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Abstract
This paper is dedicated to studying decidability properties of theories of regular
languages with classical operations: union, concatenation, and the Kleene star. The
theory with union only is a theory of some Boolean algebra, so it is decidable. We
prove that the theory of regular languages with the Kleene star only is decidable. If
we use union and concatenation simultaneously, then the theory becomes both �1-
and �1-hard over the one-symbol alphabet. Using methods from the proof of this
theorem we establish that the theory of regular languages over one-symbol alpha-
bet with union and the Kleene star is as hard as arithmetic. Then we establish that
the theory with all three operations is reducible to arithmetic also, hence, it is equiv-
alent to arithmetic. Finally, we prove that the theory of regular languages over any
alphabet with concatenation only is equivalent to arithmetic also. The last result is
based on our previous work where an analogous theorem was proved for one-symbol
languages.

Keywords Regular languages · Theory · Union · Concatenation · Kleene star ·
Quantifier elimination · Arithmetic · Undecidability

1 Introduction

One of the most important problems in mathematical logic is to study algorithmic
decidability properties of different theories. Some classical results in this area are
undecidability of Peano arithmetic, of group and semigroup theories etc. Examples of
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decidable theories are Presburger arithmetic, abelian groups theory, Boolean algebras
theory etc. Some more recent results are connected to word theories. In [6, 7] it was
proved that the words theory over two-symbol alphabet with concatenation is essen-
tially undecidable. In [16, 17] it was proved that a variant of Robinson arithmetic is
interpretable is this theory.

In this article we study some variants of theory of regular languages. This interest
is due to the importance of such languages for formal linguistic and automata the-
ory. Also regular languages have a lot of practical applications in compiler design,
text processing algorithms, and many other fields. Each regular language has good
decidability properties itself and many natural problems are decidable for them: the
equivalence, the membership, the emptiness, the infinity problem etc.

But what about the set of all regular languages? If we consider the set of all regular
languages (over fixed alphabet) with language-wide operations as a universe, then
analogous decidability questions naturally appear. With correspondence w ↔ {w} it
is easy to reduce the concatenation theory of words to the concatenation theory of
languages. Hence, the last is undecidable.

In our paper we consider theory of regular languages with different sets of classical
operations. Section 2 of this article contains some basic definitions. In Section 3
we study the theory T1 of regular languages with the Kleene star operation only. We
prove that T1 admits effective quantifier elimination, hence, it is decidable. Regular
languages with union only form a Boolean algebra, hence, its theory is decidable
[11]. In Section 4 we consider the theory T2 of regular languages over a one-symbol
alphabet with union and concatenation. It is proved that T2 is both �1- and �1-
hard. In Section 5 we study the theory T3 of regular languages over a one-symbol
alphabet with union and the Kleene star. We establish that elementary arithmetic can
be interpreted in T3. Also we prove that the theory T4 of regular languages with all
operations (union, concatenation, Kleene star) can be interpreted in arithmetic. Thus,
the theories T3, T4 and arithmetic are algorithmically equivalent. The Kleene star can
be expressed via union and concatenation, therefore, T2 is equivalent to arithmetic
also.

In Section 6 we study regular languages with concatenation only. In [4] it was
proved that the theory T5 of regular languages over one-symbol alphabet is equivalent
to arithmetic. This result cannot be immediately generalized to arbitrary languages
because its proof uses commutativity of concatenation. Instead, we interpret the
theory T5e (the significant part of T5) in the theory T6 of regular languages over
multi-symbol alphabet. Therefore, T6 is also equivalent to arithmetic.

This article is based on our previous work [5] presented in the 14th Interna-
tional Computer Science Symposium in Russia (CSR 2019, Novosibirsk, Russia,
July 2019). After that article was accepted we have established some new results.
Some of them were presented in the International Conference “Algebra and Mathe-
matical Logic: Theory and Applications” (Kazan, Russia, June 2019). In particular,
it was proved that the theory T1 is PSPACE-complete, so a reference [9] is added
in Section 3. In Section 4 we add a reference [11] that contains the solution to
one of the questions left open in [5]: the theory of regular languages with union
only is decidable since it is a Boolean algebra. The second established result is the
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undecidability degree of theory of regular languages with concatenation only over
one-symbol alphabet, and we add a reference [4].

The proof of the last result uses commutativity of concatenation. Hence, to carry
this result over to any alphabet we include Section 6, which contains new results. So,
we found a solution to another open problem from [5] on the undecidability degree
of theory of regular languages with concatenation only. In the conclusion some new
open problems are formulated.

2 Preliminaries

An alphabet is a finite set of symbols. A word over an alphabet � is a finite sequence
of symbols from �. The length of w is denoted |w|. The empty word is a word of
zero length, it is denoted ε. Concatenation of two words u and v is a word which is
obtained by appending v is the end of u. Concatenation of words u and v is denoted
u · v or simply uv. The i-th power of the word w is the word ww . . . w where w is
repeated i times. In particular, w0 = ε for every word w.

