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Abstract
In the early 1980s, DNA sequencing became a routine and the increasing computing power opened the door to reconstruct 
molecular phylogenies using probabilistic approaches. DNA sequence alignments provided a large number of positions 
containing phylogenetic information, which could be extracted using explicit statistical models that described the mutation 
process using appropriate parameters. Consequently, an active quest started for building increasingly improved (more realis-
tic) statistical models of nucleotide substitution. The simplest model assumed that nucleotide frequencies were in equilibrium 
and one single category of substitutions. Subsequent models allowed either unequal nucleotide frequencies or separate rates 
for transitions and transversions. The HKY85 model (Hasegawa et al. in J Mol Evol 22:160, 1985) combined elegantly both 
options into a single model, which became one of the most useful ones and has been the choice in many molecular phyloge-
netic studies ever since. The use of improved substitution models such as HKY85 allows reconstructing more accurate and 
reliable phylogenies, which in turn provide robust frameworks for understanding how biological diversity evolved and for 
performing a wealth of comparative studies in different disciplines such as ecology, biogeography, developmental biology, 
biochemistry, genomics, epidemiology, and biomedicine.
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All living organisms on Earth are related by descent from 
common ancestors (Darwin 1859) and the main goal of sys-
tematics is to disentangle their phylogenetic relationships 
(Wiley and Lieberman 2011). First phylogenetic trees were 
reconstructed based on morphological characters (this is still 
the case in paleontology) using cladistics (Hennig 1966) and 
maximum parsimony as optimality criterion (Fitch 1971). 
However, morphology-based phylogenies are normally 
based only on a restricted number of characters (Scotland 
et al. 2003) because many have to be discarded if they are 
not functionally independent, character states not always can 
be defined unambiguously, and homology (similarity due to 
common ancestry) is difficult to ascertain between distantly 
related taxa. Moreover, morphological characters experienc-
ing similar selective forces are prone to convergence, thus 

producing homoplasy and misleading phylogenetic inference 
(Wake 1991).

The discovery that protein sequences accumulated amino 
acid changes at a constant rate over time (the so-called 
molecular clock) opened the possibility of using this evo-
lutionary information to infer phylogenetic relationships 
(Zuckerkandl and Pauling 1965). Molecular sequences 
offered a vast number of independent characters and they 
could be compared among all living organisms. Moreo-
ver, most mutations are neutral due to genetic random drift 
(Kimura 1983) leading to reduced levels of homoplasy. All 
these valuable features motivated that molecular sequences 
have superseded morphological traits as the source data 
for the reconstruction of robust and reliable phylogenetic 
trees over the years. Furthermore, it was early on suggested 
that probabilistic methods such as maximum likelihood, 
although computationally demanding, could be the most 
powerful approach for phylogenetic inference based on 
molecular sequences (Cavalli-Sforza and Edwards 1967). 
The maximum likelihood optimality criterion searches for 
the phylogenetic tree (topology plus branch lengths) that 
best explains the observed alignment of sequences given an 
explicit statistical Markov model of molecular evolution. It 
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provides a statistical framework to phylogenetic inference 
and thus allows the application of well-known statistical 
tools in downstream analyses. In summary, by the end of 
the 1960s, the theoretical foundations for molecular phylo-
genetics were set but only a handful of molecular sequences 
were available and computing power could barely handle 
most simple maximum likelihood analyses.

The next decade started with a plethora of studies based 
on immunological techniques and protein electrophoresis 
assessing genetic variation within populations, such as that 
of Lewontin (1972), who showed that much of the human 
genetic variation is found within local populations and 
rejected the use of the race concept. Moreover, the 1970s 
witnessed the burst of RNA sequencing (Sanger et al. 1965), 
which culminated in the discovery of the domain Archaea 
(Woese and Fox 1977). In parallel, the popularization of 
molecular cloning techniques using restriction enzymes 
and plasmid vectors (Cohen et al. 1973), together with the 
advent of chain-terminating sequencing (Sanger et al. 1977) 
provided an accurate, robust, and routine methodology to 
obtain DNA sequences. Thereby, at the onset of 1980s, the 
complete human mitochondrial genome was sequenced 
(Anderson et al. 1981) and maximum likelihood algorithms 
to reconstruct trees based on nucleotide sequences were 
developed (Felsenstein 1981), demonstrating that molecular 
phylogenetics could effectively move forward from theory 
to practice. Many influential studies on molecular evolution 
(several here cited; see also other commentaries in this anni-
versary issue) were published in the Journal of Molecular 
Evolution during these years.

