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Abstract
We study cube-free words over arbitrary non-unary finite alphabets and prove the
following structural property: for every pair (u, v) of d-ary cube-free words, if u

can be infinitely extended to the right and v can be infinitely extended to the left
respecting the cube-freeness property, then there exists a “transition” wordw over the
same alphabet such that uwv is cube free. The crucial case is the case of the binary
alphabet, analyzed in the central part of the paper. The obtained “transition property”,
together with the developed technique, allowed us to solve cube-free versions of three
old open problems by Restivo and Salemi. Besides, it has some further implications
for combinatorics on words; e.g., it implies the existence of infinite cube-free words
of very big subword (factor) complexity.

Keywords Power-free word · Cube-free word · Extendable word ·
Transition property

1 Introduction

The concept of power-freeness is in the center of combinatorics on words. This
concept expresses the restriction on repeated blocks (factors) inside a word: an
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α-power-free word contains no block which consecutively occurs in it α or more
times. For example, the block an in the word banana is considered as having 5/2
consecutive occurrences; thus the word banana is 3-power-free (cube-free) but not
(5/2)-power-free or 2-power-free (square-free); the block mag in the word magma
occurs consecutively 5/3 times; the word magma is square-free but not (5/3)-power-
free. Power-free words and languages are studied in lots of papers starting with the
seminal works by Thue [20, 21], who proved, in particular, the infiniteness of the sets
of binary cube-free words and ternary square-free words. However, many phenomena
related to power-freeness are still not understood.

One group of problems about power-free words concerns their structure and
extendability. In 1985, Restivo and Salemi presented [16] a list of five problems, orig-
inally considered only for ternary square-free words and binary overlap-free words,
but equally important for every power-free language. Suppose that a finite alphabet
Σ is fixed and we study α-power-free words over Σ . Here are the problems.

Problem 1 Given an α-power-free word u, decide whether there are infinitely many
α-power-free words having (a) the prefix u; or (b) the suffix u; or (c) the form
vuw, where v and w have equal length. (Such words u are called, respectively, right
extendable, left extendable, and two-sided extendable.)

Problem 2 Given an α-power-free word u, construct explicitly an α-power-free
infinite word having u as prefix, provided that u is right extendable.

Problem 3 Given an integer k ≥ 0, does there exist an α-power-free word u with the
properties (i) there exists a word v of length k such that uv is α-power free and (ii)
for every word v′ of bigger length, uv′ is not α-power free?

Problem 4 Given twoα-power-freewordsu and v, decidewhether there is a “transition”
from u to v (i.e., does there exist a word w such that uwv is α-power free).

Problem 5 Given two α-power-free words u and v, find explicitly a transition word
w, if it exists.

These natural problems appear to be rather hard. Only for Problem 1a,b there
is a sort of a general solution: a backtracking decision procedure exists for all k-
power-free languages, where k ≥ 2 is an integer [3, 4]. In a number of cases, the
parameters of backtracking were found by computer search, so it is not clear whether
this technique can be extended for α-power-free words with rational α. The decision
procedure also gives no clue to Problem 2.

There is a particular case of binary overlap-free words, for which all problems are
solved in [1, 16] (more efficient solutions were given in [2]). These words have a
regular structure deeply related to the famous Thue-Morse word, and it seems that all
natural algorithmic problems for them are solved. For example, the asymptotic order
of growth for the binary overlap-free language is computed exactly [6, 7], and even
the word problem in the corresponding syntactic monoid has a linear-time solution
[19]. Most of the results can be extended, with additional technicalities, to binary
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α-power-free words for any α ≤ 7/3, because the structure of these words is
essentially the same as of overlap-free words (see, e.g., [8]). However, the situation
changes completely if we go beyond the polynomial-size language of binary (7/3)-
power-free words. In the exponential-size α-power-free languages1 the diversity of
words is much bigger, so it becomes harder to find a universal decision procedure.
The only results on Problems 1-5 apart from those mentioned above are the positive
answers to Problem 3 (including its two-sided analog) for the two classical test cases:
for ternary square-free words [12] and for binary cube-free words [11].

In this paper, we study cube-free words over arbitrary alphabets. Still, the crucial
case is the one of the binary alphabet; the central part of the paper is the proof of the
following transition property of binary cube-free words.

Theorem 1 For every pair (u, v) of binary cube-free words such that u is right
extendable and v is left extendable, there exists a binary word w such that uwv is
cube free.

After proving Theorem 1 in Section 3, we use it and its proof to derive further
results. In Section 4 we prove the transition property for arbitrary alphabets (The-
orem 3), while in Section 5 we use this property to solve the cube-free case of
Restivo–Salemi Problems 2, 4, and 5. Thus, all Restivo–Salemi problems for binary
cube-free words are solved; this is the first fully solved case since the original pub-
lication of the problems. For cube-free words over bigger alphabets, only Problem 3
is not yet solved.

