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Abstract
Huffman coding is known to be optimal, yet its dynamic version may yield smaller
compressed files. The best known bound is that the number of bits used by dynamic
Huffman coding in order to encode a message of n characters is at most larger by n

bits than the size of the file required by static Huffman coding. In particular, dynamic
Huffman coding can also generate a larger encoded file than the static variant, though
in practice the file might sometimes be smaller. We propose here a new variant of
Huffman encoding, that provably always performs better than static Huffman coding
by at least m − 1 bits, where m denotes the size of the alphabet, and may be better
than the standard dynamic Huffman coding for certain files. The algorithm is based
on reversing the direction for the references of the encoded elements, from pointing
backwards into the past to looking forward into the future.

Keywords Lossless data compression · Huffman coding · Dynamic Huffman coding

1 Introduction

Data Compression is a research field that aims at representing some input data using
less storage than originally given; this aim may be achieved by removing redundancies.
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To this end, many encoding algorithms have been suggested e.g., [4, 5, 9, 28].
Research in data compression has been extended to several new paradigms in the last
few decades. The following partial list gives a few examples:

1. Compressed Pattern Matching, that is, searching for strings directly in the com-
pressed form of the text [1, 26]. This has been extended to images [14, 17] as
well as to structured files [3, 15];

2. Variable-to-fixed length codes, in which the lengths of the codewords are
restricted to be equal, which is useful for fast decoding and compressed matching
[16, 29];

3. Compact Data Structures [22], that help represent the data in reduced space,
while still allowing efficient query handling, navigation, and a predefined set of
operations to be performed on it [2, 10, 18, 22, 24];

4. Compressed Cryptosystems [19, 27, 32], which combine compression and
encryption at the same time.

Huffman coding is one of the cornerstones of data compression algorithms, and
enjoys popularity in spite of almost seven decades since its invention, probably
because of its well-known optimality. Given is a text T = x1 · · · xn over some alpha-
bet Σ = {σ1, . . . , σm} such that σi occurs wi times in T . The problem is to assign
binary codewords of lengths �i bits to the characters σi , such that the set of code-
words forms a prefix code and such that the total size of the encoded file in bits,∑m

i=1 wi�i , is minimized. We use the common notation T [1, n] for T , and T [i, j ]
for the substring xi · · · xj of T . In particular, T [1, j ] is the prefix of length j of T for
any 1 ≤ j ≤ n, and T [i, n] is the suffix of length n − i + 1 of T for any 1 ≤ i ≤ n.

The alphabet will often consist of a set of characters, and it is convenient in many
applications to use just the basic ASCII set of 128 or 256 letters, but Huffman’s algo-
rithm works just as well for larger sets, such a bigrams, k-grams or even words, and
ultimately, any set S of substrings of the text, as long as there is a well defined way
to parse the text into a sequence of elements of S. We shall use the term alphabet in
this broader sense.

Huffman’s seminal paper [9] solves this problem optimally, but it should be
remembered that Huffman codes are optimal under the following constraints:

1. the alphabet Σ is given and fixed in advance;
2. the codeword lengths �i are integers.

In particular, the second condition seems self-evident when one considers the
binary codewords of known codes like ASCII, Huffman, Shanon-Fano or others,
though it may be circumvented by arithmetic coding [33]. By encoding the entire
input file as a single element rather than each character individually, an arithmetic
encoder effectively assigns to each occurrence of the character σi of probability
pi = wi/n an encoding of exactly − log2 pi bits, without rounding. The average
codeword length thus reaches the entropy − ∑m

i=1 pi log2 pi , and is always at least
as good as that of Huffman coding based on the same alphabet.

There is, however, another implicit constraint, which is rarely mentioned because
it seems obvious, that
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3. the encoding is static, i.e., the same codeword is used for a given character
throughout the encoding process.

Data compression algorithms are often classified into static or adaptive techniques.
The static ones base the coding procedures on a model of the distribution of the
encoded elements that is either assumed in advance or gathered in a first pass over
the data, whereas the adaptive methods learn the model details incrementally. There-
fore, the static models would seem, at first sight, to be better and produce smaller
files as they have the ability to exploit more knowledge: not only the distribution
of the elements up to the current point, but global occurrence statistics in the entire
file. However, in practice, adaptive compression is sometimes better, in particular
when there is much variability in the occurrence of patterns of the different elements
on which the model is based. Furthermore, if the model is not learned adaptively,
a prelude consisting of the details of the chosen model should be prepended to the
compressed file, allowing the decoder to be synchronized with the encoder. For the
adaptive methods, transmitting the details of the model to the decoder is superflu-
ous, as the model gets updated identically on both encoder and decoder ends. The
adaptive methods are often referred to as dynamic ones, and we shall use these terms
interchangeably.

