1) those diagnosed
with NSCLC according to the WHO 2015 pathological
criteria, and immunohistochemically (D5F3 antibody) proven
with positive ALK fusion gene; and (2) those diagnosed with
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advanced NSCLC or locally advanced NSCLCwho could not
be treated with radical chemoradiotherapy, according to the
eighth edition of TNM criteria and (3) received crizotinib for
the treatment; (4) whose complete follow-up data were avail-
able; and (5) who received chest CT scanning within 2 weeks
before crizotinib treatment. The exclusion criteria were as fol-
lows: (1) those with metastatic tumors from extra-pulmonary
tissues; (2) those with small cell lung cancers (SCLCs) or
other types of lung cancer; and (3) the incomplete follow-up
data. This study was approved by the Ethics Committee of the
Zhejiang Cancer Hospital.

Development of deep learning model (DLM)

The architecture of the DLM is illustrated in Fig. 1. It
consisted of three blocks, namely the CT image encoder, the
clinicopathological information encoder, and the classifier.
The CT image encoder aimed to generate a meaningful repre-
sentation of a tumor based on CT scans. Two radiologists first
manually annotated the tumor regions as follows: (1) a 2D
tumor bounding box was drawn in the CT slice containing
the largest tumor cross-section; (2) the indexes of other slices
containing the tumor were recorded. A three-dimensional
(3D) bounding box, as region of interest (ROI), was calculated
based on the annotation, such that it contained the entire tumor
region, including the edges of the tumor. Subsequently, the
ROI was resized to 64 × 64 × 32 pixels by trilinear interpola-
tion; contrast stretching was applied using the lung window
setting (window width 1600 and window level − 450); and
pixel intensity was normalized to (0, 1). The processed ROI
image was used as the input to the CT image encoder, which
has a modified 3DResNet10 [29, 30] consisting of a sequence
of convolution layers. The output of the last convolution layer
was fed to an average pooling layer to generate a one-
dimensional feature vector 512 in size as the final representa-
tion of the tumor’s CT image.

The clinicopathological information encoder aimed to gen-
erate the representation of the clinical information of the pa-
tient and pathological information of the tumor. We first
formed a one-dimensional feature vector of size eight based
on four types of clinicopathological information, namely sex,
age, smoking history, and tumor pathology. Except for one
element representing the normalized age (using z-score with
shifted mean 0.5), the other seven elements in the feature
vector were binary indicators (with value 0 or 1) of male,
female, light smoking, heavy smoking, adenocarcinoma,
squamous, and other tumor pathological type, respectively.

We trained the three blocks in an end-to-end manner with
cross-entropy loss function and applied modern techniques
such as weight decay regularization, batch normalization
[31], dropout [32], stochastic gradient descent optimization
algorithm, Nesterov momentum [33], and data augmentation.
Specifically, the “Kaiming uniform”method [34] was used to

initialize the weights in the DLM. A Nesterov momentum
SGD with momentum = 0.9 was used as a neural optimizer.
Other training settings included a learning rate of 0.0005,
batch size of 32, weight decay of 0.0001, and dropout rate
of 0.1. Data augmentation techniques applied to CT images
included random flipping, translation, rotation, and scaling.
To alleviate the class imbalance problem, the minority class
was upsampled to have the same number of samples as the
majority class. We selected and evaluated the model on the
primary cohort using fivefold cross-validation. The model
was trained for up to 30 epochs and the best epoch was select-
ed based on the AUC on the primary cohort. Training in the
primary cohort resulted in five models; the averaged predic-
tions from all five models were used for evaluation in the
validation cohort.

Detection of ALK fusion gene

Immunohistochemistry using the D5F3 antibody, which has
already been widely used for the detection of ALK fusion
gene, was used for the detection in all the patients, and the
results were confirmed by two senior pathologists. The de-
tailed detection methods were described in previous studies
[35, 36].