We finish the introduction with two remarks. First, the result of Theorem 1 and
Theorem 3 (see Section 4) was conjectured in a slightly weaker form for all infi-
nite power-free languages [18, Conj 1]. This conjecture is related to the properties
of finite automata recognizing some approximations of power-free languages and
was supported by extensive numerical studies. The transition words can be naturally
interpreted as transitions in those automata and the transition property forces the
automata to be strongly connected. Second, recently it was shown [17, Thm 39] that
the transition property implies the existence of infinite α-power-free words of very
big subword complexity. Namely, Theorems 1 and 3 imply that for every d ≥ 2 there
exists a d-ary cube-free infinite word which contains all two-sided extendable d-ary
cube-free finite words as factors.

2 Preliminaries

2.1 Notation and Definitions

By default, we study words over finite alphabets Σd of cardinality d ≥ 2, writing
Σd = {a, b, c1, . . . , cd−2} (mostly we work with Σ2 = {a, b}). Standard notions

1For α > 7/3, the language of binary α-power-free words has exponential size [8]. The exponential
conjecture says that for k ≥ 3 all infinite power-free languages over k letters have exponential size. This
conjecture is proved for k ≤ 10 [9, 10] and odd k up to 101 [22].
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of factor, prefix, and suffix are used. The set of all finite (nonempty finite, infinite)
words over an alphabet Σ is denoted by Σ∗ (resp., Σ+, Σ∞). We write [i..j ] for the
range i, i+1, . . . , j of positive integers; the notation w[i..j ] stands for the factor of
the word w occupying this range as well as for the particular occurrence of this factor
in w at position i. Note that w[i..i] = w[i] is just the ith letter of w. Let w[i1..j1]
and w[i2..j2] be two factors of w. If the ranges [i1..j1] and [i2..j2] have a nonempty
intersection, their intersection and union are also ranges; we refer to the factors of w,
occupying these ranges, as the intersection and the union of w[i1..j1] and w[i2..j2].
The word

←
w = w[n] . . . w[1] is called the reversal of the word w of length n.

We write λ for the empty word and |w| for the length of a word w (infinite words
have length ∞). A word w has period p < |w| if w[1..|w|−p] = w[p+1..|w|]; the
prefix w[1..p] of w is the root of this period of w. One of the most useful properties
of periodic words is the following.

Lemma 1 (Fine, Wilf [5]) If a word u has periods p and q and |u| ≥ p + q −
gcd(p, q) then u has period gcd(p, q).

A cube is a nonempty word of the form uuu, also written as u3; we refer to u, |u|
as the root and the period of this cube. A word is cube-free (overlap-free) if it has no
cubes as factors (resp., no factors of the form cwcwc, where c is a letter). There exist
binary overlap-free (and thus cube-free) infinite words [21].

Let Σd be fixed. A word w ∈ Σ∗
d ∪ Σ∞

d is called a right context of a cube-free
word u ∈ Σ∗

d if uw is cube free; we call u right extendable if it has an infinite right
context (or, equivalently, infinitely many finite right contexts). Left contexts and left
extendability are defined in a symmetric way.

The Thue–Morse morphism θ is defined over Σ+
2 by the rules θ(a) = ab, θ(b) =

ba. The fixed points of θ are the infinite Thue-Morse word

T = abbabaabbaababbabaababbaabbabaab · · ·
and its complement, obtained from T by exchanging a’s and b’s. We refer to the
factors of T as Thue-Morse factors. The word T, first introduced by Thue in [21]
and rediscovered many times, possesses a huge number of nice properties; we need
just a few. The Thue-Morse word is overlap free, uniformly recurrent (every Thue-
Morse factor occurs inT infinitely many times with a bounded gap), and closed under

reversals (u is a Thue-Morse factor iff
←
u is).

2.2 UniformWords andMarkers

We call a word w ∈ Σ∗
2 uniform if w = cθ(u)d for some c, d ∈ {a, b, λ}, u ∈ Σ∗

2 ;
a uniform word with d = λ is right aligned. Similarly, a uniform infinite word has
the form cθ(u) for c ∈ {a, b, λ}, u ∈ Σ∞

2 . Such “almost” θ -images play a crucial
role in further considerations. Note that all factors and suffixes of T are uniform. The
following observation is well known.
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Observation 1 A word u ∈ Σ2 is uniform iff all occurrences of factors of the form
cc in u, where c ∈ Σ2, are at positions of the same parity.

Thus the word is non-uniform iff it has the factors of the form cc occurring in
positions of different parity. The following observation is straightforward.

Observation 2 A cube-free word u ∈ Σ2 is non-uniform iff it contains at least one
of the factors aabaa, aababaa, bbabb, bbababb.

