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Abstract
Purpose To develop a predictive model by 18F-FDG PET/CT radiomic features and to validate the predictive value of the model
for distinguishing solitary lung adenocarcinoma from tuberculosis.
Methods A total of 235 18F-FDG PET/CT patients with pathologically or follow-up confirmed lung adenocarcinoma (n = 131) or
tuberculosis (n = 104) were retrospectively and randomly divided into a training (n = 163) and validation (n = 72) cohort. Based
on the Transparent Reporting ofMultivariable PredictionModel for Individual Prognosis or Diagnosis (TRIPOD), this work was
belonged to TRIPOD type 2a study. The Mann-Whitney U test and least absolute shrinkage and selection operator (LASSO)
algorithm were used to select the optimal predictors from 92 radiomic features that were extracted from PET/CT, and the optimal
predictors were used to build the radiomic model in the training cohort. The meaningful clinical variables comprised the clinical
model, and the combination of the radiomic model and clinical model was a complex model. The performances of the models
were assessed by the area under the receiver operating characteristic curve (AUC) in the training and validation cohorts.
Results In the training cohort, 9 radiomic features were selected as optimal predictors to build the radiomic model. The AUC of
the radiomic model was significantly higher than that of the clinical model in the training cohort (0.861 versus 0.686, p < 0.01),
and this was similar in the validation cohort (0.889 versus 0.644, p < 0.01). The AUC of the radiomic model was slightly lower
than that of the complex model in the training cohort (0.861 versus 0.884, p > 0.05) and validation cohort (0.889 versus 0.909,
p > 0.05), but there was no significant difference.
Conclusion 18F-FDG PET/CT radiomic features have a significant value in differentiating solitary lung adenocarcinoma from
tuberculosis.
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Introduction

Lung cancer (LC) is still the main cause of cancer worldwide.
Non-small-cell lung cancer (NSCLC) accounts for more than
85% of lung cancer incidence, and NSCLC is the most com-
mon type of LC. Moreover, lung adenocarcinoma is the most
common pathological subtype of NSCLC [1]. Since some
benign lesions are similar to LC in terms of clinical and radio-
logical aspects, those lesions are easily misdiagnosed as LC.
Tuberculosis is the most common misdiagnosed cause in the
region with a high incidence of tuberculosis, which invades
the lung and has affected a quarter of the world’s population
[2]. Therefore, distinguishing lung cancer, especially adeno-
carcinoma, from tuberculosis has become a common and chal-
lenging issue.

A large number of imaging techniques, including dynamic
contrast-enhanced CT [3] and MRI [4], PET/CT with 18F-
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FDG [5] or other radioactive tracers [6] and serological bio-
markers [7] have been applied to distinguish the two diseases.
However, no single method has satisfactory performance.
Currently, biopsy or resection as an invasive technique is the
most accurate method to distinguish between the two diseases.
Nevertheless, patients with tuberculosis should avoid invasive
techniques and are used to being treated with drugs rather than
surgical resection [8]. Thus, there is a pressing need for non-
invasive, accurate, convenient and specific techniques to dif-
ferentiate between solitary lung adenocarcinoma and
tuberculosis.

Radiomics is a promising and noninvasive approach that
can extract high-throughput quantitative features from images
and convert the information into mineable databases. It re-
flects the lesion’s biological information, for instance, cell
morphology and molecular and gene expression, which can
improve the diagnostic, prognostic and predictive accuracy of
the disease [9]. 18F-FDG PET/CT has been proven to be a
crucial method for detection, clinical staging, therapeutic eval-
uation and recurrence in patients with NSCLC [10, 11].
Recently, there have been some studies about radiomics based
on CT to distinguish benign pulmonary nodules from lung
cancer [12, 13]. However, there have been few studies on
radiomics based on 18F-FDGPET/CT to discriminate between
the two diseases. We hypothesized that 18F-FDG PET/CT
radiomic features may possess valuable information to im-
prove the accuracy of distinguishing solitary lung adenocarci-
noma from tuberculosis. Therefore, the aim of this study was
to develop a predictive model by 18F-FDG PET/CT radiomic
features and to validate the predictive value of the model to
distinguish solitary lung adenocarcinoma from tuberculosis.