Statistical analysis

The independent sample t test was adopted to assess the sta-
tistical differences between the mean values of ages in the
primary and validation cohorts. The same statistical analysis
was performed to assess the statistical differences in deep
learning scores between the ALK fusion and ALK wild-type
groups. Fisher’s exact test was used to evaluate the differences
in categorical variables such as gender and smoking history
between cohorts. DeLong’s test was used to assess the statis-
tical difference between AUCs of two models. Keras toolkit
and Python 3.6 were used for the implementation of the DLM.
The PFS from the patients after crizotinib treatment was de-
fined as the time from the initiation of crizotinib treatment to
tumor progression or last followed up. Data were analyzed
with SPSS 20 software. Kaplan-Meier curve method was used
for the analysis of PFS, and Cox regression analysis was used
for the multivariate analysis. The last follow-up for all the
patients was on December 20, 2019.

Results

Clinicopathological characteristic of patients

Table 1 includes the clinicopathological characteristics of the
patients in the primary and validation cohorts. The age, sex,
pathological types, and smoking history did not significantly
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differ between the primary and validation cohorts. Besides,
the distributions of patients with ALK fusion and wild-type
ALK gene were similar in both the primary cohort (195 ALK
fusion vs. 456 ALKwild-type) and validation cohort (72 ALK
fusion vs. 214 wild-type ALK). As clinicopathological infor-
mation such as age, sex, smoking history, and histological
types could reflect the differences between the patients with
ALK fusion and wild-type ALK, a clinicopathological model
was obtained by training with these characteristics and was
then compared with the DLM.

Predictive performance of the DLMs

The area under the receiver operating characteristic (ROC)
curve (AUC), accuracy, sensitivity, and specificity were used
to evaluate the performances of the models (Table 2). The
DLM trained by both CT images and clinicopathological char-
acteristics showed good performance in the primary cohort
(AUC = 0.8540, 95% CI 0.8257–0.8823), which was con-
f i rmed by the val idat ion cohort (AUC = 0.8481,
95%CI0.8036–0.8926). The predictive performance of the
model in the primary and validation cohorts was very similar,
suggesting that the DLM had high feasibility in predicting the
ALK fusion mutation in random patients. The model trained
by both CT images and clinicopathological characteristics
showed significantly higher performance compared with the

DLM trained only by CT images (AUC = 0.8046, 95% CI
0.7715–0.8378 for the primary cohort, p < 0.001, and
AUC = 0.7754, 95% CI 0.7199–0.8310 for the validation co-
hort, p < 0.001). In this study, a clinicopathological model was
also built for comparison with the two deep learning models.
This clinicopathological model used gender, age, smoking
history, and pathological types as the characteristics to predict
the ALK mutation. The performance of the DLM trained by
both CT images and clinicopathological characteristics was
significantly higher compared with the clinicopathological
model (AUC= 0.7565, 95% CI 0.7193–0.7937 in the primary
cohort, p < 0.0001, and AUC = 0.7547, 95% CI 0.6965–
0.8129 in the validation cohort, p < 0.005). Figure 2a shows
the ROC curves of the models. The deep learning scores of
these two learning models in patients with ALK fusion and
wild-type ALK were also significantly different in both the
primary and validation cohorts (Fig. 3).

Figure 2b shows the decision curves of all the models.
According to the decision curves, the DLM trained by
both CT images and clinicopathological information had
a higher beneficial effect than either the treat-all-patients
scheme or the treat-none scheme, when the threshold
probability was greater than 10% [37]. In addition, the
DLM trained by both CT images and clinicopathological
information had higher benefits than the DLM trained by
either CT images or the clinical model.

Fig. 1 Neural network architecture. The proposed DLM consists of three
blocks, namely the CT image encoder, the clinicopathological
information encoder, and the classifier. The CT image encoder has a
three-dimensional (3D) ResNet10 architecture, which consists of an
initial convolutional layer with kernel size 7 × 7 × 7 and number of
filters 64, a max pooling layer with kernel size 3 × 3 × 3, and a
sequence of residual blocks with kernel size 3 × 3 × 3 and increasing
number of filters (i.e., 64, 128, 256, 512). All convolution layers use
stride 1 and are followed by batch normalization and ReLU activation.
The output of the last convolution layer was fed to an average pooling
layer to generate a one-dimensional feature vector of size 512 as the final

representation of the tumor’s CT image. The clinicopathological
information encoder consists of a fully connected layer of size 512. The
outputs of two encoders are combined by channel-wise concatenation to
form the combined feature vector. The classifier includes one fully
connected layer of size 1024, a dropout layer, and a softmax output
layer with two nodes (corresponding to ALK wild-type and ALK
fusion). Two variations of the models can be obtained with little
architecture modification: the first is a CT image model consisting of
on ly CT image encoder and c lass i f i e r ; the second is a
clinicopathological model consisting of clinicopathological information
encoder and classifier
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Discovery of suspicious area

