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Abstract
SET COVER is one of the well-known classical NP-hard problems. We study the
conflict-free version of the SET COVER problem. Here we have a universe U , a family
F of subsets of U and a graph GF on the vertex set F and we look for a subfamily
F ′ ⊆ F of minimum size that covers U and also forms an independent set in GF .
We study conflict-free SET COVER in parameterized complexity by restricting the
focus to the variants where SET COVER is fixed parameter tractable (FPT). We give
upper bounds and lower bounds for the running time of conflict-free version of SET

COVER with and without duplicate sets along with restrictions to the graph classes
of GF . For example, when pairs of sets in F intersect in at most one element, for a
solution of size k, we give

• an f (k)|F |o(k) lower bound for any computable function f assuming ETH even
if GF is bipartite, but

• an O∗(3k2
) FPT algorithm (O∗ notation ignores polynomial factors of input)

when GF is chordal.
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1 Introduction and PreviousWork

Covering problems are problems in combinatorics that ask whether a certain struc-
ture “covers” another. Covering problems are well-studied in theoretical computer
science. Examples include VERTEX COVER, FEEDBACK VERTEX SET, CLUSTER

VERTEX DELETION among others.
Several of these covering problems can be encapsulated by a problem called SET

COVER which is one of the well-studied classical NP-hard problems. In the SET

COVER problem, we have a universe U , a family F of subsets of U and an integer k

and the goal is to find a subfamily F ′ of size at most k such that
⋃

S∈F ′ S = U .
SET COVER is very well-studied in a variety of algorithmic settings, especially in

the realm of approximation algorithms and parameterized complexity. Unfortunately,
SET COVER when parameterized by solution size k is W[2]-hard [8] and hence is
unlikely to be fixed parameter-tractable (FPT).

It has been seen in computational problems [2–6, 9, 19, 21, 31, 32] where
additional constraints are enforced on the solution we seek. One category of such
problems are choice problems which can be described as follows. The set V from
which we seek a solution subset is partitioned into groups and the solution requires to
pick exactly one representative element from each of the groups. For example, con-
sider the problem MULTICOLORED CLIQUE where the vertex set is partitioned into
groups and the solution we seek is a clique such that exactly one vertex of the clique
is present in each group. Another example in the geometric setting is by Arkin and
Hassin [4] where they look at the following problem. Given a collection of points
partitioned into groups and a matrix describing distance between pairs of points, find
a set of points such that exactly one point is in each of the groups and the set has
minimum diameter.

We can generalize these choice problems to a setting where we say that some pairs
of elements in the problem are in conflict with each other and hence cannot go in the
solution together. This can be modelled by defining a graph on the elements and an
edge (u, v) is added if elements u and v do not go into the solution together or in other
words form a conflict. Hence a solution without conflicts will form an independent
set in this graph. Looking back at the example of MULTICOLORED CLIQUE, we have
a conflict-graph where each group forms a clique and there are no edges across any
pair of groups.

Conflict-free versions of classical problems in P like MAXIMUM FLOW [31],
MAXIMUM MATCHING [9], SHORTEST PATH [21], KNAPSACK [32], BIN PACK-
ING [11] and SCHEDULING [12] have been studied. A study of some geometric
problems in the conflict-free setting was initiated recently [2, 3, 5, 6] motivated
by various applications. Conflict-free version of graph problems like VERTEX

COVER [19], FEEDBACK VERTEX SET [1], SPLIT VERTEX DELETION [19] have
been studied from the parameterized point of view very recently. Some of the prob-
lems above are covering problems. Since SET COVER is a very general covering
problem, studying the conflict-free version of SET COVER contributes to advancing
this framework.
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We look at the conflict-free version of SET COVER defined as follows:

Note that if GF is edgeless, the problem is equivalent to SET COVER as every
subset of vertices of GF forms an independent set. Hence if GF is from a graph
class that contains edgeless graphs, when SET COVER is W[2]-hard with respect to
some parameter, then CONFLICT-FREE SET COVER is also W[2]-hard with respect
to the same parameter. Therefore, the only interesting cases of CONFLICT-FREE SET

COVER are those special instances or parameterizations where SET COVER is FPT
or when GF is from a graph class that does not contain edgeless graphs.

One such example is SET COVER when parameterized by the size of the universe
U . There is a 2|U |(|U | + |F |)O(1) time algorithm for this problem using dynamic
programming over subsets of U [14]. Another example is a restricted version of SET

COVER where every pair of sets in F intersect in at most c elements for a con-
stant c. This version of SET COVER which we call c-INTERSECTION SET COVER is
known to be FPT parameterized by k and has a kernel of universe size ck2 and

(
ck2

c+1

)

sets [33]. Problems like COVERING POINTS BY LINES can be seen as special cases
of c-INTERSECTION SET COVER [23].

We note that like the SET COVER problem, CONFLICT-FREE SET COVER is triv-
ially FPT parameterized by |F | due to the simple brute-force algorithm of choosing
at most k sets from F .

Unlike the SET COVER problem, in CONFLICT-FREE SET COVER duplicate sets
do play an important role. This is because two identical sets in the family F can have
different neighborhood relations in the graph GF which matters in the independence
requirement of the solution. We study CONFLICT-FREE SET COVER both in the
presence and absence of duplicate sets in F . Note that if there are no duplicate sets
in the family F , |F | ≤ 2|U |.

Banik et al. [6] studied CONFLICT-FREE SET COVER in the context of some
geometric covering problems having FPT algorithms. They showed that one of their
geometric covering problems in the conflict-free setting is W[1]-hard parameterized
by solution size k when GF is from those classes of graphs where INDEPENDENT

SET is W[1]-hard. They also showed that CONFLICT-FREE SET COVER is FPT
parameterized by k whenever SET COVER is FPT parameterized by k when GF has
bounded arboricity.

Our results We focus on general CONFLICT-FREE SET COVER as well as the
restricted version c-INTERSECTION SET COVER. Let us refer to the conflict-free ver-
sion of c-INTERSECTION SET COVER as c-INTERSECTION CONFLICT-FREE SET

COVER.
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We refer to Tables 1 and 2 listing results for CONFLICT-FREE SET COVER and c-
INTERSECTION CONFLICT-FREE SET COVER respectively.

• Our first result is an f (k)|F |o(k) time lower bound for 1-INTERSECTION

CONFLICT-FREE SET COVER assuming the Exponential Time Hypothesis
(ETH). The lower bound holds even when GF is restricted to bipartite graphs
where INDEPENDENT SET is polynomial-time solvable. In contrast to this result,
Banik et al. [6] showed hardness for their conflict-free geometric cover prob-
lem when GF is from those classes of graphs where INDEPENDENT SET is
W[1]-hard.

• For 1-INTERSECTION CONFLICT-FREE SET COVER with duplicate sets we give
an f (|U |)|F |o(|U |) lower bound assuming the ETH even when GF is restricted
to bipartite graphs where the INDEPENDENT SET problem can be solved in
polynomial time.

If there are no duplicate sets, the number of sets |F | ≤ 2|U |. Hence CONFLICT-
FREE SET COVER is FPT as the trivial brute-force algorithm of choosing at most

k sets from F is of complexity bounded by
(|F |

k

) ≤ (|F |
|U |

) ≤ (2|U |
|U |

) ≤ 2|U |2 .

• For the upper bound
(|F |
|U |

)
, we give a matching lower bound of 2o(|U | log |F |) for

any value of |F | as well assuming the ETH.
We note that the problem does not have a polynomial kernel as when GF is an

empty graph, the problem becomes SET COVER parameterized by universe size
which does not have a polynomial kernel unless NP ⊆ coNP/poly [7].