In this paper we concentrate on Huffman coding and propose a new encoding
approach, that provably always performs better than static Huffman coding. In the
following section, we discuss related work. Section 3 describes the main idea of
the new approach, followed by the details and an extended example in Section 4.
Section 5 first presents an extreme case in which the new approach can be twice as
efficient as the dynamic algorithm used so far, and then brings a formal proof that
the forward looking variant does always improve the compression performance of
static coding, a property that does not hold for classical dynamic Huffman coding.
Section 6 suggests two block-wise variants of the new algorithm, and Section 7 brings
empirical results.

2 RelatedWork

Static Huffman coding can use a known distribution of the alphabet corresponding
to the nature of the file, for example, English text with its well known character
distribution, or use accurate probabilities for the specific input file that are com-
puted via a preprocessing stage. An advantage of using known statistics is saving
the preprocessing stage, however, one then relies on the assumption that the given
file fits the assumed model, which is not always the case. If there is too much dis-
crepancy between the conjectured and the actual model, there might be a loss in the
compression gain.

In the adaptive mode of Huffman coding, the encoder and decoder maintain iden-
tical copies of a gradually adjusting Huffman tree, which, at each point, corresponds
to the frequencies of the elements processed so far. The trivial solution of recon-
structing the Huffman tree from scratch after each processed character, is obviously
very wasteful, since in most cases, the Huffman tree is not altered: only one of the
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frequencies is incremented by 1, and the others remain unchanged. This motivated
the development of efficient adaptive Huffman coding procedures by Faller [6] and
Gallager [8], who propose essentially the same one-pass solution. Knuth extends
Gallager’s work and also suggests that the frequencies may be decreased as well as
increased [20]. These independent adaptive Huffman coding methods are known as
the FGK algorithm.

A further enhancement by Vitter [31] also minimizes the external path length
Σm

i=1�i and the height max{�i} among all Huffman trees. Vitter proved that the num-
ber of bits used in his adaptive Huffman procedure in order to encode a message
of n characters, is bounded by the size of the compressed file resulting from the
optimal two-pass static Huffman algorithm, plus n. That is, the dynamically pro-
duced file may be larger than the static counterpart, and examples can be given for
which this actually happens, though empirical results sometimes show that on the
contrary, there might be an improvement in the compression rate of the dynamic
version as compared to the static one. One may thus conclude that in certain cases,
though not in all, adaptive Huffman coding is better than the “optimal” static
Huffman coding!

This work is an extended version of a paper that has been presented in 2019 at the
14th International Computer Science Symposium in Russia (CSR’19) in Novosibirsk,
and appeared in its proceedings [12]. The additional contributions over those in the
conference paper [12] are:

1. It has been shown in the conference version that the proposed Huffman encoding
is at least as good as the static Huffman encoding. Here we provide a stronger
theoretical result, that the new algorithm actually performs better than the static
Huffman coding. In other words, the best known bound for the size of a com-
pressed file by any dynamic variant of Huffman coding was n bits above the
compression of static Huffman. While the conference version showed that this
addition may be as low as zero, we reduce this upper bound even further, to
−(m − 1).

2. In the newly added Section 6, we introduce two block-wise variants of the
proposed algorithm, a first that suggests a practical version which provides
additional savings on our test files, and an alternative that extends the idea of
selectively updating the statistics, similarly to what has been suggested in [11].

3. The empirical results presented here are more involved.

3 Forward looking Huffman Coding

The traditional dynamic Huffman coding, and in fact, practically all adaptive com-
pression algorithms, update the model according to what has already been seen
in the file processed so far. The underlying assumption is that the past is a good
approximation of the future, according to the biblical postulate that

The thing that hath been, it is that which shall be
Ecclesiastes 1:9, King James Version
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More precisely, the distribution of the elements in the prefix of the file up to
the current point, serves as an estimate for the distribution of these elements from
the current point onwards. Such an assumption seems to be justifiable, especially
for homogeneous texts written in some natural language, but there is of course no
guarantee that it holds for all possible input files.

The algorithm we suggest corresponds to a scenario in which the exact statistics of
the element’s occurrences are known, yet we prefer using a model that adapts itself
while processing the file. However, contrarily to the classic dynamic methods, which
base their current model on what has already been seen in the past, our algorithm
uses the model’s knowledge of what is still to come, i.e., it looks into the future. The
idea of looking forwards rather than backwards in adaptive compression has already
been proposed in a completely different context for files compressed by LZSS [28]:
instead of pointing backwards to reoccurring strings, the locations of the pointers
were moved and their direction was altered to point forwards, in order to enable
streaming compressed pattern matching [13].

The motivation of the suggested amendment is a different approach to what should
be done in order to produce a more economical encoding. Traditional dynamic
Huffman coding concentrates only on the character that is currently processed: its
frequency is incremented, which tends to shorten its codeword length for future
usage, but it ignores the fact that these savings may come at the price of having
certain other codewords lengthened. This “selfish” behavior is counterbalanced by
the more altruistic approach of the forward looking variant, where the frequency of
the currently processed element is decreased, even though, as a consequence, the
corresponding codeword can only become longer, yet this action may shorten the
codewords of other symbols that are still present in the tree, yielding an overall
gain.