All right (resp., left) contexts of the word ababa begin (resp., end) with a,
so ababa occurs in a cube-free word only as a prefix/suffix or inside the non-
uniform factor aababaa (the same argument applies to babab). This allows us to
view binary cube-free words as sequences of uniform factors separated by markers
aabaa, ababa, babab, and bbabb, which break uniformity.

The importance of markers for the analysis of cube-free words is demonstrated by
the following theorem, proved in Section 3.2.

Theorem 2 Every right-extendable cube-free word u ∈ Σ2 has an infinite right
context with finitely many markers.

3 Proof of the Transition Property for BinaryWords

The proof of Theorem 1 consists of two stages. In the first stage we show that its
result is implied by Theorem 2. In the second stage we prove Theorem 2. All words
in this section are over Σ2 if the converse is not stated explicitly.

3.1 Reduction to Theorem 2

Lemma 2 Suppose that cube-free words u and v have right contexts which are Thue-
Morse factors of length 2|u| and 2|v| respectively. Then there exists a word w such

that uw
←
v is cube free.

Proof Let u1 and v1 be the mentioned contexts of u and v respectively. Since T is
recurrent and closed under reversals, there exists a Thue-Morse factor w = u1w1

←
v1

for some w1 
= λ. Assume to the contrary that uw
←
v contains a cube of period p. If

this cube intersects u and
←
v simultaneously, then p is a period of w and, since w is

overlap free, 2p ≥ |w|; by definition, |w| > 2(|u| + |v|), implying |uw
←
v | < 3p.

This is a contradiction, because a word cannot be shorter than its factor. Now w.l.o.g.
assume that the cube intersects u. Then it must contain the whole u1. Hence p is
a period of u1 and thus p ≥ |u1|/2 ≥ |u| because u1 is overlap free. Further, the
overlap-freeness of w means that u contains at least the whole period of the cube,
implying p ≤ |u|. So we have |u| = p and the cube is a prefix of uw

←
v . But in this
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case |u1| ≥ 2p and the cube is contained in the cube-free word uu1, resulting in a
contradiction.

We say that a cube-free word u is T-extendable if it has a right context of the form
wT[n..∞] for some w ∈ Σ∗, n ≥ 1. By Lemma 2, if the words u and

←
v are T-

extendable, there is a word w such that uwv is cube-free. We analyze T-extendability
in Lemmas 3–5.

Lemma 3 If a uniform cube-free word u has a right context of length 3, or is right
aligned and has a right context of length 2, then u is T-extendable.

Proof We assume |u| ≥ 5; otherwise, u is a factor of T and there is nothing to prove.
Consider two cases.

Case 1: u = cθ(v) = cv1 . . . vn, where c ∈ {λ, a, b}, vi ∈ {ab, ba} for i ∈ [1..n].
W.l.o.g., vn = ab.

Claim 1. At least one of the words ua, ubab is cube free.
Assume that ua is not cube free and thus has a suffix y3

of period p. Then u has the suffix u′ of length 3p − 1 and
period p. If u′ 
= u, by the cube-freeness of u one has
u[|u|−3p+1] 
= u[|u|−2p+1], u[|u|−3p+2] = u[|u|−2p+2].
Note that u[|u|−2p+1..|u|−2p+2] = vn−p+1 ∈ {ab, ba}. Then
u[|u|−3p+1] = u[|u|−3p+2], so these two letters do not form a
block vi ; then p must be odd. Consider the suffix xx = vn−p+1 · · · vn

of length 2p of u′. Both prefix and suffix of x of length p − 1 are
concatenations of blocks ab, ba. Hence x consists of alternating let-
ters. Then x[1] = x[p]. On the other hand, vn−�p/2� = x[p]x[1] ∈
{ab, ba}. This contradiction proves that u′ = u and then |u| = 3p − 1.
Further, since ua and ubb end with cubes, the only length-2 right con-
text of u is ba, so uba = cθ(vb) is cube-free. If ubab ends with a
cube of period p′, we repeat the above argument for uba to obtain
|uba| = 3p′ − 1. Hence 3p − 1 = 3p′ − 3, which is impossible since
the periods are integers. So ubab is cube free and Claim 1 holds.

Claim 2. At least one of the words uaa, ubabb is cube free.
Assume that ua is cube free. If uaa has a suffix y3 of period p,

then y ends with aa (recall that u ends with ab). On the other hand,
the leftmost y in the suffix y3 of uaa ends with vn−p+1 ∈ {ab, ba}.
Thus uaa cannot have a cube as a suffix and hence is cube free. The
same argument works for ubabb if ubab is cube free. The reference to
Claim 1 concludes the proof.