• On the positive side, we provide meta-theorems giving FPT algorithms for
CONFLICT-FREE SET COVER parameterized by k whenever SET COVER is

Table 1 Table of results: CONFLICT-FREE SET COVER

GF restriction Solution size k Universe size |U |

General graph W[1]-hard [6]
(|F |
|U |

) ≤ 2|U |2 algorithm

without duplicates,

2|U | log |F | �b (Theorem 5),

W[1]-hard with duplicates (Lemma 3)

Empty graph FPT* † FPT †, npk †

Bipartite f (k)|F |o(k) �b W[1]-hard with duplicates

(Theorem 1) (Lemma 3)

Chordal FPT (Theorem 9), npk †

d-degenerate FPT* [6] FPT †, npk †

Nowhere Dense FPT* (Theorem 7) FPT (Theorem 7), npk †

Bounded #MIS FPT* (Theorem 6) FPT (Theorem 6), npk †

FPT* denotes that the problem is FPT whenever the SET COVER variant is FPT, #MIS abbreviates ‘num-
ber of maximal independent sets’, † denotes results from existing literature (other than those cited), �b

abbreviates ‘lower bound’, npk abbreviates ‘no polynomial kernel’
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Table 2 Table of results: c-INTERSECTION CONFLICT-FREE SET COVER with duplicates

GF restriction Solution size k Universe size |U |

General graph W[1]-hard even if c = 1 W[1]-hard even if c = 1

(Theorem 1) (Lemma 3)

Empty graph FPT, Polynomial Kernel [33] FPT, Polynomial Kernel [33]

Bipartite W[1]-hard even if c = 1 W[1]-hard even if c = 1

(Theorem 1) (Lemma 3)

Chordal FPT (Theorem 10) FPT (Theorem 9)

Cluster FPT (Corollary 2), FPT (Corollary 2)

Polynomial Kernel (Theorem 11) Polynomial Kernel (Theorem 11)

d-degenerate FPT † [6] FPT †

Nowhere Dense FPT (Theorem 7) FPT (Theorem 7)

Bounded #MIS FPT (Theorem 6) FPT (Theorem 6)

FPT* denotes that the problem is FPT whenever the SET COVER variant is FPT, #MIS denote number of
maximal independent sets, † denotes results from existing literature (other than those cited)

FPT and GF belongs to graph classes which are sparse; for example, graphs of
bounded degeneracy or nowhere dense graphs. This is proved using the recently
introduced independence covering family [26]. Furthermore, if GF is a dense
graph like split or co-chordal, we give FPT algorithm whenever SET COVER is
FPT. This algorithm works for a large class of graphs where the number of max-
imal independent sets is polynomial in the number of vertices (that are sets in the
family in our case).

• For c-INTERSECTION CONFLICT-FREE SET COVER, we give an FPT algorithm
parameterized by k when we restrict GF to chordal graphs. This contrasts the
hardness result we have for c-INTERSECTION CONFLICT-FREE SET COVER in
bipartite graphs.

• Furthermore, when we restrict GF to a subclass of chordal graphs called cluster
graphs, we obtain a polynomial kernel for c-INTERSECTION CONFLICT-FREE

SET COVER parameterized by k.
• For CONFLICT-FREE SET COVER parameterized by |U |, since solution size k ≤

|U |, the FPT results listed above for CONFLICT-FREE SET COVER parame-
terized by k also follow for |U |. Furthermore, we give an FPT algorithm for
CONFLICT-FREE SET COVER parameterized by |U | even in presence of dupli-
cates when we restrict GF to interval graphs via a dynamic programming
algorithm using the ordering of the corresponding intervals. We extend this idea
and give an FPT algorithm for chordal graphs which is a superclass of interval
graphs via dynamic programming on the clique tree decomposition of the graph.

• We also study the CONFLICT-FREE SET COVER problem where there is an
underlying (linearly representable) matroid on the family of subsets, and we want
the solution to be an independent set in the matroid. Banik et al. [6] studied this
version for a specialization of SET COVER where the sets are intervals on a real
line.
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We show that even the more general problem (where the sets in the family
are arbitrary) is FPT when parameterized by the universe size, using the idea of
dynamic programming over representative families [15].

We note that this result can be obtained as a corollary of a result by Bevern
et al. [34] where they give algorithms for a generalization of our problem called
uncapacitated facility location problem with multiple matroid constraints. But
our algorithm is simpler and has a better running time when the corresponding
matroid has huge rank.

Structure of the Paper In Section 2, we introduce notions used and give defini-
tions related to graphs, matroids and basic notions of parameterized complexity. In
Section 3, we give the hardness results of some of the variants of CONFLICT-FREE

SET COVER . In Section 4, we give some FPT algorithms and kernels for some
variants of CONFLICT-FREE SET COVER when the conflict-graph is restricted to var-
ious graph classes. Finally in Section 5, we give an FPT algorithm for MATROIDAL

CONFLICT-FREE SET COVER parameterized by universe size.

2 Preliminaries

We use [n] to denote the set {1, . . . , n}. We use the standard terminologies of the
graph theory book by Diestel [10]. For a graph G = (V , E), we denote n as the
number of vertices and m as the number of edges. For S ⊆ V (G), we denote G[S]
to be the subgraph induced on S. A complement of graph G is a graph H on the
same vertices such that two distinct vertices of H are adjacent if and only if they
are not adjacent in G. A set S ⊆ V (G) is called an independent set if for all u, v ∈
S, (u, v) /∈ E(G). Similarly for a subset S ⊆ V (G), G[S] is called a clique if for
every u, v ∈ S, (u, v) ∈ E(G). A neighborhood of a vertex v in a graph G is the set
NG(v) = {u ∈ V (G) : (u, v) ∈ E(G)}. Elements in NG(v) are called the neighbours
of v. The neighborhood of v, denoted by NG[v] is v ∪ NG(v).

An interval graph is a graph formed from a set of intervals on the real line, with
a vertex for each interval and an edge between vertices whose intervals intersect. A
chord in a cycle is an edge between two non-adjacent vertices of the cycle. A chordal
graph is a graph in which any cycle of four or more vertices has a chord. A cluster
graph is a graph where every connected component forms a clique. A graph G is
said to be d-degenerate if every subgraph of G has a vertex of degree at most d . The
arboricity of a graph is the minimum number of forests into which its edges can be
partitioned.

A k-subdivision of a graph G is the graph created from G by subdividing every
edge by exactly k vertices. A graph class is a somewhere dense graph class when
there exists a threshold t such that every complete graph appears as a t-subdivision
in a subgraph of a graph in the class. To the contrary, if such a threshold does not
exist, the class is nowhere dense. We refer to [29] for more details on nowhere dense
graphs.
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Definition 1 (Tree decomposition) Given a graph G = (V , E), a tree decomposition
is a pair (X, T ), where X = {X1, . . . , Xn} is a family of subsets of V , and T is a tree
whose nodes are the subsets Xi , satisfying the following properties:

•
n⋃

i=1
Xi = V .

• For all edges (u, v) ∈ E, there is a subset Xi that contains both u and v.
• If Xi and Xj both contain a vertex v, then all nodes Xk of the tree in the (unique)

path between Xi and Xj contain v as well.

The sets Xi are called the bags corresponding to node i.

Definition 2 (Treewidth) The width of tree decomposition (X, T ) equals maxt∈V (T )

|Xt | − 1. The treewidth of a graph G is the minimum possible width of a tree
decomposition of G.

Definition 3 (Nice Tree decomposition) A nice tree decomposition is a tree decom-
position T satisfying the following properties:

• Let us arbitrarily root the tree T . For the root of the tree r , Xr = ∅.
• Xl = ∅ for all the leaf nodes of the tree.
• Every other node of T are one of three types:

– Introduce Node: A node i with exactly one child j such that Xi = Xj ∪
{v} for some vertex v /∈ Xj .

– Forget Node: A node i with exactly one child j such that Xi = Xj \ {v}
for some vertex v ∈ Xj .

– Join Node: A node i with exactly two children j and j ′ such that Xi =
Xj = Xj ′ .

Lemma 1 (Lemma 7.4 of [8], Lemma 13.1.3 of [22]) Given a tree decomposition
(X, T ) of a graph G of width at most k, in polynomial time one compute a nice tree
decomposition (X′, T ′) of G of width at most k that has at most O(k|V (G)|) nodes.
Moreover, for each t ′ ∈ V (T ′), there is a t ∈ V (T ) such that Xt ′ ⊆ Xt .