To allow a fair comparison, one has to take into account that the models on
which the methods rely require different amounts of storage for their encodings. For
instance, static Huffman coding does not need the exact frequencies of the m char-
acters; if a canonical [25] Huffman tree is used, it suffices to transmit its quantized
source 〈n1, n2, . . . , nk〉 as defined in [7], where ni is the number of codewords of
length i, for 1 ≤ i ≤ k, and k is the longest codeword length. For example, the quan-
tized source of the canonical tree equivalent to that in Fig. 1a would be 〈0, 1, 2, 6, 4〉.
By using a canonical tree, one can thus save the transmission of the frequencies,
but the sequence of characters must then be sorted by frequency order. If, on the
other hand, a non-canonical tree is acceptable, the order of the characters may be
implicit, e.g., lexicographic, but then we need to know the length of each of the m

codewords.
The forward looking Huffman algorithm requires the exact frequencies of the

elements, and not just the corresponding codeword lengths. The standard dynamic
Huffman method does not need any frequencies, since they are incrementally learned
by both encoder and decoder.

We have therefore included the size of a header describing the model in our exper-
iments below. When the size n of the text to be compressed is large relative to the
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Fig. 1 Illustration of FORWARD-HUFFMAN for T =Abrahamasantaclaragasse

size m of the alphabet, the amount of storage required to encode the model is often
negligible. For larger alphabets, for example when words, instead of just characters,
are the elements to be encoded [21], the additional overhead of the forward look-
ing variant may not be justifiable, unless the text to be encoded is very large. For
certain applications, like large full-text Information Retrieval Systems, this over-
head can be ignored, since the list of different words and their frequencies
are usually stored anyway as part of the standard auxiliary data called inverted
files [34].
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4 Implementation Details and Extended Example

For the ease of description, we shall assume that the alphabet of the entire file is
known in advance to both encoder and decoder. In practice, adaptive Huffman coding
may reserve leaves in the Huffman tree only to characters that have already been
processed, plus one leaf, often called NYT for Not Yet Transmitted, to enable the
extension of the alphabet whenever a character c that has not been seen previously
is encountered. In this case, the codeword of NYT is sent to the output, followed by
some standard encoding of c, e.g., in ASCII (though this limits the size of the alphabet
to 256, which is often not enough, for example when we wish to encode words rather
than single letters). The leaf for NYT is then split, i.e., transformed into a node with
two leaf children, one for c and one for NYT.

Our assumption is thus that we initialize a Huffman tree with m leaves. For the
classical dynamic Huffman coding, all nodes are assigned a frequency of 0 (or all 1
if zero frequencies may cause trouble), and the frequencies are incremented at each
step. The Huffman tree at the end is one that would have been produced by static
Huffman coding. For the forward looking approach, the initial frequencies are those
corresponding to the entire file, and they are decremented after the processing of each
character. If one of the frequencies reaches 0, we know that no further occurrences
of the corresponding character will appear in the file, so that its leaf may be removed
from the tree.

The main tool for updating the Huffman tree, rather than reconstructing it from
scratch after each character, is the sibling property, which guarantees that the tree is
a Huffman tree, and is defined as follows:

Sibling Property A weighted binary tree with m leaves is said to have the sibling
property if and only if

1. the m leaves have nonnegative weights w1, . . . , wm, and the weight of each
internal node is the sum of the weights of its two children; and

2. the nodes can be numbered in nondecreasing order by weight, so that the nodes
indexed 2j − 1 and 2j in this numbering are siblings, for 1 ≤ j ≤ m − 1.

It has been shown in [8] that a tree is a Huffman tree if and only if it has the sibling
property. As example, consider the tree in Fig. 1a, in which the internal nodes contain
their weights, the leaf for character x contains the pair (x, f (x)), where f (x) is its
frequency, and the indexes in the above mentioned numbering are written above the
nodes. We use a bottom-up, left to right numbering, but any other one is plausible, as
long as it complies with the sibling property.

Given a Huffman tree, the following update procedure is used by the standard
dynamic Huffman coding. If the currently processed character is c, the weights of
all the nodes on the path from the leaf corresponding to c up to the root have to be
incremented by 1. For example, referring again to Fig. 1a, suppose the next character
is c = r whose leaf is the node indexed 16, then the weights of the nodes indexed
16, 20, 23 and 25 are incremented to 3, 5, 9 and 24, respectively. Note that for this
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example, the sibling property still holds after the updates (with the same numbering),
so no further action is needed. However, in other cases, the increments may disrupt
the monotonicity of the numbering.

Consider the case in which the next character is c = A, rather than r. The
path from its leaf to the root is emphasized in Fig. 1a, and the weights of the
nodes indexed 1, 11, 18, 21, 24 and 25 are incremented to 2, 3, 5, 8, 16 and 24,
respectively. If we were to keep the same numbering, the weights of nodes 10–13
would be 1, 3, 2, 2, which is not a monotone sequence. In fact, with the present
layout of the tree, no numbering can fulfill the second condition of the sibling
property.