Materials and methods

Patient selection

We retrospectively screened and collected 18F-FDG PET/
CT and clinical data about patients in The Fourth Hospital
of Hebei Medical University and Hebei General Hospital
from January 2015 to October 2019. The institutional
ethics committee approved all the data in the study for
retrospective analysis and waived the demand for informed
consent.

The enrolled patients met the following criteria: (1) patients
were diagnosed with lung adenocarcinoma or pulmonary tu-
berculosis by surgery, biopsy pathology or follow-up; (2) 18F-
FDG PET/CT examination performed before surgery or biop-
sy; (3) density of observed lesions without characteristic cal-
cification or fat; and (4) patients with the result of T-
SPOT.TB. The following was determined as the positive re-
sult: the number of spots in negative control holes was less
than 5, and the difference in the number of spots between

antigen A or B and negative control holes was more than 6,
or the number of spots in negative control holes was 6–10, and
the number of spots in antigen A or B was more than twice
that in negative control holes [14]. The exclusion criteria were
as follows: (1) a lesion without the accumulation of 18F-FDG,
(2) maximum diameter of the lesion < 1 cm and (3) other
malignancies on or before the performance of PET/CT. The
clinical data included age, gender and the result of T-
SPOT.TB.

According to the above criteria, 235 patients (138 males
and 97 females, mean age ± SD, 62.79 ± 12.14 years, range
17–90) were enrolled. The data of patients were randomly
divided into two cohorts by the ratio of 7:3. The ratio was
based on hold-out method which is a model evaluation meth-
od, and the 7:3 is the commonest ratio to divide training cohort
and verification cohort. The grouping is shown in Fig. 1.
According to the guidelines of Transparent Reporting of
Multivariable Prediction Model for Individual Prognosis or
Diagnosis (TRIPOD) [15], the data was randomly split into
the training cohort and validation cohort, and this work was
TRIPOD 2a study.

PET/CT examination

18F-FDG PET/CT examination was performed on either
PHILIPS GEMINI GXL16 (Eindhoven, Netherlands, 102 pa-
tients, 43.4%) or General Electric Discovery Elite (Waukesha,
WI, 133 patients, 56.6%). According to the reporting guide-
lines of the Image Biomarker Standardisation Initiative (IBSI)
[16], all the acquisition parameters are shown in electronic
supplementary material 1. Patients fasted for at least 6 h before
being injected with 18F-FDG (3.7–5.55 MBq/kg), and image
acquisition started 60 ± 5 min later from the bottom of the
skull to the midthigh on the basis of the guidelines of the
European Association of Nuclear Medicine [17]. PET images
were CT-based attenuation corrected.

Radiomic feature extraction

PET and CT images with the DICOM format were succes-
sively input into LIFEx freeware (v4.00, http://www.lifexsoft.
org) and automatically fused by the freeware. When
respiratory movements led to a mismatch between the two
types of images, CT images could be manually adjusted to
the correct position of the lesion. Compared with the spatial
resampling of 1 mm and 4mm, 2mmhad a slight influence on
the calculation of radiomic feature [18]. Spatial resampling
was 2 mm in spacing X, Y and Z both on PET and CT
images in all the patients. Intensity discretization for CT data
was processed by decreasing the continuous scale to 400 bins
with absolute scale bounds between − 1000 and 3000 HU,
while that of PET data was done with 64 bins between 0 and
25. Two well-experienced nuclear medicine physicians used
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3D drawing tools to manually delineate the volume of interest
(VOI) on every slice of the PET images and then used 40% of
the maximum standardized uptake value (SUVmax) as a
threshold to optimize the VOI [19]. Because of the good
matching of PET and CT images, radiomic features were ex-
tracted from the two types of images within the same VOI.
According to the VOI, LIFEx freeware automatically proc-
essed and extracted 92 radiomic features: 47 features based
on PET and 45 features fromCT. The 92 features are shown in
electronic supplementary material 2.