Definition 4 (Matroid) A matroid M is a pair (E, I) where E is the ground set and
I is the family of subsets of E (called the independent sets of M) satisfying the
following properties:

• ∅ ∈ I.
• If A′ ⊆ A and A ∈ I, then A′ ∈ I.
• If A, B ∈ I and |A| < |B|, then there exists an e ∈ B \ A such that A ∪ {e} ∈ I.

Definition 5 (Rank of a matroid) For a matroid M = (E, I), an inclusion wise
maximal set of I is called a basis of the matroid. It can be shown that all the bases of
a matroid have the same size. This size is called the rank of the matroid M .
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Definition 6 (Linear Matroid) Let A be a matrix over a field F and let E be the set
of columns of A. We define a matroid M = (E, I) as follows: A subset X ⊆ E is
an independent set of M if and only if the corresponding columns of A are linearly
independent over F. The matroids that can be defined by such a construction over
some field F are called linear matroids. The matrix A corresponding to the matroid
M is called the linear representation of M .

For more details on matroids we refer to [30].

2.1 Parameterized Complexity Notions

Definition 7 (Fixed Parameter Tractability) A subset L ⊆ �∗×N is a parameterized
language. A parameterized language L is said to be fixed parameter tractable (or
FPT) if there exists an algorithm B, a constant c and a computable function f such
that ∀x, ∀k, B on input (x, k) runs in at most f (k) · |x|c time and outputs 1 if and
only if (x, k) ∈ L. We call the algorithm B a fixed parameter algorithm (or FPT
algorithm).

Definition 8 (Parameterized Reduction) Let P1, P2 ∈ �∗ ×N be two parameterized
languages. Suppose there exists an algorithm B that takes input (I, k) (an instance of
P1) and constructs an instance (I ′, k′) of P2 such that the following conditions are
satisfied.

• (I, k) is YES-INSTANCE if and only if (I ′, k′) is YES-INSTANCE.
• k′ ∈ f (k) for some function depending only on k.
• Algorithm B runs in g(k)|I |O(1) time.

Then we say that there exists a parameterized reduction from P1 to P2.

A closely related notion to fixed parameter tractability is the notion of Kerneliza-
tion defined below.

Definition 9 (Kernelization) Let L ⊆ ∑∗ ×N be a parameterized language. Kernel-
ization is a procedure that replaces the input instance (I, k) by a reduced instance
(I ′, k′) such that

• k′ ≤ f (k), |I ′| ≤ g(k) for some function f, g depending only on k.
• (I, k) ∈ L if and only if (I ′, k′) ∈ L.
• The reduction from (I, k) to (I ′, k′) must be computable in poly(|I | + k) time.

If g(k) = kO(1) then we say that L admits a polynomial kernel.

We now define a notion of reduction rule that is useful in designing kernels.

Definition 10 (Reduction Rule) Let L ⊆ ∑∗ ×N be a parameterized language. A
reduction rule is a procedure computable in poly(|I | + k) time that replaces the
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input instance (I, k) by a reduced instance (I ′, k′) such that (I, k) ∈ L if and only if
(I ′, k′) ∈ L.

The property of the reduction rule that it translates an instance to an equivalent
one, i.e (I, k) ∈ L if and only if (I ′, k′) ∈ L is called the safeness of the reduction
rule.

W-hierarchy In order to capture parameterized languages being FPT or not, the W-
hierarchy is defined as FPT ⊆ W[1] ⊆ . . . ⊆ XP. It is believed that this subset
relation is strict. Hence a parameterized language that is hard for some complexity
class above FPT is unlikely to be FPT. If a parameterized language L ⊆ �∗ ×N can
be solved by an algorithm running in O(nf (k)) time, then we say L ∈ XP. In such
situation we also say that L admits an XP algorithm.

We use the following conjecture to prove lower bounds.

Conjecture 1 (Exponential Time Hypothesis (ETH)([17])) 3-CNF-SAT cannot be
solved in 2o(n) time where the input formula has n variables and m = O(n) clauses.

For more details of parameterized complexity, we refer to [8].

3 Hardness Results for Conflict-Free Set Cover

3.1 1-Intersection Conflict-Free Set Cover Parameterized by Solution Size k

The problem c-INTERSECTION SET COVER is known to be in FPT [33]. On the
contrary, for the conflict-free version we show the following.

Theorem 1 1-INTERSECTION CONFLICT-FREE SET COVER cannot be solved in
time f (k)|F |o(k) for solution size k in bipartite graphs for any computable function f

assuming the ETH.

Proof We give a reduction from the problem MULTICOLORED BICLIQUE [8] defined
as follows:

Given an instance of (G, k, A1, . . . , Ak, B1, . . . , Bk) of MULTICOLORED

BICLIQUE with V (G) = {v1, v2, . . . , vn}, we construct an instance of CONFLICT-
FREE SET COVER (U ,F, GF , 2k + 1) without duplicates as follows:

We define the universe U = [2k] ∪ V (G) ∪ {x}. Now, we associate a set corre-
sponding to each vertex of the graph G. For a vertex vj of V (G), let Svj

denote the
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corresponding set. For i ∈ [k], if vj ∈ Ai , define Svj
= {vj , i}. For i ∈ [2k] \ [k],

if vj ∈ Bi−k , define Svj
= {vj , i}. Define a set D = V (G) ∪ {x}. We have F =⋃

v∈V (G) Sv ∪ {D}. The graph GF is obtained by taking the complement of the
graph G, removing all the edges in G[A] and G[B] and adding an isolated vertex
corresponding to the set D. Note that the graph GF remains bipartite.

Note that F is defined in such a way that all pairs of sets intersect in at most one
element. Also there are no duplicate sets in this instance as only the set Svj

other than
D contains the element vj and only D contains the element x.

We claim that (G, k, A1, . . . , Ak, B1, . . . , Bk) is a YES-INSTANCE of MULTI-
COLORED BICLIQUE if and only if (U ,F, GF , 2k + 1) is a YES-INSTANCE of
1-INTERSECTION CONFLICT-FREE SET COVER.

Let S = {a1, . . . , ak, b1, . . . , bk} be the vertices in G that form a multicolored
biclique. Then F ′ = {D, Sa1 , . . . , Sak

, Sb1, . . . , Sbk
} covers U as D covers V (G) ∪

{x} and i ∈ Sai
for i ∈ [k] and i ∈ Sbi−k

for i ∈ [2k] \ [k]. Since the edges
across A and B in G are non-edges in GF and D is an isolated vertex, F ′ forms
an independent set in GF . In the reverse direction, let F ′ = {S1, . . . , S2k+1} be a
solution of size 2k +1 covering U . The set D has to be part of the solution F ′ as only
the set D contains the element x. Now note that an element i ∈ [k] can be covered
only by sets Sv where v ∈ Ai . Similarly an element i ∈ [2k]\[k] can be covered only
by sets Sv where v ∈ Bi−k . Hence the vertices of the sets in F ′ are such that there is
at least one vertex from each of the sets Ai and Bi . Since the budget is limited to 2k

after picking D, exactly one vertex from each of the sets Ai and Bi is contained in
F ′. Since the vertices F ′ \ {D} form an independent set in the bipartite graph GF ,
the corresponding vertices form a biclique in G.

Since MULTICOLORED BICLIQUE cannot be solved in time f (k)|V (G)|o(k) for
solution size k assuming ETH [28], the theorem follows.

3.2 Conflict-Free Set Cover Parameterized by |U |

In the section, we give lower bound results for CONFLICT-FREE SET COVER when
parameterized by the universe size |U |. We study the problem in both the cases when
the family F has duplicate sets and when it does not.

3.2.1 The FamilyF has Duplicates

In this section, we study the case when duplicate sets are allowed in the family F .
Banik et al. [6] has the following hardness result for this case when the graph GF is
restricted to a class where finding independent set of size k is W[1]-hard.

Theorem 2 (Banik et al. [6]) If for a subclass of graphs G , finding an independent
set of size k is W[1]-hard parameterized by k, then CONFLICT-FREE SET COVER

parameterized by |U | is W[1]-hard when GF is restricted to the class G .