The difference between the two examples lies in the fact that in the first one, all the
nodes that get updates have indexes which are maximal for their given weights before
the increments, a property which does not hold for the second example. Indeed, there
are many nodes with weight 2, all those with indexes 11 to 16, and the leaf (r,2) is
indexed 16; nodes 18 to 20 have weight 4, nodes 22 and 23 have weight 8, and only
node 25 has weight 23. On the other hand, for the second example, the leaf (A,1) is
indexed 1, but there are also other nodes with weight 1 and that have higher indexes
(up to 10); node 18 has weight 4, and node 20, which has a higher index, has also
weight 4.

Clearly, this rule holds in general and not only for the examples, since a non-
decreasing sequence of integers will remain such, even if the highest ranking
elements within the sub-sequences of identical integers are incremented by 1. For
example, · · · 6 6 7 7 7 7 9 9 · · · may turn into · · · 6 7 7 7 7 8 9 9 · · · , which is
still non-decreasing. To ensure that only such highest ranking nodes are updated, the
dynamic Huffman algorithm exploits another property of Huffman trees, namely that
nodes with identical weights may be interchanged. More precisely, since swapping
the nodes is actually implemented by swapping the pointers to them, not just the
nodes are interchanged, but the entire sub-trees rooted by these nodes. As a result,
the shape of the tree might change, which yields a different set of codewords, but the
weighted total path-length

∑m
i=i wi�i remains the same, so that the transformed tree

is also a legitimate Huffman tree minimizing this sum, which represents the size of
the compressed file.

Our algorithm adapts the dynamic Huffman procedure to the forward looking vari-
ant. After each encoded character, the number of its occurrences is decremented by 1.
Before doing so, each node on the path from the updated leaf to the root is swapped,
if necessary, with the smallest numbered node of identical weight. Then the weights
of these nodes can be decremented without violating the sibling property. To con-
tinue the previous example, · · · 6 6 7 7 7 7 9 9 · · · may now turn into · · · 6 6 6 7 7 7
8 9 · · · .

Given a text T = x1 · · · xn to be compressed, Forward looking Huffman
encoding, or FORWARD-HUFFMAN, for short, compresses T using initially the Huff-
man tree of the static encoding. After every read character xk , the corresponding
codeword is output to the encoded file, and the Huffman tree gets modified to cor-
respond to the frequencies within {xk+1 · · · xn}. The formal algorithm is given in
Algorithm 1.
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Lines 11–14 deal with the case where the weight of leaf(xk) has been reduced
to 0, which means that the last occurrence of the character xk is encountered. Note
that in this case, the leaf is the lowest numbered one and must be the left child of
its parent node q. It can thus be eliminated from the tree, by replacing q by its right
child, which is the leaf’s left sibling. Whenever the structure of the tree is altered (in
lines 8 or 13), we assume that the numbering of the nodes, referred to in the sibling
property, is updated as well.

For example, consider the text T = Abrahamasantaclaragasse (the name
of a street in Vienna) over the alphabet { A,a,b,c,e,g,h,l,m,n, r,s,t} with
corresponding weights {1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1}. We started with one of the
possible Huffman trees, shown in Fig. 1a, in which the leaves are assigned in lexico-
graphical order. The other trees in the figure are those obtained after the processing,
by Algorithm 1, of the first three characters of T , A, b and r, respectively.

When A is processed, all the nodes on the emphasized path from the leaf (A,1) to
the root are the lowest indexed of their corresponding weights, so no interchanges
in lines 6–8 are needed; the weight of each node on this path is then decremented,
the parent of (A,1) is overwritten by the sibling of (A,1), which is the leaf (b,1),
and the leaf (A,1) is erased from the tree. The resulting tree is shown in Fig. 1b
in which the leaf that corresponds to the only codeword that has been changed,
appears in gray. The shape of the tree has changed, therefore, a new numbering is
necessary.

When the following input character b is processed, the corresponding leaf, num-
bered 9, is not the node with the lowest index among those with weight 1. Nodes 9
and 1 are therefore interchanged. Climbing up the tree from the new position of the
leaf (b,1), we get to node 10, which is the lowest numbered node of weight 2. How-
ever, its parent node 16 has weight 3, as has also node 15. We therefore interchange
the leaf (s,3) with the subtree rooted at node 16. The process continues to nodes
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19, 22 and 23, whose corresponding weights are the smallest indexed ones for the
weights 6, 14 and 22, respectively, so no further updates are needed. The resulting
tree is given in Fig. 1c, which again displays the changed codewords in gray.

The processing of character r starts by swapping the nodes 12 and 9 in Fig. 1c, and
then continues to node 15, which is the lowest indexed of weight 4. Its parent node
19, is interchanged with leaf 18; the updates continue with nodes 20 and 21. Finally,
the weights of the nodes on the new path from the root to leaf (r,2) are decremented,
resulting in the tree given in Fig. 1d.