In order to explain the prediction process of the DLM and
assess the reliability of the prediction, we adopted a visualiza-
tion method Grad-CAM [38] that generates suspicious areas
for a trained DLM on an input image. The suspicious area
indicates the discriminative image regions used by the DLM
for classifying the image; in this study, the highlighted regions
associated with ALK fusion type are referred to as suspicious
areas.

Figure 4 depicts the suspicious areas discovered by the
DLM trained on both CT image and clinicopathological infor-
mation. These suspicious areas varied among different tu-
mors. For instance, the suspicious areas in Fig. 4a and b are
central tumor areas. Based on patterns in these areas, the DLM
explained these two tumors as ALK fusion. On the other hand,
the DLM also registered the cavity areas in Fig. 4c and tumor
and adjacent tissue in Fig. 4d and predicted them as wild-type
ALK. Although some input images contained normal tissues,
such as in Fig. 4b, the model discovered the suspicious areas

inside the tumor without being influenced by normal tissues.
The suspicious areas in accurate predictions could alert the
clinicians to distinct patterns related to tumor ALK gene and
may inspire future clinical research; unreasonable suspicious
areas, such as completely off the tumor, can be an indicator of
an unreliable prediction.

Predicting the response of ALK target therapy
patients

Patients treated with crizotinib in Zhejiang Cancer Hospital
between 2014 and 2018 who met the inclusion and exclusion
criteria were consecutively included, and finally, 91 eligible
patients were included. The general characteristics of the pa-
tients are shown in Table S1.

The median PFS of the 91 patients was 12.2 months (95%
CI 9.2–15.2). When the ALK DLmodel was applied to the 91
patients, 79 were classified as ALK-positive, and 12 were
classified as ALK-negative. Our findings showed that accord-
ing to the classification results, the PFS of ALK-positive

Table 1 Clinical characteristics
of patients in the primary and
validation cohorts

Characteristic Primary cohort Validation cohort P value

Subjects, n 651 286

Sex 0.320

Male 310 126

Female 341 160

Age at treatment, year, median (range) 61 (24–82) 61 (33–85) 0.747

Tumor pathology 0.278

Adenocarcinoma 537 248

Squamous 57 20

Others 57 18

Smoking history 0.268

Heavy 149 52

Light 75 34

No 427 200

ALK 0.157

ALK fusion 195 72

ALK wild 456 214

Table 2 Predictive performance of various methods in the primary and validation cohorts

Models Cohorts AUC (95% CI) Accuracy % (95% CI) Sensitivity % (95% CI) Specificity % (95% CI)

Clinicopathological information Primary 0.7565 (0.7193–0.7937) 70.51 (67.00–74.01) 70.77 (64.39–77.15) 70.39 (66.20–74.58)

Validation 0.7547 (0.6965–0.8129) 67.83 (62.42–73.25) 70.83 (60.33–81.33) 66.82 (60.51–73.13)

CT image Primary 0.8046 (0.7715–0.8378) 72.35 (68.91–75.79) 73.33 (67.13–79.54) 71.93 (67.81–76.05)

Validation 0.7754 (0.7199–0.8310) 69.23 (63.88–74.58) 79.17 (69.79–88.55) 65.89 (59.54–72.24)

CT image and
clinicopathological information

Primary 0.8540 (0.8257–0.8823) 76.65 (73.40–79.90) 77.44 (71.57–83.30) 76.32 (72.41–80.22)

Validation 0.8481 (0.8036–0.8926) 77.27 (72.42–82.13) 84.72 (76.41–93.03) 74.77 (68.95–80.59)
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patients was significantly higher compared with that of ALK-
negative patients after crizotinib treatment (16.8 vs.
7.5 months, p = 0.010)(Fig. 5). Also, the univariate analysis
showed that age (p = 0.012) and performance status (PS) score
(p = 0.046) were significantly associated with the response to
crizotinib treatment, while smoking history (p = 0.050), sex
(p = 0.297), stage (p = 0.625), pathological type (p = 0.667),
and lines of crizotinib treatment (p = 0.249) were not signifi-
cantly associated with PFS. Therefore, sex, PS score, and
ALK status according to the model evaluation were included
in the multivariate analysis, which showed that all these fac-
tors could influence the PFS of patients. The univariate and
multivariate analysis results are shown in Table S2.