Bipartite graphs is one class of graphs where the INDEPENDENT SET prob-
lem can be solved in polynomial time. In contrast to Theorem 2, we show that

524 Theory of Computing Systems (2021) 65:515–540



1-INTERSECTION CONFLICT-FREE SET COVER on bipartite graphs is W[1]-hard.
Note that in Theorem 1 proven previously, the size of the universe can be much larger
than the solution size k and hence the hardness result does not follow from it.

Theorem 3 1-INTERSECTION CONFLICT-FREE SET COVER parameterized by |U |
is W[1]-hard on bipartite graphs.
Proof We again give a reduction from the W[1]-hard problem MULTICOLORED

BICLIQUE.
Given an instance of MULTICOLORED BICLIQUE, we construct an instance of 1-

INTERSECTION CONFLICT-FREE SET COVER as follows: U = [2k]. Let Sv denote
the set corresponding to vertex v we add to F . For i ∈ [k], if v ∈ Ai , define Sv = {i}.
For i ∈ [2k] \ [k], if v ∈ Bi−k , define Sv = {i}. The graph G′ is obtained by
complementing the graph G and removing edges in the graphs G[A] and G[B]. The
graph G′ remains bipartite. Since every set in F is of size one, sets can pairwise
intersect in at most one elements. Hence we can conclude that the instance we have
constructed is a valid 1-INTERSECTION CONFLICT-FREE SET COVER instance.

Note that the construction is very similar to that in Theorem 1, the difference being
the vertex v is not added to sets Sv .

The correctness proof follows similar to Theorem 1.

3.2.2 The FamilyF has No Duplicates

If there are no duplicate sets, the number of sets |F | ≤ 2|U |. Hence CONFLICT-FREE

SET COVER is FPT as the trivial brute-force algorithm of choosing at most k sets

from F is of complexity bounded by
(|F |

k

) ≤ (|F |
|U |

) ≤ (2|U |
|U |

) ≤ 2|U |2 . In this section,

we give a lower bound of 2o(|U | log |F |) under ETH for CONFLICT-FREE SET COVER

without duplicates when GF is bipartite. We do so by giving an appropriate reduction
from the following variant of MULTICOLORED BICLIQUE defined below.

We first note that the reduction from 3-COLORING used in [24] can be modified
so that we get the following lower bound for SMALL MULTICOLORED BICLIQUE.

Theorem 4 SMALL MULTICOLORED BICLIQUE cannot be solved in time 2o(k log s)

under the ETH.
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Proof We give a reduction from 3-COLORING problem. Let G, a graph with N

vertices be the instance of 3-Coloring problem.
Let k = N ·log 3

log s
.

Divide vertices of G into k groups V1, V2, ....Vk of equal size, each size being log s
log 3 .

For each set Vi , list out all the possible valid 3-colorings. There would be at most
3|Vi | ≤ 3log s/ log 3 = 2log 3·log s/ log 3 = 2log s = s colorings. If there is no valid col-
oring for some Vi , we can conclude that we have a NO-INSTANCE of 3-COLORING.
Duplicate some valid colorings so that the number of colorings is exactly s. Let us
call list of colorings of Vi as Pi . Let P = ∪iPi .

Create a graph H with two copies of P , A and B as its vertex set with the cor-
responding partitions P1, . . . , Pk being A1, . . . , Ak and B1, . . . , Bk . Let (Ai, c) and
(Bi, c) denote the vertex corresponding to coloring c in sets Ai and Bi respectively.
We add edges as follows:

Look at colorings c1 ∈ Pi and c2 ∈ Pj . If i 
= j and the colorings c1 of G[Vi]
and c2 of G[Vj ] together forms a valid coloring in the graph G[Vi ∪ Vj ], add edges
from vertex (Ai, c1) to (Bj , c2) and from (Aj , c2) to (Bi, c1).

Now we claim that (H, A1, . . . , Ak, B1, . . . , Bk, k) is a YES-INSTANCE of
SMALL MULTICOLORED BICLIQUE if and only if G has a 3-coloring. For the
reverse direction, let C be a valid 3-coloring of G. Let C|Vi

denote the coloring C

restricted to Vi . We claim the vertices (Ai, C|Vi
) and (Bi, C|Vi

) forms a biclique.
Suppose not. Then there is an absence of edge between two vertices (Ai1 , C|Vi1

) and
(Bi2 , C|Vi2

). But then this means that C|Vi1
∪C|Vi2

= C|Vi1∪Vi2
is not a valid coloring

of G[Vi1 ∪ Vi2] giving a contradiction.
For the forward direction, let the vertices (A1, c1), . . . , (Ak, ck), (B1, c1),

. . . , (Bk, ck) form a biclique. We say that ∪ici is a valid coloring of the graph
G. Suppose not. Then there is a monochromatic edge (u, v) in G. Both u and
v cannot belong to a group Vi as corresponding 3-coloring ci is a valid 3-
coloring of G[Vi]. So u and v belong to different groups i1 and i2. But then
there will not be an edge between vertices (Ai1 , ci1) and (Bi2 , ci2) as ci1 and ci2

together does not form a valid 3-coloring of G[Vi1 ∪ Vi2]. contradicting that the
vertices (A1, c1), . . . , (Ak, ck), (B1, c1), . . . , (Bk, ck) form a biclique.

Now suppose there is 2o(k log s) running time algorithm for SMALL MULTICOL-
ORED BICLIQUE. Then there is a 2o(N ·log 3) = 2o(N) time algorithm for 3-coloring
violating the ETH.

Theorem 5 CONFLICT-FREE SET COVER without duplicates when GF is bipartite
cannot be solved in time 2o(|U | log |F |) under ETH.

Proof Given an instance of (G, A1, . . . , Ak, B1, . . . , Bk) of SMALL MULTICOL-
ORED BICLIQUE with V (G) = {v1, v2, . . . , vn}, we construct an instance of
CONFLICT-FREE SET COVER (U ,F, GF , 2k + 1) without duplicates as follows:

Let us define sets Z = {z1, z2, . . . , z�log n�} and O = {o1, o2, . . . , o�log n�}.
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We define the universe U = [2k] ∪ Z ∪ O ∪ {x}.
Let us look at vertex vj ∈ V and construct sets Svj

∈ F . Let us map j to its binary
representation b1, b2, . . . , b�log n� where bi denotes the ith bit of the number j . We
create a set Tj as follows: for all i ∈ [�log n�], when bi = 0, add zi to Tj , else
add oi to Tj . For i ∈ [k], if vj ∈ Ai , define Svj

= {i} ∪ Tj . For i ∈ [2k] \ [k],
if vj ∈ Bi−k , define Svj

= {i} ∪ Tj . Define another set D = Z ∪ O ∪ {x}. We
have F = ⋃

v∈V (G) Sv ∪ {D}. The graph GF is obtained by taking the complement
of the graph G, removing the edges in the graphs G[A] and G[B] independent and
adding an isolated vertex corresponding to the set D. Note that the graph GF remains
bipartite.

Note that the construction is almost exactly the same as in Theorem 1 but the
vertices are encoded in binary form.

We now claim that (G, k, A1, . . . , Ak, B1, . . . , Bk) is a YES-INSTANCE of SMALL

MULTICOLORED BICLIQUE if and only if (U ,F, GF , 2k + 1) is a YES-INSTANCE

of CONFLICT-FREE SET COVER .
Let S = {a1, . . . , ak, b1, . . . , bk} be the vertices in G that form a multicolored

biclique. Then F ′ = {D, Sa1 , . . . , Sak
, Sb1, . . . , Sbk

} covers U as D covers Z∪O∪{x}
and i ∈ Sai

for i ∈ [k] and i ∈ Sbi−k
for i ∈ [2k]\[k]. Since the edges across A and B

in G are non-edges in GF and D is an isolated vertex, F ′ forms an independent set
in GF . In the reverse direction, let F ′ = {S1, . . . , S2k+1} be a solution of size 2k + 1
covering U . The set D has to be part of the solution F ′ as only the set D contains
the element x. Now note that an element i ∈ [k] can be covered only by sets Sv

where v ∈ Ai . Similarly an element i ∈ [2k] \ [k] can be covered only by sets Sv

where v ∈ Bi−k . Hence the vertices of the sets in F ′ are such that there is at least
one vertex from each of the sets Ai and Bi . Since the budget is limited to 2k after
picking D, exactly one vertex from each of the sets Ai and Bi is contained in F ′.
Since the vertices F ′ \ {D} form an independent set in the bipartite graph GF , the
corresponding vertices form a biclique in G.