Radiomic feature screening and model building

In the training cohort, the optimum features were screened
from 92 radiomic features to build a radiomic model, and
clinical variables were selected to develop a clinical model.
Additionally, the complex model was the combination of
the radiomic model and the clinical model by multivariate
logistic regression, which included the optimum radiomic
features and clinical variables with significant differences.
The predictive performance of the models was assessed by
receiver operating characteristic (ROC) curves and the area
under the ROC curve (AUC) in the training and validation
cohorts, respectively. A nomogram was established to ob-
tain the predictive probability of every patient, and calibra-
tion curves were drawn by the predicted probability against
the actual probability, which were used to analyse the per-
formance of the nomogram.

Statistical analysis

TheMann-WhitneyU test was applied to screen the candidate
features from the 92 radiomic features between the two dis-
eases in the training cohort. The clinical data, which included
continuous variables (age and gender) and categorical vari-
ables (T-SPOT.TB), were compared by the Mann-Whitney
U test and Chi-square test, respectively. And the statistically
different variables were used to develop the clinical model by
logistic regression. The above analyses used SPSS 21.0
Statistics for Windows.

To avoid multicollinearity and overfitting phenomena,
LASSO (least absolute shrinkage and selection operator) al-
gorithm was employed to further screen the optimal subset
from the 61 candidate features and develop a formula by lo-
gistic regression in the training set to calculate the score of
radiomic features (RAD-score) [20]. Ten-fold cross-validation
was performed to select the λ in the LASSO algorithm, and
the 1 standard error of λmin (the min of λ) was the optimal λ,
which could choose the optimal subset of radiomic features.
The radiomic model was developed by multivariate logistic
regression with the optimal subset of radiomic features. The
LASSO algorithm was carried out by the “glmnetcr” package
of R software 3.4.3 (http://www.Rproject.org). A heat map
was applied to visually show the difference of every feature
in the optimal features by the “pheatmap” package of R
software. Waterfall plots were performed to demonstrate the
RAD-score for every enrolled patient in the training and val-
idation cohorts. The complex model was the combination of

Fig. 1 Selection of patients. The flowchart shows the process of selection and grouping
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the radiomic model and clinical model by multivariate logistic
regression in SPSS 21.0.

The performances of the models were assessed by the
ROC curve and AUC in the training and validation cohorts,
respectively. MedCalc statistical software 19.0 was used to
determine the difference between the AUC values. To ap-
praise the robustness of the models, ten-fold cross-valida-
tion with 100 random cycles was performed by the “caret”
and “AUC” packages of R software, and the uncertainty of
the AUC, sensitivity, specificity, accuracy and Youden in-
dex of those models in the training cohort was assessed as
the average of 100 means ± standard deviation (SD). The
Youden index, also known as the correct index, is a meth-
od to evaluate the authenticity of screening tests. If the
false-negative and false-positive results have the same sig-
nificance, the Youden index can be applied. The Youden
index is the sum of sensitivity and specificity minus 1,
which represents the total ability of screening methods to
find real patients and nonpatients. The meaning of the
Youden index is that the larger the index is, the better the
effect of the screening experiment and the greater the
authenticity.

The dependence of the selected radiomic features and
RAD-score on the type of scanner used (PHILIPS or GE)
was compared with the Mann-Whitney U test.

Nomograms and calibration curves were generated using
the “rms” package in R software. The goodness of fit was
examined by the Hosmer-Lemeshow test in SPSS. The
Hosmer-Lemeshow test is a goodness of fit (GOF) test that
indicates whether the predicted probability is close to the ac-
tual probability. When the p value was > 0.05, we concluded
that it was a good fit. The Mann-Whitney U test, Chi-square
test and Hosmer-Lemeshow test as well as the difference be-
tween the AUC values obtained a two-sided p, and p < 0.05
was considered statistically significant.