The decoding algorithm is symmetrical. At the beginning the decoder is given
the frequencies of the symbols in the entire file, similarly to the static approach,
which is sufficient for correct decoding. The initial tree is constructed based on these
frequencies, and the tree gets updated according to the last character that has been
processed. That is, once a codeword is decoded, the frequencies of all the nodes on
the path from the root to the corresponding leaf have to be decremented by 1. This is
performed in a bottom-up scan according to Vitter’s algorithm, exchanging subtrees
of equal weights to maintain the sibling property, similarly to Algorithm 1. When the
frequency of a leaf x reaches zero, the leaf x is eliminated from the Huffman tree by
replacing its parent node by the sibling of x.

5 Analysis

Dynamic Huffman coding repeatedly changes the shape of the tree, but there is a
delay between the occurrence of a change and when such a change starts to influence
the encoding. For encoding the current character we use the tree built in the previous
stage, and the changes implied by the processed character do only affect the encoding
in the subsequent stages, if at all. This behavior is demonstrated in the following
extreme example, comparing its performance to FORWARD. The example shows that
the file constructed by traditional dynamic Huffman may be about twice as large as
that produced by the FORWARD-HUFFMAN algorithm.

Let T =CAAB{BBAA}k for some positive integer k. We initialize our Huffman
tree with Σ = {A,B,C} as shown in Fig. 2a for the prefix CAAB of T . Consider first
the standard dynamic algorithm. When the two Bs of the first quadruple BBAA are
processed, only the second B causes a change in the structure of the Huffman tree,
but this happens after the two Bs have already been encoded using 2 bits for each.

Fig. 2 Example for which classical dynamic Huffman coding produces a file twice the size of that
constructed by FORWARD-HUFFMAN
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The Huffman tree after reading the prefix CAABBB of T , is depicted in Fig. 2b. When
the following two As of the first quadruple BBAA are processed, again the positions
of the A and B nodes are swapped only after the frequency of A exceeds that of B, so
each of the As is also encoded by 2 bits. The resulting Huffman tree after processing
CAABBBAA is presented in Fig. 2c, and this is in fact the same Huffman tree as
that in Fig. 2a. This alternation between two different structures of the Huffman tree
proceeds for each of the BBAA quadruples, and every character of T (except the first
two As) uses 2 bits, for a total of 8k + 6.

When compressing T using the proposed forward looking coding, the Huffman
tree may start with the static Huffman tree identical to that of Fig. 2a. Since the
weight of the first read character C is 1, its node is deleted, and the Huffman tree
is reduced to only two leaves, one for A and the other for B. All the codewords
are then of length 1 and the size of the compressed file is exactly 4k + 5, roughly
half the size of the compressed file constructed by traditional dynamic Huffman
methods.

If we were to use static Huffman coding, the tree would be the one of Fig. 2c and
the size of the encoded file would be 6k + 6.

Note that this example also shows that the standard dynamic Huffman coding may
produce an encoding which is worse than that of static Huffman. The new forward
looking algorithm, on the other hand, is at least as good as static Huffman, not only
on this example, but in general, as proved in the following Theorem.

Theorem 1 For a given input file, the size of the encoded file according to
FORWARD-HUFFMAN is not larger than the size of the encoded file according to
static Huffman coding.

Proof Suppose the input file has n characters and let us inspect the situation after
t < n characters have already been encoded. If we knew also the distribution of
the characters in the first t characters, we should have built a Huffman code just for
these t characters, but lacking this knowledge, we took the global frequencies and
encoded accordingly. However, for the following n − t characters, we know the true
distribution, which might be different from the global one; thus continuing with the
static global distribution, one can only be worse (or at least not better) than changing
to another Huffman code according to the frequencies in the last n − t characters,
which is exactly what is done in FORWARD-HUFFMAN.

The overall sum of the codeword lengths on the entire file for the static encoding
is thus larger or equal to the sum of the codeword lengths of the first t characters,
plus the sum of the codeword lengths of the static Huffman encoding based only on
the frequencies of the last n − t characters.

However, the same argument applies on this static encoding of the last n − t char-
acters. Thus choosing t = 1 and repeating the argument on the suffix gives that the
total file size achieved by a static Huffman code is larger than or equal to the total
file size achieved by the FORWARD-HUFFMAN presented in Algorithm 1.

One may actually show a stronger result: not only is the forward looking variant
not worse than the static one, we show that it strictly improves. While the size of the
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compressed file produced by Vitter’s dynamic Huffman coding [31] is upper bounded
by |ES(T )| + n, where ES(T ) denotes the static Huffman encoding of the file T , the
bound for our forward variant is |ES(T )| − m + 1, that is, provably smaller.

Theorem 2 For a given input file over an alphabet Σ of size m, the size of the
encoded file according to FORWARD-HUFFMAN is smaller by at least m−1 bits than
the size of the encoded file according to static Huffman coding.