Note that in the SMALL MULTICOLORED BICLIQUE instance, n = 2k · s ≤ 2k .
Since log n ≤ k, |U | ≤ 4k + 1.

Now suppose CONFLICT-FREE SET COVER has an algorithm with running
time 2o(|U | log |F |). Since s = |F |

2k
and |U | ≤ 4k + 1, we have a running

time of 2o(4k log(2k·s)) = 2o(k(log s+log k) = 2o(k log s) for SMALL MULTICOLORED

BICLIQUE violating the ETH.

4 Algorithms

In this section, we give algorithms for variants of CONFLICT-FREE SET COVER

when the graph GF is restricted to different graph classes.

4.1 Conflict-Free Set Cover Parameterized by Solution Size k

In the following results, we restrict the graph GF .
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4.1.1 Graphs With Bounded Number of Maximal Independent Sets

Theorem 6 WhenGF is restricted to a graph where the number of maximal indepen-
dent sets is polynomial in |F |, if the restricted variant of SET COVER can be solved
inO∗(f (k)) time, then the corresponding CONFLICT-FREE SET COVER variant can
be solved in O∗(f (k)) time.

Proof We first note that since the maximal independent sets of a graph can be enu-
merated with polynomial delay(the maximum time taken between outputting two
consecutive solutions) [20], they can be enumerated in time polynomial in |F | for the
given graph GF .

For each maximal independent set I of GF , we run the O∗(f (k)) algorithm for
SET COVER with the family F containing sets corresponding to the vertices in I .
Since the solution X of CONFLICT-FREE SET COVER is an independent set, X ⊆ I ′
for some maximal independent set I ′. So if the SET COVER algorithm returns YES
for any I , return YES, else return NO.

As the number of maximal independent sets in split graphs (since at most one
vertex of the clique can be in the independent set), co-chordal graphs [16] and 2K2-
free graphs [13] are polynomial in the number of vertices and can be enumerated in
polynomial time, we have the following corollary.

Corollary 1 If SET COVER can be solved in O∗(f (k)) time, then CONFLICT-FREE

SET COVER can be solved in O∗(f (k)) time when GF is restricted to split graphs,
co-chordal graphs or 2K2-free graphs.

4.1.2 Nowhere Dense Graphs

Nowhere dense graph class contains a number of graph classes such as graphs
with bounded degree, graphs with bounded local treewidth, graphs with bounded
expansion and graphs that locally exclude a fixed minor.

We define the notion of k-Independence Covering Family introduced by [26].

Definition 11 (k-Independence Covering Family) For a graph G and integer k, a
family of independent sets of G is called an independence covering family for (G, k),
denoted by F (G, k), if for any independent set X in G of size at most k, there exists
an independent set Y ∈ F (G, k) such that X ⊆ Y .

In [26], the authors construct a k-independence covering family for nowhere dense
graphs.

Lemma 2 (Lokshtanov et al. [26]) Let G be a nowhere dense graph and k be an
integer. There is a deterministic algorithm that runs in time

O
(
f (k,

1

k
) · n1+o(1) + g(k) ·

(
k2

k

)

· 2o(k2) · n(n + m) log n
)
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and outputs a k-independence covering family for (G, k) of size O(g(k)
(
k2

k

) · 2o(k2) ·
n log n) where f is a computable function and g(k) = (f (k, 1

k
))k .

We get the following theorem.

Theorem 7 If the restricted variant of SET COVER can be solved in O∗(h(k)) time
with solution size k and a computable function h, then the corresponding CONFLICT-

FREE SET COVER variant has an algorithm with running time O∗(h(k)g(k)
(
k2

k

) ·
2o(k2)) for nowhere dense graphs for a computable function g.

Proof We use Lemma 2 on GF to get a k-independence covering family F (GF , k).
For each independent set Y ∈ F (GF , k), we run the algorithm for SET COVER

for the instance (U , Y, k) in O∗(h(k)) time. If for any of the sets Y , (U , Y, k) is a
YES-INSTANCE, we return YES. Otherwise we return NO.

Let X be the solution of size k. There is a set Y in F (GF , k) such that X ⊆ Y .
Hence when we run the algorithm for SET COVER in instance (U , Y, k), since G[Y ]
is an independent set, the algorithm will return X.

We note that Banik et al. [6] has proven that CONFLICT-FREE SET COVER is
FPT parameterized by k if the SET COVER variant is FPT parameterized by k when
GF is a graph of bounded arboricity. The result also holds for graphs with bounded
degeneracy as the degeneracy of a graph is also bounded when the arboricity is
bounded. A k-Independence Covering Family can also be constructed for graphs with
bounded degeneracy [26]. We note that an alternate algorithm for CONFLICT-FREE

SET COVER parameterized by k when GF has bounded degeneracy can be obtained
using the ideas used for nowhere dense graphs earlier. Note that graphs with bounded
degeneracy contain many other graph classes such as planar graphs and graphs with
bounded treewidth.

4.2 Conflict-Free Set Cover Parameterized by |U |whenF has Duplicates

We remind that when F has no duplicates, CONFLICT-FREE SET COVER parame-
terized by |U | is trivially FPT as |F | ≤ 2|U |. Hence we focus the case when there are
duplicate sets in F . Again we restict the graph GF .

4.2.1 Interval Graphs

Before we state our result, let us focus on some properties of interval graphs. Let us
order the vertices of a given interval graph G as v1, . . . , vn based on the increasing
value of their left endpoints. Let the indices 1, . . . , n denote the intervals. Let l(i)

and r(i) denote the left and right endpoints of interval i respectively.
Look at a vertex vi and its neighborhood N(vi) in the set {vi+1, . . . , vn}.

Let vj , vk ∈ {vi+1, . . . , vn} such that (vi, vj ) ∈ E(G) and (vi, vk) /∈ E(G). By def-
inition, vi and vj has an edge if intervals i and j intersect. Hence l(j) ≤ r(i). Also
since intervals i and k do not intersect, r(i) ≤ l(k). Hence we have l(j) ≤ l(k). Since
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this is true for any non-neighbor of vi in {vi+1, . . . , vn}, we have shown that all the
non-neighbors of vi to its right comes after the last neighbor of vi to its right. We
make use of this ordering to give a dynamic programming algorithm for CONFLICT-
FREE SET COVER with duplicates on interval graphs. Note that the ordering can
be obtained in time linear in |V (G)| by arranging them according to their leftmost
endpoints.

Theorem 8 CONFLICT-FREE SET COVER with duplicate sets when GF is restricted
to interval graphs can be solved in O∗(2|U |) time.

Proof Let the sets of F = {S1, . . . Sm} be ordered in the reverse order of the ordering
described above. For each subset W ⊆ U , and i ∈ [m], define DP [W, i] as the size
of the minimum set X ⊆ {S1, . . . Si} such that X covers W and vertices of X are
independent in GF . Initially, set DP [∅, 0] = 0 and DP [X, 0] = ∞ when X 
= ∅.
We have the following recursive formula for DP [W, i].

DP [W, i] = min
{
1 + DP [W \ Si, �], DP [W, i − 1]} (1)

where � is the index of the rightmost non-neighbor of Si in GF [{S1, . . . , Si−1}].
The correctness proof of the above equation is as follows.
Let X be the optimal solution for DP [W, i]. The subfamily X either contains the

set Si or it does not. When X does not contain Si , then it is a valid candidate for
DP [W, i − 1] and hence |X| ≥ DP [W, i − 1]. When it contains Si , X \ {Si} is
a valid candidate for DP [W \ Si, �] and hence |X| − 1 ≥ DP [W \ Si, �]. Hence
DP [W, i] ≥ min

{
1 + DP [W \ Si, �], DP [W, i − 1]}.