A language over an alphabet � is an arbitrary set of words over �. A union of
two languages L1 and L2 is the usual union of the sets L1 and L2. Concatenation of
languages L1 and L2 is the language L1 · L2 = { uv : u ∈ L1, v ∈ L2 }. A Kleene
star of the language L is the language L∗ consisting of concatenations of all possible
sequences of words from L, i.e. L∗ = {w1w2 . . . wn : n ≥ 0, wi ∈ L for every i }.
Since n = 0 is possible L∗ always contains the empty word ε. Obviously, (L∗)∗ =
L∗. L∗ is finite if and only if L = ∅ or L = { ε }, in both cases L∗ = { ε }.

The language L over the alphabet � = { a1, a2, . . . , an } is regular if it can be
obtained from the languages ∅, { ε }, { a1 }, . . . , { an } in finitely many steps with
union, concatenation, and the Kleene star (for precise definitions see [1]). A deter-
ministic finite automaton (DFA) is a quintuple M = (Q, �, δ, q0, F ), where Q is a
finite set of states, � is an input alphabet, q0 ∈ Q is an initial state, F ⊆ Q is a set
of final states, and δ : Q × � → Q is a transition function. A word w = a1a2 . . . an

is accepted by a DFA M if there exists a sequence of states q0, q1, . . . , qn such that
qn ∈ F , δ(qi, ai+1) = qi+1 for every 0 ≤ i < n. A DFA M recognizes a language of
all words accepted by M . It is known (see [1, 8, 10]) that the language L is regular if
and only if it is accepted by some DFA.

A theory T is a set of first-order formulas closed under logic inference. Formulas
ϕ and ψ are equivalent in the theory T if (ϕ ↔ ψ) ∈ T . This is denoted ϕ ≡T

ψ . A theory T admits quantifier elimination if for every formula ϕ there exists a
quantifier-free formula ψ ≡T ϕ. For quantifier elimination it is enough to eliminate
an existential quantifier from all formulas of kind (∃x)ϕ where ϕ is an elementary
conjunction (see [3]). A n-ary relation P is definable in a theory T if there exists
a formula ϕ such that ϕ does not contain P and P(x1, . . . , xn) ≡T ϕ(x1, . . . , xn).
Similarly, the n-ary function f is definable in the theory T if there exists a formula
ϕ such that ϕ does not contain f and f (x1, . . . , xn) = y ≡T ϕ(x1, . . . , xn, y). The
theory of a structure A is the set of all formulas which are true in A.
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3 Decidability of Theory of Regular Languages with the Kleene Star

In this section we study the theory T1 of regular languages over an arbitrary alpha-
bet � = { a1, . . . , an } with constant ∅(0) (empty language) and operation ∗(1) (the
Kleene star).

Let us note some properties of the Kleene star.

Lemma 1 1) There exists a language L1 such that L = L∗
1 if and only if L = L∗.

2) If L = L∗ and L �= { ε }, then there exist infinitely many languages Li such that
L∗

i = L.
3) There exist infinitely many languages which are Kleene stars.
4) There exists an infinite family of languages Li such that L∗

i �= Li and L∗
i �= L∗

j

for all i �= j .

Proof 1) If L∗
1 = L, then L∗ = (L∗

1)
∗ = L∗

1 = L.
2) Let w be an arbitrary nonempty word from L. Let Li = L \ {wi } for i ≥ 2.

Then L∗
i = L, and all languages Li are different.

3) All languages { ai
1 }∗ are different.

4) Let Li = {w ∈ �∗ : |w| ≥ i }, i ≥ 1. All these languages are different,
Li �= L∗

i because ε ∈ L∗
i \Li . If i < j , then the shortest word from Lj is longer

than the shortest word form Li . Therefore, L∗
i �= L∗

j .

Theorem 1 The theory T1 admits quantifier elimination.

Proof It is enough to eliminate a quantifier from (∃x)ϕ, where the elementary con-
junction ϕ can contain formulas of the forms x = t , x∗ = t , x = x∗, x �= t ,
x∗ �= t , and x �= x∗. Throughout this proof symbols r , s, t (possibly with indices)
denote terms without the variable x. We assume that ϕ has no terms of the form (y∗)∗
because (y∗)∗ = y∗. We consider several possible cases.

Case 1 If ϕ is x = t ∧ ϕ′, then (∃x)(x = t ∧ ϕ′) ≡T1 (ϕ′)xt , where (ϕ′)xt is obtained
from ϕ by replacing x with t . Therefore, we assume in the following that ϕ does not
contain x = t .

Case 2 Let ϕ contain both x = x∗ and x∗ = t : (∃x)(x = x∗ ∧ x∗ = t ∧ ϕ′). Then

(∃x)ϕ ≡T1 (∃x)(x = t ∧ x = x∗ ∧ x∗ = t ∧ ϕ′) ≡T1 t = t∗ ∧ (ϕ′)xt .

Case 3 Let ϕ contain x∗ = t but no x = x∗. Then (∃x)ϕ is
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(∃x)(x∗ = t ∧
k∧

i=1

x∗ = ti ∧
�∧

i=1

x �= ri ∧
m∧

i=1

x∗ �= si ∧ x �= x∗).