The study of Hasegawa et al. (1985) focused on dating 
the divergences of orangutans, gorillas, chimpanzees, and 
humans. A pioneering molecular work (Sarich and Wilson 
1967) based on immunological distances had estimated that 
the split of gorillas and chimpanzees from humans occurred 
about five million years ago (Ma), challenging the commonly 
held paleontological view at that time that this divergence 
could have occurred as far back as 30 Ma. A lively debate 
started confronting molecular and paleontological evi-
dences, and fostered the use of different types of molecular 
data (DNA-hybridization, restriction enzyme cleavage sites, 
protein electrophoresis, amino acid sequences) to provide 
an accurate estimate of divergence dates within hominids. 
Hasegawa et al. (1985) was the first phylogenetic analysis 
tackling this evolutionary question that was based on nucleo-
tide sequences (complete mitochondrial genomes) and used 
maximum likelihood as method of phylogenetic inference. 
The study inferred rather young estimates for the separation 
of gorillas (3.7 ± 0.6 Ma) and chimpanzees (2.7 ± 0.6 Ma) 
from humans, which have not been confirmed later. Recent 
studies using probabilistic methods and large genomic data 
sets provide an estimate for the human-chimpanzee split 
between 4.98 and 7.90 Ma depending on the calibrations 

and the estimates of ancestral population size (Kumar et al. 
2005; Amster and Sella 2016; Moorjani et al. 2016). Simi-
larly, a phylogenetic analysis integrating paleontological 
and genomic data estimated the human-chimpanzee split 
between 6.9–7.9 Ma (Wilkinson et al. 2011).

Despite the study clearly underestimated divergence 
dates between apes, Hasegawa et al. (1985) has been highly 
influential (> 8,000 citations) because it contained a hidden 
jewel. In order to use a model of evolution that could best 
fit the sequence data, the authors made two important deci-
sions. First, they took into account that in a protein-coding 
gene, most synonymous substitutions (implying no amino 
acid replacement) occur in third codon positions, and thus 
they estimated parameters of the model independently for 
first plus second versus third codon positions. Second, it 
had been observed previously that in mitochondrial DNA, 
nucleotide composition was highly biased (G was particu-
larly underrepresented in the L-strand), and that transitions 
i.e., changes between purines (A G) or between pyrimidines 
(C T) were more frequent than transversions, which imply 
changing purines into pyrimidines or vice versa. There-
fore, the authors built a statistical model, henceforth named 
HKY85, which in the so-called Q matrix (Fig. 1) estimated 
separately four nucleotide frequencies as well as two instan-
taneous rates of substitution for transitions and transver-
sions, respectively (Hasegawa et al. 1985).

The quest for best evolutionary models had started with 
the simplest model assuming equal base frequencies and one 
single type of mutations, and continued adding parameters 
that distinguished different types of mutation or unequal 
base frequencies (Fig. 2). The HKY85 model improved all 
previous models while offering a good compromise between 
bias and variance in the estimation of the parameters. Hence, 
it has been the choice in many molecular phylogenetic stud-
ies ever since. The sophistication of evolutionary models 
continued after HKY85, until the most complex evolutionary 
model possible, the general time reversible (GTR) was built 
(Tavaré 1986). Afterwards, it was realized that evolution-
ary models would need also to consider the heterogeneity 

Fig. 1   The Q instantaneous rate matrix for the HKY85 model. The 
order of the nucleotides for columns and rows are A, C, G, and T. 
Each (i,j) entry represents the rate at which a nucleotide i is substi-
tuted by a nucleotide j (in a Markov model this rate is equal for the 
change j to i; i.e., the reversibility property). The diagonal is used to 
constrain the row sums of the matrix to equal zero. π = nucleotide 
frequencies; µ = mean instantaneous substitution rates; k = transition/
transversion ratios; γ = pyrimidines; R = purines
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of substitution rates across the sequence, which can be 
incorporated into the model by estimating the proportion 
of invariable sites (Hasegawa and Horai 1991), the alpha 
parameter of a gamma distribution (Yang 1993), or both (Gu 
et al. 1995). Given the variety of models of nucleotide sub-
stitution available, the Akaike information criterion (Akaike 
1973) has been suggested for selecting the one that best fit 
the data (Posada and Buckley 2004). Furthermore, the same 
criterion can be used to select optimal partition schemes of 
the data (Lanfear et al. 2014).