Assuming that uaa is cube free, we show that the word

v = uT[6..∞] = cv1 · · · vn−1ab aabbaababba · · ·
is cube free and then u is T-extendable. Depending on vn−1, v has the
non-uniform factor aabaa or aababaa, and this factor, denoted by x,
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has a unique occurrence in v because u and T are uniform. Note that
abT[6..∞] = T[4..∞], and both words aT[4..∞] and aabT[4..∞]
are cube free. So if a cube y3 is a factor of v, then Claim 2 implies
that x is a factor of y3. If x is a factor of y2, then x occurs in y3 at
least twice, which is not the case. So x = y′yy′′, where y′ and y′′ are
nonempty suffix and nonempty prefix of y respectively. Then y = aba

if x = aabaa, and y = ababa if x = aababaa. In both cases a direct
check shows that y3 is not a factor of v. So we proved that v is cube
free. Assuming that ubabb is cube free, we use the same argument for
another suffix of T:

v = uT[20..∞] = cv1 · · · vn−1ab babbaabbaba · · ·
(here v contains a unique occurrence of bbabb). Note that if vn = ba,
then we can take T[20..∞] (resp., T[6..∞]) as the extension of u if
ubb (resp., uabaa) is cube free.

Case 2. W.l.o.g., the last letter of u is a; u = cθ(v)a = cv1 . . . vna, c ∈
{λ, a, b}, vi ∈ {ab, ba} for i ∈ [1..n].

Case 2.1: vn = ab. The word uT[7..∞] = cv1 · · · vnT[6..∞] is cube free as in
Case 1.

Case 2.2: vn = ba. Since ua ends with a3, ub is cube free, right aligned and has a
right context of length 2. Then ub is T-extendable by Case 1, and so is u.

Lemma 4 If a cube-free word u has a uniform right context w such that |w| ≥
2|u| + 3 and w has no prefix ababa or babab, then u is T-extendable.

Proof Let ŵ be the right aligned prefix of w of length 2|u| or 2|u|+1. We will prove
that uŵ is T -extendable, which implies the result immediately, because any prefix
of a T-extendable word is T-extendable by definition. Suppose uŵ is non-uniform
(otherwise, it is T-extendable by Lemma 3). Then it contains markers, and all of them
begin in u, because ŵ is uniform and has no marker ababa/babab as a prefix. Let
z be the rightmost marker in uŵ. W.l.o.g. the first letter of z is a and we can write
u = u′au′′, where au′′w begins with this distinguished occurrence of z. The words
u′a and u′′w satisfy the condition of the lemma: u′a is cube-free, u′′w is its uniform
right context of length ≥ 2|u′a| + 3 and u′′w has no prefix ababa/babab. So for the
rest of the proof we rename u′a as u and u′′ŵ as ŵ. This renaming retains the value
of the word uŵ, T-extendability of which we want to prove; still, ŵ is right aligned
and |ŵ| ≥ 2|u|. Since ŵ has a right context of length at least 2, it is T-extendable
by Lemma 3, and, moreover, there is a suffix v of T such that ŵv is cube-free (one
possible choice of v is given in the proof of Lemma 3. If ŵ is a factor of T, we choose
v such that ŵv is a suffix of T; otherwise, v is chosen as in the proof of Lemma 3,
Case 1.
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Fig. 1 A cube in the word uŵv

Assume to the contrary that uŵv contains a cube x3; it starts in u and ends in v,
thus containing the distinguished occurrence of z: If the marker z occurs in x3 only
once, its first (resp., last) letter belongs to the leftmost (resp., rightmost) x, implying
|x| ≤ 3. There are, up to symmetry, two cases corresponding to two types of markers:

· · · abaaa︸ ︷︷ ︸
u

aba aaba aaba aba · · ·︸ ︷︷ ︸
ŵv

or · · ·aaa︸︷︷︸
u

b ab ab ab ab ab ab · · ·︸ ︷︷ ︸
ŵv

In the first case ŵ is a prefix of abaab and u has a suffix aba, so the condition
|ŵ| ≥ 2|u| is violated; the second case contradicts the choice of v (here ŵ is a prefix
of baba and thus a factor of T, so v should be chosen such that wv is a suffix of T ).
Therefore, z must have two occurrences in x3 at distance |x|. If z occurs in x3 to the
left of the distinguished occurrence, then |x| < |u| (see Fig. 1) and hence x3 cannot
end in v, because |ŵ| ≥ 2|u|. Otherwise, x3 contains exactly two occurrences of z:
the distinguished one and another one on the border of ŵ and v. Then x does not
contain z, implying |x| ≤ |u| + 3. On the other hand, |x| ≥ |ŵ| − 3 as the distance
between the occurrences of z. Now the inequality |w| ≥ 2|u| implies |u| ≤ 6 and
|x| ≤ 9. This leaves, up to symmetry, the following options for x3:

|x| = 5 : abaa babaabab aa babaabab aa babaabab aab · · · |x| = 9 : aabbaa babaa babaa babaabbaabab aabab aabab aabbaabab · · ·
|x| = 7 : aabba abaaa abaaa abaabbaaba aaaba aaaba abbaab · · · ababba abaaa abaaa abaababbaaba aaaba aaaba ababbaaba · · ·

The factor between the marginal letters of markers contains ŵ; in first three cases,
this factor occurs in T but ŵv is not a suffix of T, contradicting the choice of v. In the
last case ŵ is not a factor of T, so v is chosen as in the proof of Lemma 3; hence the
marker on the border of ŵ and v must be followed by bb, not ba. This contradiction
finishes the proof.