If one of k, �, or m is zero, then the corresponding conjunction is missing. The part
x �= x∗ may also be missing. Substituting t instead of x∗ we have

(∃x)ϕ ≡T1 (∃x)(x∗ = t ∧
p∧

i=1

x �= ri) ∧
k∧

i=1

t = ti ∧
m∧

i=1

t �= si .

Here p = � if ϕ does not contain x �= x∗, and p = � + 1, r�+1 = t otherwise.
If t∗ = t and t �= { ε }, then by Lemma 1 t can be written as a Kleene star of

infinitely many languages. Hence, t is a Kleene star of some language other than
r1, . . . , rp, and the conditions x �= ri may be omitted. Hence, (∃x)x∗ = t ≡T1 t = t∗
by Lemma 1.

If t = { ε }, then x can be only either ∅ or { ε }. Then either all languages r1, . . . , rp
must be different from ∅, or they must be different from { ε }.

Combining both variants we obtain the following equivalence:

(∃x)ϕ ≡T1

(
t = ∅∗ → (

p∧

i=1

ri �= ∅ ∨
p∧

i=1

ri �= ∅∗)
)

∧t = t∗∧
k∧

i=1

t = ti ∧
m∧

i=1

t �= si .

Case 4 Let ϕ contain the subformula x = x∗ but no x∗ = t : (∃x)ϕ is

(∃x)(x = x∗ ∧
k∧

i=1

x �= si ∧
�∧

i=1

x∗ �= ri).

Substituting x instead of x∗ we obtain

(∃x)ϕ ≡T1 (∃x)(x = x∗ ∧
k∧

i=1

x �= si ∧
�∧

i=1

x �= ri).

By Lemma 1 there are infinitely many languages which are Kleene stars, hence, the
last formula is true in T1.

Case 5 Finally, let us suppose that ϕ contains only inequalities: (∃x)ϕ is

(∃x)(

k∧

i=1

x �= ri ∧
�∧

i=1

x∗ �= si ∧ x �= x∗).

Again x �= x∗ may be missing. In this case (∃x)ϕ is true also due to Lemma 1: there
are infinitely many languages which are not Kleene stars.

Corollary 1 The theory T1 is decidable.

The procedure from the proof of Theorem 1 is extremely inefficient. It requires
transforming the formula into conjunctive normal form for every quantifier, resulting
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in overall hyperexponential complexity, i.e. the time complexity is 22···2
︸︷︷︸

O(n) times

where n

is the length of an input formula. In [9] a more efficient algorithm was announced,
and also it was announced that the theory T1 is PSPACE-complete.

4 Undecidability of Theory of Regular Languages with Union and
Concatenation

Before studying the theory of regular languages with both union and concatenation
let us note that the following relations and functions are definable with union only:

– inclusion: x ⊆ y ≡T2 x + y = y;
– intersection: x ∩ y = z ≡T2 z ⊆ x ∧ z ⊆ y ∧ (∀u)((u ⊆ x ∧ u ⊆ y) → u ⊆ z);
– the empty language ∅: x = ∅ ≡T2 (∀y)x + y = y;
– the set of all words over alphabet { 0 }: x = 0∗ ≡T2 (∀y)x + y = x;
– complement x̄: x̄ = y ≡T2 x + y = 0∗ ∧ x ∩ y = ∅;
– subtraction: x \ y = z ≡T2 x ∩ ȳ = z;
– cardinality test Cardk(x) for every fixed natural number k. The formula Cardk(x)

says that the language x contains exactly k words:

Card1(x) ≡T2 x �= ∅ ∧ (∀y)(y ⊆ x → (y = ∅ ∨ y = x));
Cardk+1(x) ≡T2 (∃y)(y ⊆ x ∧ Cardk(x \ y) ∧ Card1(y)).

Thus, if we consider the set of regular languages with operation +(2) (union), then
they form a Boolean algebra. The theory of each Boolean algebra is decidable (see
[11]).

In this section we study the theory T2 of regular languages over the alpha-
bet { 0 } with a constant 0(0) (the language { 0 }), operations +(2) (union) and ·(2)

(concatenation).
The constant ε denoting the language { ε } can be defined with concatenation:

x = ε ≡T2 (∀y)x · y = y.

Let the relation Multk(x, y) denote the following: the language x contains one
word 0n for some natural number n �= 0, and y contains one word 0kn. This relation
is definable in T2 as follows:

Multk(x, y) ≡T2 Card1(x) ∧ x �= ε ∧ y = x · x · · · · · x︸ ︷︷ ︸
k times

.

We prove undecidability of T2 by reducing to it the halting problem for two-
counter machines. A two-counter machine (see [13]) has a finite set of states Q =
{ q0, q1, . . . , qn−1 }, an initial state q0, a final state qf , two counters a and b, and an
instruction set which are of the form:

– the increment instruction qi c = c + 1; qj means that in the state qi the machine
increases its counter c by one and moves to the state qj ;
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– the decrement instruction qi if c �= 0 then c = c − 1; qj else qk means that in
the state qi the machine decreases its counter c by one and moves to the state qj

if c > 0, otherwise it does not change c and moves to the state qk .