Results

Clinical characteristics of patients

The clinical characteristics of the enrolled patients are shown
in Table 1. T-SPOT.TB in the tuberculosis subset was much
higher than that in the lung adenocarcinoma subset in the
training cohort (p < 0.0001) and the validation cohort (p =
0.0188). In terms of age and gender, there were no significant
differences not only in the two cohorts (p = 0.180 and 0.281)
but also in the tuberculosis and lung adenocarcinoma subsets
(p = 0.621 and 0.505). Since T-SPOT.TB was significantly
different but age and gender were not different between the
two cohorts, T-SPOT.TBwas used to develop a clinical model
by univariate logistic regression.

Feature extraction and selection

The value of − 3.093 was eventually chosen for the optimal λ,
and then 61 radiomic candidate features were reduced to 9
with nonzero coefficients in the training cohort (electronic
supplementary material 3). The 9 selected radiomic features
were Conventional_SUVstandard deviation (SUVstd),
H i s t o g r a m _ S k e w n e s s ( H I S T O _ S k e w n e s s ) ,
Histogram_Kurtosis (HISTO_Kurtosis), GreyLevel Co-
occurrence Matrix_Correlation (GLCM_Correlation),
maxValue, Histogram_Skewness (HISTO_Skewness CT),
SHAPE_Sphe r i c i t y ( on l y f o r 3D ROI nZ > 1 )
(SHAPE_Spher ic i ty) , GreyLevel Co-occur rence
Matrix_Contrast (GLCM_Contrast) and GreyLevel Co-
o c c u r r e n c e Ma t r i x _ E n t r o p y _ l o g 1 0 (GLCM_
Entropy_log10). Among the 9 features, the first 4 were de-
rived from PET, while the 5 remaining features were related to
CT. The distinction of the 9 radiomic features between the
lung adenocarcinoma and tuberculosis subsets is shown in

Table 1 Characteristics of patients in the training and validation cohorts

Characteristic Training cohort no. (%) Validation cohort no. (%)

Pulmonary tuberculosis Lung adenocarcinoma p Pulmonary tuberculosis Lung adenocarcinoma p

Age (mean ± SD, years) 60.57 ± 13.29 62.03 ± 9.24 0.4283 63.34 ± 9.40 62.38 ± 8.94 0.6567

Gender 0.0574 0.132

Male 46 (63.89) 44 (48.35) 18 (56.25) 30 (75.00)

Female 26 (36.11) 47 (51.65) 14 (43.75) 10 (25.00)

T-SPOT.TB < 0.0001 0.0188

Positive 45 (62.50) 23 (25.27) 22 (68.75) 16 (40.00)

Negative 27 (37.50) 68 (74.73) 10 (31.25) 24 (60.00)

PET/CT scanner 0.5277 0.8126

PHIL IPSGEMINI GXL16 33 (45.83) 37 (41.66) 15 (46.88) 17 (42.50)

GE Discovery Elite 39 (54.17) 54 (59.34) 17 (53.13) 23 (57.50)

SD standard deviation
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the heat map (electronic supplementary material 4) in the
training cohort, and HISTO_Skewness from PET had amore
obvious distinction than the remaining features. The RAD-
score of every enrolled patient was calculated according to
the formula from logistic regression as follows: − 1.1490 +
2 . 9 6 8 6 × S H A P E _ S p h e r i c i t y + 2 . 4 5 3 1 ×
GLCM_Correlation −1.3451 × HISTO_Skewness −
0 . 5 4 2 5 × GLCM_En t r o p y _ l o g 1 0 – 0 . 3 0 9 0 ×
HISTO_Kurtosis −0.0415 × HISTO_Skewness CT +
0.0147 × SUVstd − 0.0031 × maxValue − 0.0003 ×
GLCM_Contrast.

There was a significant difference in the 9 features be-
tween the tuberculosis and lung adenocarcinoma subsets in
the two cohorts (Table 2). The RAD-score in the lung ade-
nocarcinoma subset was much higher than that in the tuber-
culosis subset both in the training cohort (0.904 versus −
0.417) and validation cohort (0.830 versus − 0.638), and
there was a significant difference between the two subsets
in the training and validation cohorts (all p < 0.0001). The
RAD-score for every enrolled patient is exhibited by the
waterfall plot in Fig. 2.