Some right-extendable words have no long uniform right contexts, as Fig. 2 shows.
However, a weaker property is enough for our purposes.

Fig. 2 A right-extendable word of length 76 having no long uniform right contexts: all its infinite right
contexts begin with the marker aabaa
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Lemma 5 Every cube-free word having an infinite right context with finitely many
markers is T-extendable.

Proof Let u be the word and w be its context from the conditions of the lemma.
The finiteness of the number of markers allows us to write w = w1v, where v is
uniform. Then uw1 has an infinite uniform right context, and hence is T-extendable
by Lemma 4. Then u is T-extendable as well.

Thus if Theorem 2 holds, then Lemmas 5 and 2 imply Theorem 1.

3.2 Proof of Theorem 2

We prove Theorem 2 by reductio ad absurdum; to obtain a contradiction, we use the
following lemma on cube-free words over an arbitrary alphabet. (For Theorem 2,
bounding k in Lemma 6 by any function of n would be sufficient; however, better
bounds can be useful for the algorithmic applications.)

Lemma 6 Let u be a cube-free word of length n over an arbitrary fixed alphabet
and let u have a length-k right context w with the following property: for each i =
1, . . . , k, there exists an integer pi ≥ 2 such that the suffix of length 3pi − 2 of the
word u·w[1..i] has period pi and, moreover, pi 
= pi+1. Then k = O(log n); more
precisely, k ≤ max{1, 8.13 log n − 15.64}.

Proof In the proof we can assume k ≥ 2. Let 1 ≤ i < j ≤ k, p = pi , q = pj ,
l = j − i, and let v be the intersection of the periodic suffixes of u·w[1..i] and
u·w[1..j ] (see Fig. 3a and b). If |v| ≥ p + q − gcd(p, q), then v has the period
gcd(p, q) by the Fine–Wilf property (Lemma 1). If p 
= q, this means that the root
of the longer periodic suffix is an integer power of a shorter word; thus uw contains
a cube, which is impossible. If p = q, then we are in the situation shown in Fig. 3b,
and the union of two suffixes has period p and the length 3p − 2 + l. Since p = q,
one has j 
= i + 1 by conditions of the lemma. Then l ≥ 2 and we again obtain a
cube. Thus we conclude that

|v| ≤ p + q − gcd(p, q) − 1. (1)

The case in Fig. 3b corresponds to |v| = 3q − 2− l. Comparing this condition to (1),
we get q ≤ p+l

2 (but q = p only if l ≥ 2p − 1 and q = p/2 only if l ≥ p/2 − 1).
Similarly, the case in Fig. 3a corresponds to |v| = 3p − 2 and we get q > 2p from
(1). Thus, all possible values of the pair (l, q) are outside the red area in Fig. 4.

Fig. 3 The mutual location of periodic factors in the word uw (Lemma 6)
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Fig. 4 The restrictions on periods of periodic factors in the word uw (Lemma 6)

Now we estimate how many elements of the sequence {p1, . . . , pk} can belong to
the range [p..2p] for some fixed p ≥ 2. This is an analog of [13, Lemmas 4,5] and
[14, Lemma 9]. Let i0 < i1 < · · · < is be the list of all positions such that the periodic
suffix of u·w[1..ij ] has the period from the range [p..2p]; let q0, . . . , qs denote these
periods. Then Fig. 4 gives us the lower bound for the distance lj = ij+1− ij between
consecutive positions from the list (we take lj as l, qj as p, and qj+1 as q for Fig. 4):

lj ≥ 2qj+1 − qj ; lj ≥ 2qj+1 − 1 if qj+1 = qj ; lj ≥ qj+1 − 1 if qj+1 = qj /2. (2)

The densest packing of the numbers ij , satisfying the restrictions (2), is achieved for
q0 = 2p − 1, q1 = q3 = q5 = · · · = p, q2 = q4 = q6 = · · · = p + 1: one can take
i0 = 1, i1 = 2, and i2j = i2j−1 + p + 2, i2j+1 = i2j + p − 1 for all subsequent
positions. Since is ≤ k, we have