A configuration of a counter machine is a triple (qi, a, b) where qi is a state, a and
b are natural numbers. (qi, a, b) �M (qj , a

′, b′) means that the machine moves from
the configuration (qi, a, b) to the configuration (qj , a

′, b′) in one step. �∗
M denotes

reflexive and transitive closure of the relation �M . The machine M halts on an input
(a, b) if (q0, a, b) �∗

M (qf , a′, b′) for some a′ and b′. Remember that �1 is the
class of recursive enumerable sets and �1 is the class of its complements (see [14]).
It is known (see [13]) that halting problem and its complement are respectively
�1- and �1-hard for two-counter machines for initial configurations of the form
(q0, 0, 0).

In the proof of the next theorem we show the method of modeling a counter
machine using regular languages. In the next section we will prove a stronger version
of this theorem but the proof will be technically more difficult.

Theorem 2 The theory T2 is �1-hard and �1-hard.

Proof We reduce the halting problem and its complement to T2. Let M be any
two-counter machine with the set of states Q = { q0, q1, . . . , qm−1 } and the set of
instructions P = {p1, . . . , ps }. Let us suppose that the state q0 is initial and the state
q1 is final. We encode the configuration (qi, a, b) by the word of length 2i3a5b. In
particular, the initial configuration (q0, 0, 0) is encoded by the word of length 1, i.e.
by the word 0.

Now for every �, 1 ≤ � ≤ s, we construct a formula Step�(x, y) expressing the
following property:

– both languages x and y contain exactly one word each;
– if x contains the code of configuration c1, then y contains the code of configura-

tion c2 such that c1 �M c2 according to the instruction p�.

Note that we do not check whether x and y indeed contain the correct code because
we cannot express the property that the word length is of the form 2i3a5b.

We use two auxiliary formulas Statei (x) and ChangeStatei,j (x, y). The formula
Statei (x) says that the configuration of code x has the state qi :

(∃z)Mult2i (z, x) ∧ ¬(∃u)Mult2i+1(u, x).

The formula ChangeStatei,j (x, y) says that x and y encode two equal configura-
tions except the state, x has the state qi and y has the state qj :

(∃z)(Mult2i (z, x) ∧ Mult2j (z, y)) ∧ ¬(∃u)Mult2i+1(u, x).

If p� ∈ P is qi a = a + 1; qj , then we construct a formula Step�(x, y) as

(∃z)(ChangeStatei,j (x, z) ∧ Mult3(z, y)).
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If p� ∈ P is qi if a �= 0 then a = a − 1; qj else qk , then a formula Step�(x, y) is
(¬(∃z)Mult3(z, x) → ChangeStatei,k(x, y)

) ∧
(
(∃z)Mult3(z, x) → (∃u)(Mult3(u, x) ∧ ChangeStatei,j (u, y))

)
.

For the counter b formulas Step�(x, y) are obtained by replacing 3 with 5.
The formula Step(x, y) says that the machine M moves in one step from the

configuration of code x to the configuration of code y:

s∨

�=1

Step�(x, y).

The formula Closed(x) says: if the language x contains the code of a configuration
c, then it contains the codes of all configurations reachable from c. I.e. Closed(x) is:

(∀u)(∀v)((u ⊆ x ∧ Step(u, v)) → v ⊆ x).

The formula Reachable(x) says that the language x contains the word 0 encoding
the initial configuration (q0, 0, 0), the codes of all configurations reachable from
(q0, 0, 0), and no other word, i.e. that x is the smallest closed language containing 0:

0 ⊆ x ∧ Closed(x) ∧ (∀y)((0 ⊆ y ∧ Closed(y)) → x ⊆ y).

Now we can describe the reductions. Let ϕ and ψ be the next formulas corre-
spondingly:

(∃x) (Reachable(x) ∧ (∃y)(y ⊆ x ∧ State1(y))),

(∃x) (Reachable(x) ∧ ¬(∃y)(y ⊆ x ∧ State1(y))).

The formula ϕ says that the final configuration is reachable from (q0, 0, 0), and
ψ says that it is not reachable. Then ϕ ∈ T2 if and only if M halts on (q0, 0, 0), and
ψ ∈ T2 if and only if M does not halt on (q0, 0, 0). Therefore, the theory T2 is both
�1- and �1-hard.

5 Undecidability of Theory of Regular Languages with Union and the
Kleene Star

In this section we study the theory T3 of regular languages over the alphabet { 0 } with
the constant 0(0) (the language { 0 }) and operations +(2) (union) and ∗(1) (the Kleene
star).

The signature of T3 contains union, therefore intersection, subtraction, comple-
ment, and other relations and functions listed in the beginning of the previous section
are also definable in T3. The constant ε denoting the language { ε } can be defined
with Kleene star as ∅∗.

The following lemma is evident.

Lemma 2 If the relation Multki
(x, y) is definable in T3 for natural numbers

k1, . . . , kn, then Multm(x, y) is also definable for the product m = k1 . . . kn.
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Our main technical result is the following.

Lemma 3 The relations Multk(x, y) are definable in T3 for k = 2, 3, 5, 7.