Let Y be the optimal solution for DP [W \ Si, �]. Then Y ∪ Si is a valid candidate
for DP [W, i] since {S1, . . . S�} contains only non-neighbors of Si as all the neighbors
of Si follows after the rightmost non-neighbor of Si which is S�. Hence DP [W, i] ≤
1 + DP [W \ Si, l]. Let Z be the optimal solution for DP [W, i − 1]. Then Z is also
a valid candidate for DP [W, i]. Hence DP [W, i] ≤ DP [W, i − 1].

The entry DP [W, m] contains the size of the minimum-sized solution of
CONFLICT-FREE SET COVER . The number of subproblems is

∑
j∈[|U |]

(|U |
j

) · m

and at each subproblem O(m) time is spent to find �. Hence the running time is
∑

j∈[|U |]
(|U |

j

) · O(m) = O∗(2|U |).

Now we give a O∗(3|U |)-time dynamic programming algorithm for chordal graphs
which is a superclass of interval graphs.

4.2.2 Chordal Graphs

A clique tree decomposition is a tree decomposition T where for all nodes i ∈ V (T ),
the vertices of in the bag Xi are such that G[Xi] forms a clique. All chordal graphs
have clique tree decompositions that can be found in polynomial time [16]. Given a
clique tree decomposition, it can be converted to a nice clique tree decomposition in
polynomial time using Lemma 1. Note from Lemma 1 that every bag of the new nice
tree decomposition is a subset of some bag of the original tree decomposition. Hence
every bags in the nice tree decompositions are also cliques.
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In the theorem below, we give an algorithm for CONFLICT-FREE SET COVER

with duplicates on chordal graphs using dynamic programming on the nice clique
tree decomposition of the graph.

Theorem 9 CONFLICT-FREE SET COVER with duplicates on chordal graphs can
be solved in O∗(3|U |) running time.

Proof For the instance (U ,F, GF , k) of CONFLICT-FREE SET COVER , let T be the
tree of the nice clique tree decomposition of the chordal graph GF . For a node i ∈
V (T ), let Ti denote the subtree rooted at node i, Vi denote the vertices of G in the
bags of nodes of Ti and Xi denote the vertices in the bag of node i. Note that since
we are looking for a solution that is also independent set in the chordal graph, from
each bag no more than one vertex can be in the solution as G[Xi] forms a clique.

For each subset W ⊆ U , node i ∈ V (T ) and x ∈ Xi , let DP [W, i, x] denote the
size of the minimum-sized independent set Y of the graph G[Vi] covering W such
that x ∈ Y . Node x can take empty value ∅ as well to denote no vertex is picked
from the bag Xi . Initially, set all entries to ∞ denoting that no such solution exists.
We have the following recurrence relations for each type of node in T to compute
DP [W, i, x]:
• Leaf Node:

DP [W, i, ∅] =
{

0 if W = ∅,

∞ otherwise

• Introduce Node: Let i the the parent of node j and vertex v is introduced in Xi .

DP [W, i, x] =
{

DP [W, j, x] if x 
= v

1 + DP [W \ Sv, j, ∅] when x = v

• Forget Node: Let i the the parent of node j and vertex v is forgotten in Xi .

DP [W, i, x] =
{

DP [W, j, x] if x 
= ∅
min

{
DP [W, j, ∅], DP [W, j, v]} when x = ∅

• Join Node: Let i be the parent of two nodes j and j ′ and Xi = Xj = X′
j .

DP [W, i, x] =
⎧
⎨

⎩

min
W1⊆W

{
DP [W1, j, x] + DP [W \ W1, j

′, x] − 1
}

if x 
= ∅
min

W1⊆W

{
DP [W1, j, ∅] + DP [W \ W1, j

′, ∅]} when x = ∅
The entry DP [U , r, ∅] contains the size of the minimum-sized solution of

CONFLICT-FREE SET COVER where r is the root of the tree. The number of subprob-

lems is O(
|U |∑

j=1

(|U |
j

) · |T | · |F |). The maximum time spent on computing DP [W, i, x]
where |W | = j is O(2j ) for going over all subsets W1 at the join node. Hence the

overall running time is O∗( |U |∑

j=1

(|U |
j

) · 2j
) = O∗(3|U |).
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Correctness of Recurrence Relations For ease of writing, let us denote the terms
present in the left hand side of the equation as LHS and in the right hand side of
the equation as RHS. For each recurrence relations defined above, we prove its cor-
rectness by showing inequality in both sides. We use the term optimal solution for a
DP entry to denote the minimum-sized conflict-free set cover corresponding to the
entry and candidate solution for a DP entry to denote any conflict-free set cover
corresponding to the entry (need not be of minimum size).

• Introduce Node:
Let X be the optimal solution for the entry DP [W, i, x]. By definition x ∈ X.

If x 
= v, X is also a candidate solution for DP [W, j, x] as Vi \ {v} = Vj . If
x = v, X \ {v} is a candidate solution for DP [W, j, ∅] as no y ∈ Xi, y 
= v can
be in X \ {v} since G[Xi] is a clique. In either case, the value at RHS can be
either the size of LHS or even lower. Hence, LHS ≥ RHS.

Let Y be the optimal solution for DP [W, j, x]. If x 
= ∅, the set Y is also a
candidate solution for DP [W, i, x]. Hence LHS ≤ RHS. If x = ∅, look at Z,
the solution for DP [W \ Sv, j, x]. Since all the edges of v in the graph G[Vi] is
in bag Xi , Z ∪ {v} is also an independent set and it covers W . Hence both Y and
Z are candidate solutions for DP [W, i, x] when x = ∅. Hence LHS ≤ RHS.

• Forget Node:
Let X be the optimal solution for DP [W, i, x] such that X ∩ Xi = {x}

with x 
= ∅. Since Vj = Vi , X is also a solution for G[Vj ] such that X∩Xi = {x}
and hence a candidate solution for DP [W, j, x]. Hence LHS ≥ RHS. Similarly
we can prove the inequality in the other direction.

When x = ∅, let X be the optimal solution for DP [W, i, x] such that X∩Xi =
∅. Since Vj = Vi , X is also a solution for G[Vj ] such that X ∩ Xi = ∅ and
hence a candidate solution for DP [W, j, x]. Also if v ∈ X, X is a candidate
solution for DP [W, j, v] as well. If v ∈ X, DP [W, j, ∅] ≥ DP [W, j, v]. Hence
LHS ≥ RHS.

Let Y be the optimal solution for the minimum of two entries DP [W, j, ∅]
and DP [W, j, v]. If the minimum is DP [W, j, v] , then Y \ {v} is a candidate
solution of DP [W, i, ∅]. Else Y is also a candidate solution of DP [W, i, ∅].
Hence LHS ≤ RHS.

• Join Node:
Let X be the optimal solution for the entry DP [W, i, x]. When x 
= ∅

and G[Xi] forms a clique, X ∩ Xi = {x}. Let W1 and W2 be the subset of ele-
ments covered by Yj = X ∩ Vj and Yj ′ = X ∩ Vj ′ respectively. Note that since
X covers W , W1 ∪ W2 = W . Since X is an independent set, Yj and Yj ′ are inde-
pendent sets as well as they both are subsets of X. Note that Yj ∩ Yj ′ = {x}.
Hence Yj and Yj ′ respectively are candidate solutions to entries DP [W1, j, x]
and DP [W \ W1, j

′, x] as W \ W1 ⊆ W2. Since x is the only entry common to
both of them, we have LHS ≥ RHS.

Let Zj and Zj ′ be the optimal solutions for the entries DP [W1, j, x] and
DP [W2, j

′, x] where W2 = W \ W1. Since Xi = Xj = X′
j and G[Xi] forms a

clique, Zj ∩ Xj = Zj ′ ∩ Xj = {x}. Look at the set Z = Zj ∪ Zj ′ . The set Z is
an independent set since Zj and Zj ′ are independent sets and since there are no
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edges across G[Vj \Xi] and G[Vj ′ \Xi] by the definition of tree decomposition.
Hence Z is a candidate solution for the entry DP [W, i, x] of size |Zj |+|Zj ′ |−1.
Therefore LHS ≤ RHS.

When x = ∅, using similar arguments we can prove that LHS = RHS.