Discussion

In this study, we built a deep learning model trained by both
CT images and clinicopathological characteristics for the pre-
diction of ALK gene status in NSCLC patients. The DLMwas
trained by the data from the primary cohort (which included
651 patients) and was validated by an independent validation
cohort from another two hospitals (which included 286 pa-
tients). The DLM showed encouraging results in the primary
cohort (AUC = 0.854, 95% CI 0.8257–0.8823) and excellent
results in the validation cohort (AUC = 0.8481, 95% CI
0.8036–0.8926). The DLM showed that high-dimensional
features of CT images were significantly associated with

Fig. 2 Predictive performance of the deep learningmodel (DLM). aROC
curves of the three DLMs trained by clinicopathological information, CT
images, and both in the primary/validation cohorts. b Decision curve of
the DLMs. The blue line represents the benefit of treating all the patients
as ALKwild-type, and the orange line represents the benefit of treating all

the patients as ALK fusion. The purple line shows the benefit of using the
DLM trained by both CT images and clinicopathological information.
The red line and green line show the benefit of using DLMs trained by
CT images and clinicopathological information, respectively

Fig. 3 Deep learning score of the DLMs. Deep learning scores of the
DLM (a) trained by both CT images and clinicopathological information
and the DLM (b) only trained by CT images between ALK fusion and

ALK wild-type groups in the primary and validation cohorts. The
horizontal dotted lines are the quartiles
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ALK gene status. The model trained by both CT images and
clinicopathological characteristics had higher performances in
predicting ALK gene status compared with the model trained
only by CT images, which further suggested that clinicopatho-
logical information was also closely associated with ALK gene
status, and themodel based on both CT images and clinicopath-
ological characteristics was more effective for the prediction of
ALK gene status. To the best of our knowledge, this is the first
study that combined CT image features and clinicopathological
data with training DLMs for the prediction of ALK gene status.
Besides, another prediction model was also built by training
with clinicopathological information. Comparing with this clin-
icopathological model, the DLM showed significantly higher
performance in predicting the ALK fusion gene. In this study,
the clinicopathological factors achieved AUC= 0.7565 (95%
CI 0.7193–0.7937) in the primary cohort and AUC= 0.7547
(95%CI 0.6965–0.8129) in a validation cohort. As clinicopath-
ological factors have been widely applied, and nomogram is a
linear model, the clinicopathological model could be
interpreted. However, clinicopathological characteristics could
only reflect relatively few general characteristics of tumors and
lacked specificity in predicting the ALK gene as well as re-
sponses to ALK-TKI treatment.

This study provided a new method for the assessment of
ALK fusion in patients. In addition, the presentedmodel could
also be used to analyze the suspicious tumor areas dominating

the prediction of ALK gene status. Such analysis provided a
visualized explanation for understanding the prediction results
by CT data. The DLM provided an easy-to-use method for the
prediction of the ALK fusion status.

To the best of our knowledge, this is the first study that
used DLM to predict the ALK gene status. A previous study
used CT images, positron emission tomography, and four
clinical parameters from 128 NSCLC patients (47 ALK-pos-
itive, 17 ROS1/RET-positive, and 64 negative patients) to
train radiomics model for the prediction of ALK fusion status.
The sensitivity and specificity of their radiomics model were
0.7344 and 0.7031, respectively [15]. The DLM built in our
study was substantially better than the radiomics model re-
ported in the previous study. In addition, several other studies
have also used clinical characteristics, semantic features, im-
aging features, and deep learning to build models for the pre-
diction of EGFR mutation [13, 20, 21, 27]. In such studies,
Wang and colleagues reached a new level by building a DLM
to predict the status of EGFR mutation [27]. Their findings
demonstrated that DLM had substantial advantages compared
with radiomics models. In this study, deep learning was
adopted to predict the status of ALK fusion, achieving high
predictive performances. In addition, the present study also
modified the deep neural network to integrate clinical infor-
mation into the model, thus substantially improving the pre-
dictive performance of the DLM.