Proof Let the relation Multk1,...,km(x, y) mean that the language x contains a single
word 0p, and the language y contains exactly the words 0k1p, . . . , 0kmp for some
natural number p �= 0. Obviously, if Multk1(x, y), . . . , Multkm(x, y) are definable,
then Multk1,...,km(x, y) is also definable:

(∃z1) . . . (∃zm)(Multk1(x, z1) ∧ · · · ∧ Multkm(x, zm) ∧ y = z1 + · · · + zm).

The formula Mult2,3(x, y) can be defined as

Card1(x) ∧ Card2(y) ∧ x∗ \ x = y∗.

Indeed, let L = { 0p } where p is some natural number, L1 = L∗ \ L. Then L1 =
{ ε, 02p, 03p, 04p, . . . } = { 02p, 03p }∗. Thus, L1 is a Kleene star of some language
containing exactly two words. On the other hand, every such language must contain
both words 02p and 03p because they cannot be obtained from shorter words.

Now we define Mult2(x, y) and Mult3(x, y) correspondingly:

Card1(y) ∧ (∃z)(Mult2,3(x, z) ∧ y ⊆ z) ∧ ¬(∃u)(Card2(u) ∧ x∗ \ (x + y) = u∗);
Card1(y) ∧ (∃z)(Mult2,3(x, z) ∧ y ⊆ z) ∧ ¬Mult2(x, y).

If we remove 03p from L1, then we get L2 = { ε, 02p, 04p, 05p, 06p, . . . }. This
language is a Kleene star of { 02p, 05p }. Removing 02p from L1 we get L3 =
{ ε, 03p, 04p, 05p, 06p, . . . }. If L3 is a Kleene star of some language L′

3, then L′
3

must contain at least three words 03p, 04p, 05p because neither of these words can be
represented as concatenation of two shorter nonempty words from L3.

The construction of Multk(x, y) for k = 5, 7 follows the same idea. The formula
Mult5,7(x, y) is

(∃z)(∃u)(∃v)(Mult2,3,4(x, u)∧ Mult6,8,9(x, v) ∧
Card5(z) ∧ x∗ \ (x + u) = z∗ ∧ y = z \ v).

Here z must be { 05p, 06p, 97p, 08p, 09p } and y = { 05p, 07p }. Then we use the
equality { ε, 05p, 06p, 08p, 09p, . . . } = { 05p, 06p, 08p, 09p }∗. On the other hand,
any language L4 such that L∗

4 = { ε, 06p, 07p, 08p, 09p, . . . } must include at least
{ 06p, 07p, 08p, 09p, 010p, 011p }:

Mult5(x, y) ≡T3 Card1(y) ∧ (∃z)(∃u)(Mult5,7(x, z) ∧ Mult2,3,4(x, u) ∧
y ⊆ z ∧ ¬(∃v)(Card4(v) ∧ x∗ \ (x + u + y) = v∗)),

Mult7(x, y) ≡T3 Card1(y) ∧ (∃z)(∃u)(Mult5,7(x, z) ∧ Mult2,3,4(x, u) ∧
y ⊆ z ∧ (∃v)(Card4(v) ∧ x∗ \ (x + u + y) = v∗).

Corollary 2 The constants 02, 03, 05, 07 are definable in T3.
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Lemma 4 The following relation Join(x, y, z) is definable in T3: x, y, and z con-
tain one word each, and if x = { 0p } and y = { 0q } for some p and q, then
z = { 0lcm(p,q) }, where lcm denotes the least common multiple.

Proof Let us define Join(x, y, z) as

Card1(x) ∧ Card1(y) ∧ Card1(z) ∧ z∗ = x∗ ∩ y∗.

If L1 = { 0p } and L2 = { 0q }, then L∗
1 ∩ L∗

2 = { 01cm(p,q)×i : i ≥ 0 }. Therefore,
L∗

1 ∩ L∗
2 = { 01cm(p,q) }∗.

Theorem 3 For every arithmetical formula ϕ one can construct a formula ψ such
that ϕ is true in arithmetic if and only if ψ ∈ T3.

Proof It is known (see [15]) that two numbers can be multiplied by a counter machine
with only three counters. We use next three three-counters machines:

– M1 moves a number from the first counter into the second one:

(q0, a, 0, 0) �∗ (q1, 0, a, 0);
– M2 computes the sum of the first two counters:

(q0, a, b, 0) �∗ (q1, a + b, 0, 0);
– M3 computes the product of the first two counters:

(q0, a, b, 0) �∗ (q1, ab, 0, 0).

Like in the proof of Theorem 2 we can construct the formulas Closedi (x) express-
ing the following: if 0c ∈ x where c = 2j 3a5b7d is the code of a configuration
(qj , a, b, d) of Mi , then x contains the codes of all reachable configurations. Con-
catenation was used only to construct the formulas Multk(x, y). But since each Mi

has only three counters we only need the formulas Multk(x, y) where k is either
power of 2 or one of 3, 5, 7. All such relations are definable in T3 by Lemmas 2 and 3.

The following formula Primesp1,...,pm(x) expresses that x = { 0n } where n =
p

α1
1 . . . p

αm
m for some primes p1, . . . , pm ∈ { 2, 3, 5, 7 }:

Primesp1,...,pm(x) ≡T3 x = 0 ∨ (
x �= ε ∧ Card1(x)∧

(∀y)((Card1(y) ∧ x ⊆ y∗) → (y = 0 ∨ y ⊆ (0p1)∗ ∨ · · · ∨ y ⊆ (0pm)∗))
)

.