4.3 c-Intersection Conflict-Free Set Cover Parameterized by k

When GF is a chordal graph, we could not come up with a meta-theorem like we
had earlier in Section 4.1 for split graphs, nowhere dense graphs etc which gave an
FPT algorithm for CONFLICT-FREE SET COVER given that the restricted version of
SET COVER has an FPT algorithm. Hence we focus on a particular restriction of SET

COVER known to be FPT which is c-INTERSECTION SET COVER and give an FPT
algorithm for the conflict-free version. Note that on the contrary, Theorem 1 shows
that the problem is W[1]-hard when GF is bipartite even when c = 1.

Given the instance (U ,F, GF , k). We start the algorithm with the following
reduction rule.

Reduction Rule 1 If there is a set S ∈ F such that |S| > ck, then put S in the
solution and drop k by 1. The new instance is (U ′,F ′, G′

F , k − 1) where U ′ = U \ S,
F ′ = F \ N[S] and G′

F = GF [F ′].

Claim 1 Reduction Rule 1 is safe.

Proof Let I ′ = (U ′,F ′, G′
F , k′) be the instance of c-INTERSECTION CONFLICT-

FREE SET COVER after applying Reduction Rule 1 to instance I = (U ,F, GF , k) for
a set S ∈ F . We show that I is a YES-INSTANCE if and only if I ′ is a YES-INSTANCE.

Let X ⊆ F be a solution of size at most k. We claim that S ∈ X . Suppose not.
The elements of S has to be covered by the other sets in F . We know that for any set
S′ ∈ F , |S′ ∩ S| ≤ c. Since |X | ≤ k, X can cover only at most ck elements of S.
Since |S| > ck, X do cover the set S giving a contradiction.

We claim that the set X ′ = X \ S is a solution of size at most k′ ≤ k − 1
to the instance I ′. Suppose not. Note that all the sets in X ′ are present in F ′ =
F \ N[S] as they cannot be present in N[S] which would contradict the fact that
X is an independent set in GF . Since X covers U , X ′ covers U ′ = U \ S. Also
since X is an independent set in GF , X ′ is an independent set in G′

F . Hence I ′ is a
YES-INSTANCE.

Conversely, let Y ′ be a solution of size k′ to the instance I ′. We claim that Y =
Y ′ ∪ S is a solution of size at most k to the instance I . Since Y ′ is an independent set
in G′

F and F ′ = F \ N[S], Y is an independent set in GF . Also since U ′ = U \ S,
Y covers U .

We apply Reduction Rule 1 exhaustively. Note that by applying Reduction Rule 1,
we introduce duplicate sets. Afterwards, we can assume that the size of every set in
F has size at most ck. We now apply the following reduction rule.

Reduction Rule 2 If |U | > ck2, return NO.
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Since every set in F has size at most ck, a solution of size at most k can cover at
most ck2 elements. Hence if |U | > ck2, there is no solution of size k and hence we
return NO.

After applying Reduction Rules 1 and 2 exhaustively in order, we get an instance
where the universe size |U | ≤ ck2, a function of k. Hence the problem can now be
treated as an instance of CONFLICT-FREE SET COVER parameterized by |U |. We use
Theorem 9 to get an FPT algorithm with running time O∗(3|U |) = O∗(3ck2

). Hence
we have the following theorem.

Theorem 10 c-INTERSECTION CONFLICT-FREE SET COVER whenGF is a chordal
graph has an algorithm with a running time of O∗(3ck2

).

4.3.1 Polynomial Kernel in Cluster Graphs

In this section, we show a polynomial kernel for cluster graphs which is a subclass
of chordal graphs.

We initially apply Reduction Rules 1 and 2 exhaustively in order. Hence we can
assume that the universe size is at most ck2.

We first claim that there are only
(

ck2

c+1

)
distinct sets present in F . Let us look at an

arbitrary subset A of c + 1 elements from U . There is only one set S ∈ F such that
A ⊆ S. Suppose there also exist S′ ∈ F, S′ 
= S such that A ⊆ S′. Then we have
A ⊆ S ∩ S′. Hence |S′ ∩ S| > c giving a contradiction.

Hence we can create an injective map from each distinct set in F of size at least c+
1 to a subset of c + 1 elements of U . Since there are at most

( |U |
c+1

)
such subsets, there

are at most
(

ck2

c+1

)
distinct elements in F of size at least c + 1. The number of distinct

sets in F of size at most c is also bounded by
( |U |
c+1

) ≤ (
ck2

c+1

)
. Hence we can conclude

that the total number of distinct elements in F is at most
(

ck2

c+1

)
.

Hence to bound the size of F , we only need to bound the number of duplicates in
F .

Let C1, C2, . . . , Cp the components in the cluster graph GF , each component
being a clique. We have the following reduction rule.

Reduction Rule 3 If a component Ci where i ∈ [p] has two vertices v and v′ where
the set corresponding to both vertices is the same set S, delete v′ from F .

Both the vertices v and v′ cover the same set S and have the same closed neigh-
borhood set which is the the entire clique. Since a solution will contain only at most
one vertex from Ci as it is a clique, the Reduction Rule 3 is safe.

We apply Reduction Rule 3 to all components Ci for i ∈ p. Since all the sets in Ci

are distinct afterwards, we have |Ci | ≤ (
ck2

c+1

)
.

We have the following reduction rule to take care of duplicate sets among different
components Ci .
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Reduction Rule 4 For each distinct set S ∈ F , if there are more than k vertices
whose corresponding set is S, keep arbitrarily selected k + 1 vertices whose set is S

and delete the rest of the vertices.

After applying this rule, we can conclude that every set in F has at most k

duplicates.

Claim 2 Reduction Rule 4 is safe on instances of c-INTERSECTION CONFLICT-FREE

SET COVER where GF is a cluster graph.

Proof Let I ′ = (U ′,F ′, G′
F , k′) be the instance of c-INTERSECTION CONFLICT-

FREE SET COVER after applying Reduction Rule 4 to instance I = (U ,F, GF , k)

for a set S ∈ F . We show that I is a YES-INSTANCE if and only if I ′ is a
YES-INSTANCE.

Let X be a solution of size at most k for I . We construct a subset of vertices X′
in the instance I ′ as follows. The set X′ is initially empty. In phase 1, for each vertex
v ∈ X, if the number of duplicates of the corresponding set Sv is not more than k in
I , then v is also present in I ′. Add v to X′. Mark v and the corresponding component
containing v. If the number of duplicates of Sv is more than k in I , we do nothing.

After we do this for every vertex in X, phase 2 begins. Every unmarked ver-
tex v ∈ X has more than k duplicates in I . For each such vertex v we add a
vertex w to X′ from an unmarked component whose corresponding set is Sv . Mark
the corresponding component containing w.

Note that the procedure to construct X′ terminates without fail. This is because
there is an unmarked component containing vertex Sv at every step where a vertex is
added since we keep k + 1 duplicates for v which is present in different components
of GF .

We claim that X′ is a solution for the instance I ′. Clearly X′ covers U as the sets
corresponding to each vertices in X′ remains the same as X. Also since at each time,
a vertex in X′ is added from an unmarked cluster, X′ also forms an independent set.

Conversely a solution Y for I ′ is also a solution for I as all the vertices of Y are
also present in I .

After applying reduction rules 1 to 4 exhaustively in order, it is easy to see that we
get a kernel for c-INTERSECTION CONFLICT-FREE SET COVER with universe size

ck2 and family size (k + 1) · (
ck2

c+1

)
. We have the following theorem.

Theorem 11 c-INTERSECTION CONFLICT-FREE SET COVER parameterized by k

when GF is a cluster graph has a kernel with universe size ck2 and family size

(k + 1) · (
ck2

c+1

)
.

Using the kernel, we get a better FPT algorithm when GF is a cluster graph by
going over all the k-sized subsets of F .
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Corollary 2 c-INTERSECTION CONFLICT-FREE SET COVER parameterized by k

when GF is a cluster graph has an FPT algorithm with running time O∗(
(
(k + 1) ·

(
ck2

c+1

))k

)) = O∗(kO(ck)).