Proof The proof of the claim relies on the fact that in the FORWARD-HUFFMAN algo-
rithm, the leaves of the Huffman tree are gradually removed after the last occurrence
of the corresponding characters, while for the static variant, the number of leaves
remains unchanged. We could have defined the FORWARD-HUFFMAN algorithm
without this improvement, leaving the leaves with frequency 0 in the tree.

We construct a sequence of static trees {S1,S2, . . . ,Sm} according to the progress
of FORWARD-HUFFMAN while processing the file T . We denote the encoding algo-
rithm using these m static trees by FORWARD1. S1 is identical to the only Huffman
tree of T used by the static Huffman encoding, and Si+1 is constructed from Si when
the ith character in Σ is removed by FORWARD-HUFFMAN after the last occurrence
of σi ∈ Σ has been encountered in T . The last tree, Sm consists of a single node and
has depth 0.

Refer to the node α that has σi as one of its children, and let β be the sibling node
of σi . Si+1 is obtained from Si by replacing the subtree rooted by α by the subtree
rooted by β.

There is no codeword in Si+1 that gets lengthened by the transformation from Si

to Si+1. Moreover, shortening the codewords in the subtree rooted by β implies the
savings of a single bit for each occurrence in the remaining portion of T of characters
corresponding to one of the leaves of β. Therefore, the encoding by FORWARD1 saves
at least m − 1 bits as compared to S1 that is identical to the tree used by the static
Huffman coding.

On the other hand, at each point in T where Si+1 is constructed from Si , both
the tree of FORWARD and Si+1 hold the same set of leaves. From the optimality
of Huffman for the distribution of the characters in the remaining portion of T , it
follows that the encoding according to Si cannot be better than the encoding of the
same portion of T by FORWARD. This implies that FORWARD is at least as good as
FORWARD1, which is better than static Huffman by at least m − 1 bits.

Note that the bound given in Theorem 2 is tight, even between FORWARD-
HUFFMAN and static Huffman coding as can be seen by the following example.
Consider any text T at the end of which a single copy of each of the characters in Σ

has been concatenated. In that case, the original T is processed identically by the two
variants static Huffman coding and FORWARD1. For the remaining m characters of
Σ , a single bit is saved by FORWARD1 (and therefore by FORWARD), relative to the
static Huffman encoding for each except the first.

Remark that the claim in Theorem 1 refers to the total lengths of the encoded files,
and it is not necessarily true that each codeword of FORWARD-HUFFMAN, at every
position, is of equal length or shorter than the corresponding codeword of the static
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Huffman code. Consider as example T = AAABBBCA, for which this claim does not
hold. The static Huffman encoding refers to the frequencies 4, 3 and 1 for characters
A, B and C, with codeword lengths 1, 2 and 2, respectively, using, e.g., the Huffman
tree shown in Fig. 3a.

Figure 3 shows the way the Huffman tree is transformed for FORWARD-HUFFMAN

coding while T is processed. FORWARD-HUFFMAN starts with the same tree as static
Huffman coding. When the first A is processed, it is encoded by 0, and then its fre-
quency is decreased, as shown in Fig. 3b. The second A is still encoded by 0, but
then, once its frequency is updated to 2, in Fig. 3c, its node gets swapped with the
node for B, so that the codeword for B becomes shorter, but at the price of the code-
word for A becoming longer. The third A is then encoded by 10, a codeword of two
bits, while the static version of Huffman coding is still using a single bit to represent
A, showing that a codeword of FORWARD, at some position, might be longer than
the corresponding codeword assigned by static Huffman. The following three Bs are
encoded by a single 0 bit each, followed by decrements of its frequency, to 2, 1, and
0, as shown in Fig. 3d, e and f, when the node corresponding to B is finally removed
from the tree, resulting in the tree of Fig. 3g. The following character C generates the

Fig. 3 Dynamically changing Huffman tree in FORWARD-HUFFMAN for T = aaabbbca
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codeword 1, followed by a decrement of its frequency, and a removal of C from the
tree, yielding the tree of Fig. 3h with a single leaf corresponding to A.

At this point no further bits need to be transferred to the decoder, who already
realizes that the remaining suffix of the file may only contain a single character,
which must be A, and which repeats the number of times indicated by its frequency (1
in our example). The encoding using FORWARD-HUFFMAN is therefore 0 0 10 0 0 0
1 (spaces are inserted for clarity), resulting in an average codeword length of 8

8 = 1,
less than the average codeword length for static Huffman, which is 4×1+3×2+1×2

8 =
1.5.

6 Block-wise FORWARD-HUFFMAN Coding Variants

As mentioned above, a header consisting of the details of the chosen model should be
prepended to the compressed file, in case these values are not known to the decoder.
The FORWARD-HUFFMAN algorithm requires the exact frequencies of the elements.
If these frequencies are encoded according to a predefined order, e.g., that implied by
ASCII, the frequencies (including zeroes if necessary) can be listed sequentially. One
of the possibilities for the encoding of these frequencies could be Elias’s Cδ code [5],
a universal encoding method of the integers ≥ 1 using about log x + log log x bits to
encode the value x. However, as it might be necessary to encode a frequency 0, we
use Cδ(x + 1) to encode the value x.