In particular, the formula Primesp(x) says x = { 0pα } for some α.
The formula Conf(x) expresses that x = { 0c } where c encodes some configura-

tion:
Conf(x) ≡T3 Primes2,3,5,7(x).

The formula InitConf1(x) ≡T3 Primes3(x) expresses that x = { 0c } where c encodes
an initial configuration of M1, InitConf2(x) ≡T3 InitConf3(x) ≡T3 Primes3,5(x)

expresses that x = { 0c } where c encodes an initial configuration of M2 or M3.
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Analogously formulas FinalConfi (x) expresses that x encodes a final configura-
tion: State1(x) ∧ Primes2,5(x) and State1(x) ∧ Primes2,3(x) correspondingly.

The formula Resulti (x, y) expresses that x encodes an initial configuration of Mi

and y encodes a corresponding final configuration:

InitConfi (x) ∧ FinalConfi (y) ∧ (∀u)((x ⊆ u ∧ Closedi (u)) → y ⊆ u).

We represent a natural number n by { 03n }. The formula Add(x, y, z) expresses that
the language z represents the sum of numbers represented by x and y:

Primes3(x) ∧ Primes3(y) ∧ (∃u)(∃v)(∃w)(∃t)(Result1(y, u) ∧
Mult2(v, u) ∧ Join(x, v, w) ∧ Result2(w, t) ∧ Mult2(y, t)).

Let x = { 03a } and y = { 03b }. Then u = { 02×5b }, v = { 05b }, w = { 03a5b },
t = { 02×3a+b }, and z = { 03a+b }.

Using the same method we can construct the formula Mult(x, y, z) for multiplica-
tion:

Primes3(x) ∧ Primes3(y) ∧ (∃u)(∃v)(∃w)(∃t)(Result1(y, u) ∧
Mult2(v, u) ∧ Join(x, v, w) ∧ Result3(w, t) ∧ Mult2(y, t)).

Now we can describe reduction from arithmetic to T3. Let ϕ be an arbitrary arith-
metical formula. We may suppose that all atomic subformulas of ϕ are of the forms
x + y = z or x × y = z where x, y, z are variables. For every arithmetical formula θ

we construct its translation T(θ) by induction:

– T(x + y = z) is Add(x, y, z);
– T(x × y = z) is Mult(x, y, z);
– T(χ ◦ θ) is T(χ) ◦ T(θ) for ◦ ∈ {∧, ∨, →};
– T(¬θ) is ¬T(θ);
– T((∃x)θ) is (∃x)(Primes3(x) ∧ T(θ));
– T((∀x)θ) is (∀x)(Primes3(x) → T(θ)).

Let ψ be T(ϕ). Then ϕ is true in arithmetic if and only if ψ ∈ T3.

Finally, let us consider the theory T4 of regular languages over an arbitrary alpha-
bet � = { a1, . . . , an } with constants a

(0)
1 , . . . , a

(0)
n and operations +(2), ·(2), and

∗(1). The constant ai is interpreted as the language { ai }, other symbols have the
previous meaning.

Theorem 4 For every formula ϕ one can construct an arithmetical formula ψ such
that ϕ ∈ T4 if and only if ψ is true in arithmetic.

Proof We suppose that all atomic subformulas of ϕ are of the forms x + y = z,
x · y = z, x∗ = y, or x = ai .

Let us fix some “reasonable” numeration of all DFA and let Mn be a DFA of num-
ber n. We may suppose that for every number n there exists a DFA M with the number
n. There are algorithms which given DFA M1 and M2 construct DFA recognizing the

472 Theory of Computing Systems  (2021) 65:462–478



languages L(M1) ∪ L(M2), L(M1) · L(M2), and L(M1)
∗ (see [1, 8]). Then the rela-

tions L(Mx) ∪ L(My) = L(Mz), L(Mx) · L(My) = L(Mz), and L(Mx)
∗ = L(My)

are recursive. But every recursive relation is representable in arithmetic (see [3]). Let
corresponding formulas be Union(x, y, z), Concat(x, y, z), and Star(x, y). Let ni be
the number of some DFA recognizing { ai }. For every formula ϕ we construct its
translation by induction:

– T(x = ai) is x = 1 + · · · + 1︸ ︷︷ ︸
ni times

;

– T(x + y = z) is Union(x, y, z);
– T(x · y = z) is Concat(x, y, z);
– T(x∗ = y) is Star(x, y);
– T(χ ◦ θ) is T(χ) ◦ T(θ) for ◦ ∈ {∧, ∨, →};
– T(¬θ) is ¬T(θ);
– T((∃x)θ) is (∃x)T(θ);
– T((∀x)θ) is (∀x)T(θ).

Let ψ be T(ϕ). Then ϕ ∈ T4 if and only if ψ is true in arithmetic.

Corollary 3 The theories T3, T4 and arithmetic are recursively isomorphic.

Corollary 4 The theory T2 and arithmetic are recursively isomorphic.