⌈
s−1
2

⌉ · (p + 2)+ ⌊
s−1
2

⌋ · (p − 1)+ 2 ≤ k. To avoid

rounding, we use the inequality (s−1)(2p+1)
2 ≤ ⌈

s−1
2

⌉ ·(p+2)+⌊
s−1
2

⌋ ·(p−1). Now

we have (s−1)(2p+1)
2 ≤ k − 2 and obtain the upper bound for the number of periods

from the range [p..2p]:

s+1 ≤ 2(k − 2)

2p + 1
+ 2. (3)

Since 3p − 2 ≤ |uw| = n + k, the maximum possible value of p is
⌊

n+k+2
3

⌋
. We

partition all possible periods into r ranges of the form [p..2p]:

[2..4], [5..10], [11..22], . . . , [3 · 2r−2−1..3 · 2r−1−2
]
,
[
3 · 2r−1−1..

⌊
n+k+2

3

⌋]
.
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The number of ranges thus satisfies r ≤ log n+k+2
9 +1. The sum of the upper bounds

(3) for all ranges is at least k; observing that the number 2p+1 in (3) is the first
period from the range next to [p..2p], we can write

k ≤ 2(k − 2)·
r∑

i=1

1

3 · 2i−1
+ 2r . (4)

The sum in (4) is bounded by 1
5 + 1

11 + 1
23 + 1

47 · ∑∞
i=0

1
2i < 0.377; substituting this

value and the upper bound for r , we get

0.246(k − 2) ≤ 2 log n+k+2
9 . (5)

For k ≥ n − 1, (5) implies 0.246(k − 2) ≤ 2 log 2k+3
9 , but this inequality fails for

k ≥ 2. So k ≤ n − 2 and we replace (5) with the inequality 0.246(k − 2) ≤ 2 log 2n
9 ,

which can be finally transformed to the required bound on k.

Proof of Theorem 2 For the sake of contradiction, assume that all infinite right con-
texts of some right-extendable cube-free word u contain infinitely many markers.
W.l.o.g. we can assume that u ends with a marker (if not, choose a prefix v of an infi-
nite right context of u such that uv ends with a marker, and replace u with the word
uv having the same property of right contexts). Let z be the marker which is a suffix
of u. For example, if u is the word written in the “trunk” of the tree in Fig. 2, then
z = bbabb.

By our assumption, u has no infinite uniform right contexts. Thus u has finitely
many uniform right contexts (in Fig. 2 such contexts are λ, a, aa, aab, aaba, and
aabb). Other uniform words, being appended to u, produce cubes; in Fig. 2, append-
ing a word beginning with ab (resp., aabab, aabba) gives the cube (bab)3 (resp.,
(babbaabab)3, (babbaababbabbaababbabbaabba)3). These three cubes contain
markers and illustrate three types of cubes with respect to the occurrences of markers
(x below denotes the root of the cube):

– mini: x2 contains no markers, x3 contains a marker (example: x = bab, x3 =
babbabbbbabbbbabbab);

– midi: x contains no markers, x2 contains a marker (example: x = babbaabab,
x2 = babbaababbabbbbabbbbabbaabab);

– maxi: x contains markers (example: x = babbaababbabbbbabbbbabbaababbabbbbabbbbabbaabba);

Note that mini cubes are exactly those having the root x ∈ {ab, ba, aba, bab}. Fur-
ther, the intersection of two markers in a cube-free word is either empty or one-letter;
this fact implies that each midi cube contains exactly two markers.

We call a cube-free word w a semi-context of u if uw ends with a cube but
u·w[1..|w|−1] is cube free. Next we show the following fact.

Claim. The word u has two distinct uniform semi-contexts w1 and w2 such that
uw1 and uw2 end with midi or maxi cubes.

Proof of Claim We need a case analysis. W.l.o.g., z begins with a. Let w be an
infinite right context of u.
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Case 1: z = aabaa. We have u = · · · baabaa, so w cannot begin with a or baa

because uw is cube-free. So w begins with bba, babba, or baba. In the first case,
some prefixes of words

uT[2..∞] = · · · baabaa bba baababba · · · , (6)

uT[22..∞] = · · · baabaa bba abbabaab · · · (7)

must end with cubes. The longest common prefix ubba of these words is cube free
as a prefix of uw, so these cubes are different, contain the marker z, and are not mini.
Hence we can take some prefixes of T[2..∞] and T[22..∞] as the semi-contexts
required in the claim. If w begins with babba, the same result is obtained with
prefixes of the words

uT[12..∞] = · · · baabaa babba baabbaab · · · , (8)

uT[20..∞] = · · · baabaa babba abbabaab · · · (9)

Finally, if w begins with baba, we can take one word from each pair (say, uT[2..∞]
and uT[12..∞]). Their longest common prefix is the cube-free word ub, so the cubes
given by the corresponding semi-contexts are distinct.