Both classical static Huffman coding and the FORWARD-HUFFMAN coding use the
distribution of the elements to be encoded in the entire file. However, the occurrences
of these elements are not necessarily spread uniformly, which might have a negative
impact on the compression efficiency.

We propose a block-wise FORWARD-HUFFMAN encoding variant, that considers
a limited portion of the file at a time. That is, this version is given a predefined
parameter B which denotes the number of elements in a single block. Each block
is then compressed independently, having a prelude of its own. The disadvantage of
such a version is obviously that the frequency of a specific symbol should then be
transferred at the beginning of all the blocks it appears in. On the other hand, the
frequency values are smaller, and limited by the size B of the block, thus require
fewer bits for their encoding. Moreover, characters that do not appear at all in a
certain block need not be encoded in it, thereby possibly reducing the size of the tree.
We call this version Independent block-wise.

A different block-wise variant, called Incremental block-wise, still processes the
entire input file as the original FORWARD-HUFFMAN, but updates the frequencies
and changes the Huffman tree only selectively at the beginning of each block rather
than after each character. That is, the frequencies of the first block are initialized
in the same way as in the original algorithm. During the encoding of a block, both
encoder and decoder store the number of occurrences of each symbol, locally, with-
out updating the tree, and only at the end of the block, the obtained frequencies are
subtracted from the frequencies at the beginning of the block. The special case B = 1
is the proposed FORWARD-HUFFMAN algorithm. When B is the size of the input file,
this corresponds to the classical static Huffman coding.
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7 Empirical Results

To get empirical evidence how the three algorithms behave in practice, we considered
texts of different languages and alphabet sizes: ebib is the Bible (King James ver-
sion) in English, in which the text has been stripped of all punctuation signs except
blank; ftxt is the French version of the European Union’s JOC corpus, a collection
of pairs of questions and answers on various topics used in the ARCADE evalua-
tion project [30]; English is the concatenation of English text files selected from
the etext02 to etext05 collections of the Gutenberg Project, from which the headers
related to the project were deleted so as to leave just the real text; and sources is
formed by C/Java source codes obtained by concatenating the first 50MB of the .c,
.h and .java files of the linux-2.6.11.6 distributions. The dataset also includes the exe-
cutable files static.o, dynamic.o and forward.o, of the static, dynamic and
FORWARD-HUFFMAN source codes we used, respectively.

Our goal was to compare the compression performance of the three methods: static
Huffman, the traditional dynamic Huffman and the proposed FORWARD-HUFFMAN

algorithms. The results are presented in Table 1. The second column gives the orig-
inal file sizes in MB. The third column gives the size of the encoded alphabet, m.
The following three columns, headed STATIC, DYNAMIC and FORWARD, represent
the sizes of the compressed output files. More precisely, for STATIC the numbers are
given in bytes, while for DYNAMIC and FORWARD the presented values are the differ-
ences, in bytes, from the values in STATIC. As mentioned, we included the overhead
of the description of the model in the size of the compressed file.1

We see that on our test files, the compression results are extremely close, and
that our new FORWARD variant gives consistently smaller values than STATIC,
as expected. The FORWARD variant is also generally, but not always, better than
DYNAMIC, which itself often improves on STATIC. The executable files are examples
in which STATIC is strictly better than DYNAMIC.

For our next set of experiments, the results of which are reported in Table 2, we
wanted to consider also larger alphabets. An appropriate application area would then
be large Information Retrieval Systems, the texts of which are often encoded as a
sequence of words, rather than just characters, which yields much better compres-
sion. As mentioned earlier, a plausible scenario is to assume that the list of different
words and their frequencies are needed anyway for the Information Retrieval process
and are thus already stored, implying no additional overhead for the compression
techniques. We considered datasets taken from the Canterbury corpus2 for this set
of experiments. Each file was preprocessed to obtain the underlying list of different
words, defined as strings separated by white space. The columns of Table 2 follow
the same structure as Table 1.

1The numbers differ slightly from those in [12], not only because of the different representation but also
since dynamic Huffman coding has been implemented here exactly as suggested by Vitter [31], while a
more optimized variant of Nelson [23], which repeatedly performs rescaling of the frequencies, has been
used in [12].
2http://corpus.canterbury.ac.nz/
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Table 1 Compression performance for small alphabets