Proof It is enough to define the Kleene star with union and concatenation:

x∗ = y ≡T4 x ⊆ y ∧ y · y = y ∧ (∀z)((x ⊆ z ∧ z · z = z) → y ⊆ z).

Corollary 5 The theories T2, T3, and T4 are undecidable.

6 Undecidability of Theory of Regular Languages with
Concatenation Only

In [4] a theory T5 was investigated. This is the theory of regular languages over
one-symbol alphabet with concatenation only. The main result of [4] is the follow-
ing: the theory T5 is algorithmically equivalent to elementary arithmetic. Indeed, the
following theorem was proved:

Theorem 5 (Dudakov S.M., [4]) Let Ae be the set of regular languages containing
the empty word ε over one-symbol alphabet { 0 }. Then the theory T5e of the algebra
Ae = (Ae, ·) is algorithmically equivalent to arithmetic.
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The crucial point of the proof is to construct a ternary relation P(x, y, z) that is
true if and only if

x = { ε, 0m }, z = { ε, 0nm }, y = { ε, 0m, 02m, 03m, . . . , 0nm }
for some positive natural numbers m and n. Then the relation between z and x corre-
sponds to divisibility of natural numbers, and concatenation of two y’s corresponds
to addition. It is enough to interpret addition and multiplication of natural numbers.

But this proof cannot be generalized directly to arbitrary regular languages
because the construction of P uses concatenation commutativity. So we need another
proof when an alphabet contains more than one symbol.

Here we consider a theory T6 of regular languages over a multi-symbol alphabet
with concatenation. We demonstrate that the algebra Ae is interpretable in T6. So T6
is algorithmically as hard as arithmetic.

Firstly we prove some definabilities.

Lemma 5 The following is definable in T6:

1) the empty language ∅;
2) the set Re of languages containing the empty word ε

3) the Kleene star operation ∗ for languages from Re.

Proof 1) Evidently

x = ∅ ≡T6 (∀y)x · y = x.

For x = ∅ we have ∅ · y = ∅. If x �= ∅, then for y = ∅ we obtain x · ∅ = ∅ �= x.
2) The set Re can be defined as

Re(x) ≡T6 (∃y)(y �= ∅ ∧ x · y = y).

If ε ∈ x, then we can assume y = �∗, so y �= ∅ and x · y = y because

�∗ ⊇ x · �∗ ⊇ ε · �∗ = �∗.

Consider the case of ε /∈ x. If x = ∅, then ∅ · y = ∅ �= y for any y �= ∅. Otherwise,
let w be the shortest word in x. Hence, |w| ≥ 1. If y is any non-empty language and
u is the shortest word in y, then the shortest word in the language x · y is of length
|u| + |w| > |u|. So u /∈ x · y and x · y �= y.

3) If x ∈ Re, then the Kleene star for x is

y = x∗ ≡T6 Re(y) ∧ x · y = y ∧ (∀z)(x · z = z → y · z = z).

Let us prove it.
Evidently Re(x

∗) holds. The equality x · x∗ = x∗ holds due to the Kleene star
definition. Let z be any language such that x · z = z. Then x0 · z = {ε} · z = z and by
induction we obtain xn+1 ·z = x ·xn ·z = x ·z = z for every natural number n. Hence,
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x∗ · z =
(

⋃

n∈ω

xn

)
· z =

⋃

n∈ω

(
xn · z

) =
⋃

n∈ω

z = z.

Now let the language y satisfy the defining formula. We must prove y = x∗. We have
x0 = { ε } ⊆ y, and by induction xn+1 = x ·xn ⊆ x ·y = y. Hence, xn ⊆ y for every
natural number n and

x∗ =
⋃

n∈ω

xn ⊆
⋃

n∈ω

y = y.

Thus, x∗ ⊆ y.
Suppose that x∗ �= y. Then there is a word u ∈ y \ x∗. Let z = x∗. In this case

the formula x · z = z is true. But the formula y · z = z is false because u ∈ y · z and
u /∈ z. The contradiction proves that the case x∗ �= y is impossible and y = x∗.

To continue we need to remember some well-known concatenation properties. The
proofs of the following result can be found in [12], Corollary 4.1, and in [2], Theorem
2.3.5:

Theorem 6 (see [2, 12]) 1) Let ui = wj for some words u, w and natural numbers
i, j , i + j > 0. Then u, w ∈ v∗ for some word v.
2) Let wku� = uiwj for some words u, w and natural numbers k, �, i, j , and k, � >

0. Then u, w ∈ v∗ for some word v.

Now let us continue to investigate the theory of regular languages with concatena-
tion.

Lemma 6 In the theory T6 the set R∗ is definable. The set R∗ contains all languages
x such that ε ∈ x and x ⊆ w∗ for some word w.

Proof The set R∗ can be defined as

R∗(x) ≡T6 Re(x) ∧ (∀y)(∀z)
(
(y · x∗ = x∗ ∧ z · x∗ = x∗) → y · z = z · y)

.

Let x ∈ R∗, i. e. x ⊆ w∗ for some word w. If x = {ε}, then x∗ = {ε} and the
implication is true because the condition can be true for y = z = {ε} only.