Fig. 4 Visualization of suspicious
areas. a, b CT image predicted as
ALK fusion by the DLM. c, d CT
image that predicted as wild-type
ALK by the DLM. The three
columns show the original input
image, the heat map for category
of “ALK fusion” generated by
Grad-CAM, and the heat map
with a cut-off value of 0.5
superimposed on the input image,
respectively
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This study further evaluated the potential of the DLM in
predicting the responses to ALK-TKI treatment. Drugs for
targeting treatment substantially increased the survival time in
patients with advanced lung cancer. For ALK-positive lung can-
cer patients, the median PFS after treatment with crizotinib could
reach 10–12 months, and the objective response rate in patients
was 60–70%. However, the responses in some patients were still
suboptimal, although no effective methods are available to iden-
tify such patients. Previous studies have shown that the “abun-
dance of tumor genes” could influence the responses to target
treatment drugs [39]; however, there are still no non-invasive
methods for evaluation of “abundance of tumor genes.” In this
study, we firstly used the deep learning method to further evalu-
ate the pathologically suggested ALK-positive patients, which
showed that 13.2% of such patients were classified as “imaging
ALK-negative patients,” of whom the responses were signifi-
cantly poorer than the “imaging ALK-positive patients.”
Therefore, the model provided a non-invasive method that could
effectively classify the responses to targeted treatment methods.
Combining the gene classification results by CT image-based
deep learning and pathological results to further clarify the asso-
ciation between them could be a new study direction.

The DLM has several potential clinical applications: (1) the
DLM provides a non-invasive method to predict the status of
ALK gene, which could be conveniently applied in routine CT
diagnosis; (2) the wild-type ALK suggested by pathological
examinations of biopsies can include false-negative results
due to the inter-tumor heterogeneity, which could be over-
come by our DLM. For patients whom the DLM predicted
as ALK-positive, biopsies should be obtained for validation;
(3) the DLM only requires the routine CT images and general
clinicopathological information, without any additional ex-
penses. Therefore, the model could be repeatedly applied dur-
ing the treatment processes; and (4) although in this study we
only investigated the status of ALK fusion, the model trained
by both images and clinicopathological characteristics also
showed substantial performance in predicting the outcomes
in patients after ALK-TKI treatment. Future models combin-
ing chest CT images, clinicopathological information, and
molecular pathological results could better predict the gene
status and guide the targeting therapy in clinical practices.

The present study has several limitations: (1) This was a ret-
rospective study and the presented model needs to be further
validated by prospective studies. (2) The DLM mainly used

Fig. 5 Comparison of crizotinib treatment efficacy in ALK-positive, ALK-negative patients classified by DLM, and all ALK-TKI therapy cohort. (P
value was 0.010 between ALK-positive and ALK-negative patients)
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surgical samples, while only a few small biopsy samples were
used, which could influence the overall stability of the model.
However, according to the drug therapy results of the 91 patients
with advanced lung cancer, the sensitivity of the model could be
repeated in patients with advanced lung cancer. (3) The sample
size of the clinical validation cohort was relatively low (n= 91),
especially for the “image ALK-negative patients” (n= 12). More
studies with larger sample size are needed to further validate the
reliability of the model. (4) As new generation ALK inhibitors
such as alectinib and ceritinib have been approved in clinical
practice, validating the stability of the model to predict the re-
sponse to these ALK inhibitors in the future studies is needed.
Last but not least, other gene fusions, such as ROS1, RET, and
NTRK, have similar clinicopathological characteristics with
ALK fusion, and it is unclear that whether the DLM could dis-
tinguish different fusion genes for rare frequency of these genes
in lung cancer.

In summary, the deep learning model combining CT im-
ages and clinicopathological information could effectively
classify the status of the ALK gene and predict the responses
to ALK inhibitor treatment in clinical practice. This study
provided a non-invasive, rapid, and simple complementary
method to guide clinical genetic diagnosis and targeting ther-
apy. If validated by prospective studies with large sample
sizes, this method could substantially increase the precision
of targeting therapy in clinical practice.
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