File full size m Compressed size

MB Static Dynamic Forward

ebib 3.5 53 1,941,863 −71 −45

ftxt 7.3 127 4,398,943 −78 −120

English 50 217 29,917,189 −78 −187

sources 50 205 36,429,014 −52 −326

static.o 0.022 256 14,684 +31 −124

dynamic.o 0.023 254 14,793 +26 −124

forward.o 0.031 255 20,132 +14 −139

As can be seen, the compression differences for the larger alphabets are more
significant than those in Table 1. Our new method is consistently better than static
Huffman by up to a few percent, and the traditional dynamic Huffman is worse than
STATIC on all our tests, even up to 9% for the file ftxt. We note that the extra space of
DYNAMIC over STATIC is consistent with the upper bound of at most n additional bits
given by Vitter [31], where n is the number of elements in the parsing of the text. For
example, ftxt is parsed into a sequence of 1,176,190 words, implying an upper bound
of that many bits, which are 147,023 bytes. On the other hand, the upper bound on the
new FORWARD method implied by Theorem 2 depends on m rather than n; according
to it, the savings for the same file ftxt are at least 75,191 bits, or 9399 bytes.

The graphs of Fig. 4 present our experimental results for the Independent block-
wise FORWARD LOOKING variant, using the first four input files mentioned in
Table 1. The compression ratio, defined as the size of the compressed divided by the
size of the original file, is given as a function of the block size B with 1 ≤ B ≤ 1000
KB. Note that the graphs for English and ebib literally overlap. As can be seen,
the compression savings are the best for blocks of sizes up to about 50MB on
our datasets, despite the fact that the prelude has to be added at the beginning
of each block. However, the compression gain is moderate, and for larger blocks,

Table 2 Compression performance for large alphabets

File full size m Compressed size

MB Static Dynamic Forward

asyoulik 0.12 5,317 28,545 +1,254 −1,197

alice29 0.15 5,312 32,103 +1,396 −1,200

lcet10 0.41 9,946 80,303 +2,890 −2,342

bbe.txt 4.3 22,180 1,052,190 +43,071 −6,347

ebib 3.5 11,377 671,866 +22,331 −3,492

ftxt 7.3 75,192 1,568,984 +142,306 −17,983
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Fig. 4 Compression ratio as a function of the block size B using the Independent block-wise FORWARD

LOOKING variant

Fig. 5 The difference, in bytes, between the sizes of the compressed files using the Incremental block-wise
FORWARD LOOKING variant and FORWARD, as a function of the block size B

Table 3 Encoding execution time

File Static Dynamic Forward

ebib 0.067 0.147 0.209

ftxt 0.071 0.177 0.210

English 0.085 0.194 0.212

sources 0.091 0.212 0.208

static.o 0.272 0.574 0.672

dynamic.o 0.272 0.549 0.650

forward.o 0.227 0.684 0.495
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Table 4 Decoding execution time

File Static Dynamic Forward

ebib 0.073 0.167 0.163

ftxt 0.083 0.153 0.161

English 0.085 0.154 0.157

sources 0.095 0.172 0.190

static.o 0.321 0.573 0.769

dynamic.o 0.308 0.555 0.629

forward.o 0.281 0.556 0.556

the compression efficiency is similar to that of the original FORWARD-HUFFMAN

algorithm.
Figure 5 presents the difference, measured in bytes, between the sizes of the file

obtained from the Incremental block-wise FORWARD-HUFFMAN coding with blocks
of size B and the original FORWARD HUFFMAN coding, which is the special case
B = 1. The test files were ebib and ftxt. The x-axis corresponds to the size of
the block B in the range from 1 byte (referring to FORWARD) and up to the size
of the input file (referring to static Huffman). The y-axis shows the differences
between the sizes of the compressed files using a block of B bytes and the com-
pressed file obtained by FORWARD, that is, with B = 1. Positive numbers imply a
loss in compression, while negative numbers refer to savings. Note that in all cases,
the difference is no more than 384 bytes, which is negligible when compared to the
compressed file sizes.

The space requirements by all algorithms is the memory used by the correspond-
ing Huffman trees plus O(1) for variables and pointers which is about the same.
For our last set of experiments, we were interested in comparing the execution times
of all mentioned algorithms. All experiments were conducted on a Virtual Machine
with 1GB of memory and a single CPU, running Ubuntu 64 bits, on an Intel Core i5-
4300U @ 1.80–2.50 GHz processor. Tables 3 and 4 report the average compression
and decompression times, respectively, for 100 runs. The times are presented in sec-
onds per Megabyte. As can be seen, static Huffman is obviously the fastest, and runs
typically in about half the time of DYNAMIC. FORWARD is consistently a bit slower
than DYNAMIC.

8 Conclusion

The contribution of this paper is twofold, theoretical as well as practical. The theoret-
ical result is that the standard static Huffman coding, well-known for its optimality,
may in fact be improved. In practice, this is sometimes achieved by the standard
dynamic Huffman coding, but this traditional version can also be worse. The new
forward looking Huffman coding, on the other hand, is provably better than static
Huffman on all files, though may at times be outperformed on certain files by the
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classical dynamic coding. For executables and for large alphabets, when the pre-
cise number of occurrences is already known to the decoder such as in Information
Retrieval applications, the FORWARD algorithm was also better than DYNAMIC on
our tests.
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