Consider the case of x �= {ε}. As ε ∈ x so x contains some non-empty word from
w∗ and w �= ε necessarily. Let wk be the shortest non-empty word in x. The formula
Re(x) is true trivially because R∗ ⊆ Re. Let y · x∗ = x∗ and z · x∗ = x∗ for some
languages y and z. Then for any word u ∈ y we have uwk = wn for some natural
number n, hence, u = wn−k . We obtain y ⊆ w∗. Analogously, z ⊆ w∗. Therefore,
y · z = z · y.

Now let the defining formula be true for some language x. Then x must contain
the empty word ε. If x = {ε}, then x ⊆ w∗ for all w. Otherwise, let w be the shortest
non-empty word in x. Thus, w∗ ⊆ x∗. For the language y = {ε, w} we have

y · x∗ = (ε · x∗) ∪ (w · x∗) ⊆ x∗ ∪ x∗ = x∗.

Let m be the greatest natural number such that w = vm for some word v. Evidently,
m ≥ 1 because w = w1.
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Let us select an arbitrary non-empty word u ∈ x and consider the language z =
{ε, u}. Analogously, we obtain u∗ ⊆ x∗ and z · x∗ = x∗. So y · z = z · y by the
implication:

{ ε, w, u, wu } = y · z = z · y = { ε, w, u, uw }.
The words w and u are of positive length, hence, the length of words wu and uw

is greater than the lengths of ε, u, and w. This means wu = uw and by Theorem 6
we have w = vi

1 and u = v
j

1 for some word v1 and natural numbers i and j . As
vm = w = vi

1 so from Theorem 6 it follows that v = vk
0 and v1 = v�

0 for some
word v0 and natural numbers k and �. Hence, w = vm = vmk

0 . But the number m is
maximal possible, so mk = m and v0 = v. Thus, u = vj�.

We have proved that u ∈ v∗ for any non-empty word u ∈ x. Therefore, x ⊆
v∗.

Lemma 7 Let x ∈ R∗, x �= { ε }, x ⊆ w∗, and the wordw be of minimal length. Then
for any language y ∈ R∗ ∪ {∅} the equality x · y = y · x holds if and only if y ⊆ w∗.

Proof Let x · y = y · x. If y = ∅ or y = {ε}, then y ⊆ w∗ trivially.
Otherwise, let y ⊆ u∗ where the length of u is minimal possible. Consider any

non-empty words wk ∈ x and u� ∈ y. Then we have wku� ∈ x ·y, hence, wku� ∈ y ·x
and there exist natural numbers i and j such that wku� = uiwj . By Theorem 6 we
obtain w, u ∈ v∗ for some v. But w and u cannot be of the form vm for m > 1.
Therefore, w = v = u and y ⊆ w∗.

The opposite claim is trivial: if x, y ⊆ w∗, then x · y = y · x.

Now we can interpret the algebra Ae in the theory T6.

Theorem 7 The theory of the algebra Ae from Theorem 5 is interpretable in the
theory T6. Hence, T6 is algorithmically as hard as the elementary arithmetic.

Proof Let us fix any language x0 ∈ R∗, x0 �= {ε}. Due to Lemma 6 we can define it:
R∗(x0) ∧ x0 �= ε. Assume that x0 ⊆ w∗ and w has minimal length. Consider the set
R0 of languages such that the following formula is true:

R0(x) ≡ (R∗(x) ∨ x = ∅) ∧ x0 · x = x · x0.

Due to Lemma 7 such x can be only a subset of w∗. The set R0 is a domain of our
interpretation.

Now, we have an isomorphism f between the algebra Ae and the algebra (R0, ·):
f (u) = {wm : 0m ∈ u }, f (u1 · u2) = f (u1) · f (u2).

So, for each formula ψ for Ae we can construct its translation T(ψ) for T6 by
induction:

– all atomic formulas remain unchanged: T(t = s) is t = s for any terms t and s;
– T(ψ1 ◦ ψ2) is T(ψ1) ◦ T(ψ2) for ◦ ∈ {∧, ∨, →} and T(¬ψ) is ¬T(ψ);
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– all quantifiers become R0-bounded: T((∃x)ψ) is (∃x)(R0(x) ∧ T(ψ)) and
T((∀x)ψ) is (∀x)(R0(x) → T(ψ)).

Entire closed formula ϕ becomes

ϕ∗ ≡ (∃x0)(R∗(x0) ∧ x0 �= ε ∧ T(ϕ)).

Therefore, ϕ belongs the theory of Ae if and only if ϕ∗ belongs T6.

The theory T2 is a conservative extension of T6, hence, T6 cannot be more complex
than T2. Using Corollary 4 we obtain

Corollary 6 The theory T6 and arithmetic are recursively isomorphic.

7 Conclusion

We have considered classical operations on languages: union, concatenation and
the Kleene star. We have proved that the theory of regular language is decidable
with the Kleene star only but undecidable with union and other operations and with
concatenation only.

Some interesting problems remain open.

– What is time and space complexity of the theory of regular languages with union
only?

– Are there other natural operations on regular languages with decidable theories?
– Investigate decidability of other language classes with different operations.
– In particular, find non-trivial classes and operations with decidable theories.
– What is the set of all constants definable in T3?
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