Case 2: z = ababa. Here w = ab · · · . Taking the pair of words
uT[7..∞] = · · · ababa ab baababba · · · , (10)

uT[19..∞] = · · · ababa ab abbaabba · · · , (11)

we achieve the same result as in Case 1: some prefixes of these words end with midi
or maxi cubes, and these cubes are distinct because the common prefix uab of the
presented words is cube-free. Thus, the claim is proved.

Now take the uniform semi-contexts w1, w2 given by Claim such that uw1 and
uw2 end with cubes x3

1 of period p1 and x3
2 of period p2 respectively. Let w be the

longest common prefix of w1 and w2; w.l.o.g., w1 = waw′
1, w2 = wbw′

2. In both
x3
1 and x3

2 , the suffix z of u is the rightmost marker and hence matches an earlier
occurrence of the same marker in u. These occurrences are different, because z is
followed by wa in x3

1 and by wb in x3
2 . In particular, p1 
= p2. W.l.o.g., p1 > p2;

then x1 contains z and so x3
1 is maxi (see Fig. 5).

Let z1 = z, z2, . . . , zm be all markers in u, right to left. We factorize u as u =
ym · · · y2y1, where yi begins with the first letter after zi+1 (ym is a prefix of u) and
ends with the last letter of zi (even if zi+1 and zi overlap); see Fig. 6 for the example.
Assume that zj+1 matches z1 in the maxi cube x3

1 (note that j ≥ 2, because a marker

Fig. 5 Semi-contexts w1 and w2 of the word u: periods of cubes and corresponding markers. Three grey
factors are markers equal to z, other markers are not shown
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Fig. 6 Marker-based factorization of the word u. Markers are grey, arcs indicate the cube after appending
w1 to u

with a smaller number matches z1 in x3
2 ; j = 3 in Fig. 6). Then zj−1, . . . , z1 are

in the rightmost occurrence of x1, and zj is either also in this occurrence or on the
border between the middle and the rightmost occurrences (in Fig. 6, the latter case is
shown). Depending on this, x3

1 contains either 3j or 3j−1 markers. Further, we see
that w1 is a prefix of yj , y1 = yj+1, . . . , y2j−2 = y3j−2.

Let us extend u to the right by a context y0 such that uy0 is right extendable, y0
ends with a marker z0, and all proper prefixes of y0 are uniform. Applying all the
above argument to uy0 and its factorization ym · · · y1y0, we get another maxi cube
(say, x3

0 ) and the corresponding set of equalities between yi’s. Note that y0 
= yj : as
was mentioned in the previous paragraph, yj has the prefix w1, while y0 cannot have
this prefix because uw1 contains a cube.

Let us iterate the procedure of appending a context k times, getting a right-
extendable word uy = ym · · · y1y0 · · · y1−k as the result (according to our assumption
on u, the number k can be arbitrarily big). Now consider the finite alphabet Γ =
{ym, . . . , y1, y0, . . . , y1−k} and let U = ym · · · y2y1, Y = y0 · · · y1−k be words over
Γ . They are cube free and Y is a length-k right context of U . Each word U ·Y [1..i]
ends with a suffix having some period pi and length 3pi − 2 or 3pi − 1. In addi-
tion, pi 
= pi+1, because y−i 
= ypi−i . So all conditions of Lemma 6 are satisfied,
and we apply it to get an upper bound on k. The existence of this bound contradicts
our assumption that all infinite right contexts of u have infinitely many markers. The
theorem is proved.

4 Transition Property for Big Alphabets

Here we extend the results of the previous section to arbitrary finite alphabets,
following the main idea for the binary alphabet.

Theorem 3 For every d ≥ 3 and every pair (u, v) of cube-free words from Σ∗
d such

that u is right extendable and v is left extendable, there exists a word w ∈ Σ∗
d such

that uwv is cube free.

As in the binary case, we use an auxiliary theorem about the existence of an infinite
context with finitely many markers (but the markers are different now).

Theorem 4 Let d ≥ 3. Every right-extendable cube-free word u ∈ Σ∗
d has an infinite

right context with finitely many occurrences of all letters except for a and b.
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Proof We follow the main idea of the proof of Theorem 2 and use the same notation.
The difference, which actually simplifies the argument, is that the role of markers is
now played by the c-letters c1, . . . , cd−2. (One simplification is the fact that any cube
containing a marker is a maxi cube in the terminology of Theorem 2.) Aiming at a
contradiction, assume that all infinite right contexts of some right-extendable cube-
free word u contain infinitely many c-letters. W.l.o.g. we can assume that u ends
with a c-letter; we denote this letter by z. As in the proof of Theorem 2, we let z1 =
z, z2, . . . , zm be all markers in u, right to left, and factorize u as u = ym · · · y2y1,
where yi begins with the first letter after zi+1 and ends with the c-letter zi .