Performances of the radiomic, clinical and complex
models

The AUC of the radiomic model (0.861 and 0.889) was
higher than that of the clinical model (0.686 and 0.644) in
the training (p = 0.0002) and the validation (p = 0.0005) co-
horts. The AUC of the complex model was the highest
(0.884 and 0.909) among the three models either in both
the training and validation cohorts. In terms of the AUC,
there were significant differences between the complexmod-
el and the clinical model in the two cohorts (both
p < 0.0001), while there was no significant difference be-
tween the complex model and the radiomic model in the
training (p = 0.1181) and validation (p = 0.3219) cohorts.
The ROC curves of the three models are shown in Fig. 3.
The sensitivity, specificity, accuracy and Youden index of
those models in the validation cohort and the uncertainties of
those parameters in the training cohort are summarized in
Table 3.

Scanner comparability

The 9 radiomic features, the RAD-score and the AUC of the
radiomic model were stratified by the different scanners
(PHILIPS or GE) and showed statistical compatibility in
both the training and validation cohorts. The 9 radiomic
features and RAD-score were not significantly different (all
p > 0.05), and the details are shown in electronic supplemen-
tary material 5. The AUCs of the radiomic model classified
by PHILIPS and GE were 0.91 versus 0.84 in the training
cohort and 0.96 versus 0.86 in the validation cohort. There Ta
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were minor absolute discrepancies but no significant differ-
ence (p = 0.4114 and 0.4617) in the two cohorts.

Individualized nomogram construction and validation

According to the good predictive ability of the complex mod-
el, a nomogram that could demonstrate the proportion of every
factor and predictive value of every patient was generated
from the training cohort (Fig. 4a).

The calibration curves were drawn, and they showed that
the predicted probability was in line with the actual probability
in the two cohorts (Fig. 4b and c). The goodness of fit exam-
ined by the Hosmer-Lemeshow test showed no significant
difference, which demonstrated good fits for the predicted
and actual probabilities in both the training cohort (χ2 =
6.855, p = 0.552) and validation cohort (χ2 = 8.492, p =
0.387).

Discussion

In the present study, radiomics based on 18F-FDG PET/CT
was first used for differentiating solitary lung adenocarcinoma
from tuberculosis. The radiomic model showed good predic-
tive performance (AUC > 0.86), and the performance was
higher than that of the clinical model and was similar to that
of the complex model.

The 9 radiomic features are composed of 4 PET-derived fea-
tures and 5 CT-derived features. The SUVstandard deviation is
the only feature related to the standard intake value (SUV), which
is the basic parameter of PET. SUVstandard deviation abbrevi-
ated as SUVstd assesses the variability of the metabolic activity,
which is relatively sensitive to statistical noise [21]. The region of
high receptor density shows more apparent statistical noise than
the region of low or no receptor density [22]. In this study,
SUVstd in the lung adenocarcinoma subset was slightly higher

Fig. 3 Area under the receiver operating characteristic (ROC) curve of the models a in the training cohort and b in the validation cohort

Fig. 2 Score of radiomic features (RAD-score) for patients. Waterfall plots were drawn according to the RAD-score for every patient in the training
cohort (a) and validation cohort (b)
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than that in the tuberculosis subset in both cohorts, which
reflected that the receptor density in lung adenocarcinoma was
slightly higher than that in tuberculosis.

HISTO_Skewness derived from either PET or CT and
HISTO_Kurtosis from PET are 3 features from the histogram
that represent the grey-level distribution within the volume of
interest. HISTO_Skewness represents the asymmetric distri-
bution of grey level in the histogram, while HISTO_Kurtosis
shows the shape (peaked or flat) of the distribution of the grey
level, and those features are relatively simple parameters that
describe the heterogeneity of lesions [23]. Chandarana et al.
[24] found that clear cell renal cell cancer (ccRCC) had sig-
nificantly lower kurtosis and skewness than papillary renal
cell cancer (pRCC), which reflected that ccRCC was less het-
erogeneous than pRCC. In our study, the 3 radiomic features
in the tuberculosis subset were significantly higher than those
in the lung adenocarcinoma subset in the two cohorts. This
may be related to caseous necrosis in tuberculosis.