The build of models of amino acid replacement has fol-
lowed a parallel historical development. In this case, the 
number of changes between the 20 amino acids makes the 
Q matrix really complex, and thus researchers normally 
have opted to use empirical matrices that summarize the fre-
quencies of amino acid replacements observed in large data 
sets such as mtREV (Adachi and Hasegawa 1996), mtART 
(Abascal et al. 2007) and mtZoa (Rota-Stabelli et al. 2009) 
for mitochondrial data and JTT (Jones et al. 1992), WAG 
(Whelan and Goldman 2001), and LG (Le and Gascuel 
2008) for nuclear data.

At the end of the 1980s, the advent of automated Sanger 
sequencing (Ansorge et al. 1987), the popularization of the 
polymerase chain reaction (Saiki et al. 1988), and the design 
of versatile primers to amplify genes in many different liv-
ing organisms (e.g., Kocher et al. 1989) greatly accelerated 
the acquisition of DNA sequence data for molecular phylo-
genetics in the 1990s. Moreover, at the turn of the century 
phylogenetic methods came of age, first by the incorporation 

of likelihood ratio tests that started the possibility of con-
trasting evolutionary hypotheses (Huelsenbeck and Rannala 
1997) and afterwards by the application of Bayesian infer-
ence (Yang and Rannala 1997; Huelsenbeck et al. 2001). 
The latter allowed the use of empirical mixture models for 
across-site heterogeneities (Lartillot and Philippe 2004), 
the implementation of relaxed molecular clocks (Drum-
mond and Suchard 2010), and triggered a burst of phylo-
genetic comparative methods (Revell 2012), among other 
innovations.

Since the advent of high-throughput sequencing technolo-
gies in the last decade, the new field of phylogenomics has 
emerged, allowing the reconstruction of phylogenies based 
on genomic sequences and thus a vast number of characters 
(Lemmon et al. 2012; McCormack et al. 2012). Nonethe-
less, this new field is not exempt of challenges. Genomes 
encode numerous gene families and a first serious problem 
encountered is to separate unambiguously orthologs (gene 
copies due to speciation) from paralogs (gene copies due 
to duplication), as only the former can be used to recon-
struct species trees. The concatenation of multiple genes 
renders robust phylogenetic trees, although it is computa-
tionally intensive and poses modeling challenges. Moreover, 
it disregards single gene tree information, which could be 
incongruent due to diverse evolutionary phenomena. This 
is particularly worrisome when inferring phylogenetic rela-
tionships among closely related taxa, and new methods of 
phylogenetic reconstruction based on coalescence models 
have been devised to account for incomplete lineage sorting, 

Fig. 2   The quest for the best evolutionary model. The simplest 
nucleotide substitution model (JK69; (Jukes and Cantor 1969) was 
improved in the early 1980s by adding parameters that either assumed 

different types of substitution (K80, K81; Kimura 1980, 1981), une-
qual base frequencies (F81; (Felsenstein 1981) or both (HKY85; 
(Hasegawa et al. 1985)
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hybridization, and recombination, although they need to be 
improved in the coming years as they are computationally 
highly demanding (Jiang et al. 2020).

The possibility of reconstructing the Tree of Life as first 
envisioned by Darwin (1859) is closer than ever. Moreover, 
as more whole genomes become available throughout the 
Tree of Life, phylogenetic comparative methods will pave 
the way to link genotype and phenotype variation, thus deci-
sively contributing to a better understanding of the evolu-
tionary processes and mechanisms underpinning the origin 
and maintenance of biological diversity (Smith et al. 2020).
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