5 Matroidal Conflict-Free Set Cover

In this section, we study the MATROIDAL CONFLICT-FREE SET COVER problem
where the conflicting condition is being an independent set in a (representable)
matroid.

Let Fp� denote a finite field of order p� where p is a prime and � is a positive
integer. Also we denote by Q the field of rationals. Let us first define the MATROIDAL

CONFLICT-FREE SET COVER problem as follows.

Note that we need the linear representation of the matroid M over a field F where
F = Fp� or F is Q. This is due to technical reasons which will be revealed later.

We give a dynamic programming algorithm for MATROIDAL CONFLICT-FREE

SET COVER containing duplicate sets using computation of representative sets not-
ing that the similar ideas used in [6] for INTERVAL COVERING can be extended to
MATROIDAL CONFLICT-FREE SET COVER .

For W ⊆ U , let BW denote the collection of subfamilies X of F of size at most k

such that X covers W and forms an independent set in the matroid M .

BW = {X ⊆ F
∣
∣
∣ |X| ≤ k, W ⊆

⋃

S∈X

S and X ∈ I}

Note that BU contains all the solutions of size at most k of MATROIDAL

CONFLICT-FREE SET COVER . Hence we solve the MATROIDAL CONFLICT-FREE

SET COVER problem by checking whether BU is empty or not.

Definition 12 (q-representative family [27]) Let M = (E, I) be a matroid and A be
a family of sets of size p in M . For sets A, B ⊆ E, we say that A fits B if A∩B = ∅
and A ∪ B ∈ I. A subfamily Â ⊆ A is said to q-represent A if for every set B of
size q such that there is an A ∈ A that fits B, there is an Â ∈ Â that also fits B. We
use Â ⊆q

rep A to denote that Â q-represents A.

Lemma 3 (Fomin et al. [15]) For a matroid M = (E, I) and S ⊆ E, if S1 ⊆q
rep S

and S2 ⊆q
rep S1, then S2 ⊆q

rep S.
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Note that BU is nonempty if and only if B̂U ⊆0
rep BU is nonempty. Let us

define BWj as the subset of BW containing sets of size exactly j . We use B̂W ⊆1,...,k
rep

BW to denote that B̂W contains the union of all the i-representative families of BW

where 1 ≤ i ≤ k. In other words,

B̂W =
k⋃

j=1

(
B̂Wj ⊆k−j

rep BWj
)

Lemma 4 (Lokshtanov et al. [25]) LetM = (E, I) be a linear matroid of rank n and
S be a family of t independent sets of size p. Let A be a n×|E| matrix representation
of M over a field F where F = Fp� or F isQ. Then there is a deterministic algorithm

to compute Ŝ ⊆q
rep S of size np

(
p+q

p

)
inO

((
p+q

p

)
tp3n2 + t

(
p+q

p

)ω−1
(pn)ω−1

)+(n+
|E|)O(1)) operations over F where ω is the matrix multiplication exponent.

Note that Lemma 4 is applicable only when the matroid is represented over a
field F where F = Fp� or F is Q. This is why we imposed a similar restriction for
the matroid representation in the definition of MATROIDAL CONFLICT-FREE SET

COVER .

Theorem 12 MATROIDAL CONFLICT-FREE SET COVER can be solved in
O∗(2(ω+1)·|U |) time where ω is the matrix multiplication exponent.

Proof Let D be an array of size 2|U | with D[W ] storing the family B̂W ⊆1,...,k
rep BW .

We compute the entries of D in the increasing order of subsets of U . To do so we
compute the following:

NW =
⋃

Si∈F
(D[W \ Si] • Si) ∩ I (2)

where A • B = {A ∪ B | A ∈ A and B ∈ B and A ∩ B = ∅}.
We show that NW ⊆1,...,k

rep BW . Let S ∈ BWj and Y be a set of size k − j such that
S∩Y = ∅ and S∪Y ∈ I. We give a set Ŝ ∈ NWj such that Ŝ∩Y = ∅ and Ŝ∪Y ∈ I.

Let S = {S1, S2, . . . , Sj }. Let S′ = S \{Sj }. Let Y ′ = Y ∪{Sj }. Then, |S′| = j −1
and |Y ′| = k − j + 1. Since S′ covers W \ Sj , S′ ∈ B(W\Sj )(j−1). By definition,

D[W \ Sj ] contains B̂(W\Sj )(j−1) ⊆k−j+1
rep B(W\Sj )(j−1) and hence a set S∗ ∈ D[W \

Sj ] such that S∗ ∩ Y ′ = ∅ and S∗ ∪ Y ′ ∈ I. From (2), S∗ ∪ {Sj } ∈ NW . The set
Ŝ = S∗ ∪ {Sj } is such that Ŝ ∩ Y = ∅ and Ŝ ∪ Y ∈ I. Hence NW ⊆1,...,k

rep BW .

We store N̂W ⊆1,...,k
rep NW in D[W ]. The sets N̂Wj are computed using Lemma 4.

We have N̂Wj ⊆k−j
rep NWj ⊆k−j

rep BWj for all 1 ≤ j ≤ k. Hence from Lemma 3, we

have D[W ] = N̂W ⊆1,...,k
rep BW .

We now focus on the running time to compute D[W ] and the size of D[W ].
Assume that D[Y ] is precomputed for all subsets Y ⊆ W . We have |D[Y ]| =
|N̂ Y | =

k∑

j=1
|N̂ Yj |. From Lemma 4, |N̂ Yj | ≤ |F | · k · (

k
j

)
. Hence from (2), putting
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Y = W \ Si , we have |NWj | ≤ |F |2 · k · (
k
j

)
. Using Lemma 4, the time to compute

N̂Wj ⊆k−j
rep NWj is O∗((k

j

)2 + (
k
j

)ω)
where ω is the exponent for matrix multiplica-

tion. Hence the total time to compute D[W ] is
k∑

j=1
O∗(

(
k
j

)ω
) = O∗(2ωk). The size of

D[W ] is O(|F | · k ·
k∑

j=1

(
k
j

)
) = O(2k · k · |F |).

The overall running time to check if D[U ] is empty or not is bounded by O∗(2|U | ·
2ωk) = O∗(2ω|U |+|U |) = O∗(10.361|U |).

We note that an FPT algorithm for MATROIDAL CONFLICT-FREE SET COVER

parameterized by k can be obtained as a corollary of a result by Bevern et al. [34]. The
authors give an algorithm for a generalization of SET COVER called uncapacitated
facility location problem with multiple matroid constraints. This algorithm also uses
the idea of representative families that we use. But the algorithm involves further
sophistications as they work on a general problem. The running time for MATROIDAL

CONFLICT-FREE SET COVER from Bevern et al is 2O(r log r)n2 where r is the rank
of the matroid. The rank r is bounded by the universe size |U |. The running time is
2O(|U | log |U |)n2 when r = O(|U |) in which case our algorithm from Theorem 12 with
running time O∗(2(ω+1)·|U |) is better. But when the rank is smaller, the algorithm by
Bevern et al. is better.

6 Conclusion

We have initiated a systematic study of CONFLICT-FREE SET COVER with vari-
ous parameterizations and restrictions to GF . When parameterized by the solution
size k and when the restricted SET COVER variant is FPT parameterized by k, we
have shown W[1]-hardness for the corresponding CONFLICT-FREE SET COVER vari-
ant when the conflict graph GF is bipartite and gave FPT algorithms when GF is
nowhere dense or has bounded number of independent sets. When parameterized by
the universe size (hence SET COVER variant is FPT), we have shown W[1]-hardness
when GF is bipartite and gave FPT algorithms when GF is chordal, nowhere dense
or has bounded number of independent sets. One open question is to identify a gen-
eral characterization for the graph classes of GF when CONFLICT-FREE SET COVER

becomes FPT for the above two cases.
We gave an FPT algorithm for c-INTERSECTION CONFLICT-FREE SET COVER

when GF is a chordal graph but only managed to find a polynomial kernel for
cluster graphs, a subgraph of chordal graphs. Finding a polynomial kernel for c-
INTERSECTION CONFLICT-FREE SET COVER when GF is a chordal graph remains
open.
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