There were still 3 radiomic features related to the GreyLevel
Co-occurrence Matrix (GLCM): one PET feature
(GLCM_Correlation) and two CT features (GLCM_Contrast,
GLCM_ Entropy_log10). The GLCM quantifies the intensity
distribution of the grey level at a given offset to extract infor-
mation about tone homogeneity, linear connection, contrast and
boundaries adjacent to grey zones, as well as complicacy of the
distribution [25]. According to the introduction of LIFEx
(https://www.lifexsoft.org/index.php/resources/19-texture/
radiomic-features), the offset in this study was applied to 1.
GLCM_Correlation shows the linear correlation, which is
related to the grey level in the GLCM, and it was slightly
higher in lung adenocarcinoma than in tuberculosis in both
cohorts. GLCM_Contrast, which is sometimes named
Variance or Inertia, expresses the local varieties of the grey
level, while GLCM_Entropy_log10 represents the
randomicity of voxel pairs at the grey level. GLCM_Contrast
and GLCM_Entropy_log10 in lung adenocarcinoma were
lower than those in tuberculosis in the two cohorts.
Tuberculous granuloma is composed of macrophages,
including T lymphocytes, B lymphocytes, dendritic cells,
fibroblasts and extracellular matrix components [26]. The
performance of the 3 radiomic features of the GLCM is
related to the spatial distribution of cells inside the lesion.

The remaining 2 features were maxValue and
SHAPE_Sphericity from CT. MaxValue in tuberculosis was
significantly higher than that in lung adenocarcinoma.
Tuberculosis is more likely to form calcification and fibrosis
than lung cancer [27], which is the main reason for the high
maxValue. SHAPE_Sphericity has a similar degree of sphe-
ricity regarding the volume of interest. In previous studies, the
3D shape features PET/CT-derived had high repeatability and
accurately offered morphological parameters about the lesions
[28]. In this study, lung adenocarcinoma had higher sphericity
and was more compact than tuberculosis.Ta
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T-SPOT.TB is an in vitro interferon gamma release assay
used to diagnose tuberculosis by the specific cellular immune
response toMycobacterium tuberculosis, which was of higher
sensitivity and specificity than traditional means such as tu-
berculin skin tests [14]. Large-scale studies have indicated that
the sensitivity of T-SPOT.TB in patients with suspected TB
was more than 80%, while the specificity was higher than
70% [29]. In our study, the sensitivity and specificity were
slightly lower than those in previous studies, which might be
related to most enrolled patients with older age [30].

Yang et al. [12] showed that combining CT-based radiomic
features and clinical variables could improve the predictive
performance to differentiate solitary granulomatous nodules,
including tuberculosis, from lung adenocarcinoma. However,
this study only considered CT-based radiomic features but did
not take PET-based radiomic features into account. In our
study, there were 4 PET-derived features among the 9 selected
features, which added metabolic information of the lesions
and improved diagnostic performance. Therefore, we believe
that the radiomic model based on PET/CT has the ability to
differentiate solid lung adenocarcinoma and tuberculosis.

Several limitations should be considered in our study. First,
this studywas a retrospective analysis, and inherent selection bias

existed. In future research, a larger number of patients should be
recruited to limit the bias as much as possible. Second, our re-
search only discussed the predictive performance of the model
for adenocarcinoma, but whether this model can be applied to
other subtypes of lung cancer should be further studied. Third,
tumour markers of lung adenocarcinoma, such as CEA, were not
involved in our study. Future studies could examine the value of
tumour markers in the complex model.

In conclusion, 18F-PET/CT-based radiomic features have a
significant value in differentiating solitary lung adenocarcino-
ma from tuberculosis. Large-scale multicentre studies should
be carried out to further confirm the preliminary results so that
this noninvasive, effective and convenient technique can be
applied in routine clinical practice.
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