By our assumption, u contains finitely many contexts from {a, b}∗; then it has two
semi-contexts w1 = waw′

1, w2 = wbw′
2 ∈ {a, b}+ (each of the words w, w1, w2

may be empty). Let x3
1 , x

3
2 be suffixes of uw1 and uw2 respectively, and w.l.o.g.

|x1| = p1 > p2 = |x2|. The suffix zw1 of x1 matches some earlier occurrence of zw1
in u; same for the suffix zw2 of x2. As in the proof of Theorem 2 we see that zj+1 =
z1 for some j ≥ 2, w1 is a prefix of yj , and the equalities y1 = yj+1, . . . , y2j−1 =
y3j−1 hold.

Next we extend u to the right by a context y0 such that uy0 is right extendable,
y0 ends with a marker z0, and all proper prefixes of y0 are over {a, b}. Applying
all the above argument to uy0 and its factorization ym · · · y1y0, we get another cube
x3
0 and the corresponding set of equalities between yi’s. Again, y0 
= yj , since

yj has the prefix w1, while y0 has not. After iterating the procedure of append-
ing a context k times, we obtain a right-extendable word uy = ym · · · y1y0 · · · y1−k

and consider the words U = ym · · · y2y1, Y = y0 · · · y1−k over the alphabet
Γ = {ym, . . . , y1, y0, . . . , y1−k}. They are cube free and Y is a length-k right con-
text of U . Each word UY [1..i] ends with a suffix having some period pi and length
3pi − 1. In addition, pi 
= pi+1, because y−i 
= ypi−i . So we can apply Lemma 6 to
get an upper bound on k. The existence of this bound contradicts our assumption that
all infinite right contexts of u have infinitely many c-letters. Hence u has an infinite
context with finitely many c-letters, as required.

Proof of Theorem 3 By Theorem 4, the word u ∈ Σ∗
d has an infinite right context

with finitely many c-letters. First we note that we can choose such a context contain-
ing a c-letter (if a context w is over Σ2, one can get another context of u replacing,
say, the letter w[|u|] with c1). So we can write this context w as xu1, where x ends
with a c-letter and u1 ∈ Σ∞

2 . Let u1 be the prefix of u1 of length |ux|/2�. In the

same way, we take a right context
←
y

←
v 1 of

←
v and the prefix

←
v 1 ∈ {a, b}∗ of

←
v 1 of

length |yv|/2�. Then the binary words u1, v1 are cube free, u1 is right extendable,
and v1 is left extendable. Applying Theorem 1, we take a binary transition word w1
such that u1w1v1 is cube free. Then s = uxu1w1v1yv is cube free. Indeed, x ends
with a c-letter, y begins with a c-letter, and these c-letters are separated by a cube-free
word over Σ2. Hence a cube in s, if any, must contain one of these c-letters. But the
lower bounds on |u1| and |v1| imply that this c-letter cannot match another c-letter to
produce a cube (recall that uxu1 and v1yv are cube free). Thus s is cube-free and we
obtain a transition word xu1w1v1y for the pair (u, v).
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5 Solving the Restivo-Salemi Problems and FutureWork

To give the solutions to the Restivo–Salemi Problems 2, 4, and 5, recall the solution
to Problem 1a [4]: a d-ary α-power-free word u is right extendable iff it has a right
context of length fα,d(|u|) for some computable function fα,d . Algorithm 1 below
solves Problem 4.

The natural next step is to find an efficient algorithm for Problem 4. The function
f3,d (n) is sublinear, but the search space is still of size 2n�(1)

. The possible way to a
polynomial-time solution is to strengthen the connection with Lemma 6 to show that
it is sufficient to process the contexts of length O(log n), where n = max{|u|, |v|}.

For Problem 2, the first step is the reduction to the binary case. Let u ∈ Σd , d ≥ 3,
be a right-extendable cube-free word; we write u = u′cu′′, where c is the rightmost
c-letter in u. We check all cube-free words w ∈ Σ∗

2 such that u′′w is right extendable
and |u′′w| = |u|/2� for being right contexts of u. If w is a right context of u, then
any (binary) right context of u′′w is a right context of uw, so the problem is reduced
to binary words. If no word w suits, we take the shortest right context of u of the
form vc, where v ∈ Σ∗

2 , c ∈ {c1, . . . , cd−2} such that the word u1 = uvc is right
extendable; such a context can be found in finite time because |v| < |u|/2. Then we
replace u by u1 and repeat the search of long binary right contexts. By Theorem 4, we
will succeed after a finite number of iterations, and Lemma 6 gives the upper bound
on the maximum number k of iterations depending on |u|. Thus we end this step
getting a word yû such that uyû is cube free, û ∈ Σ∗

2 , and all binary right contexts
of û are right contexts of uyû. If u is binary, we skip this step setting û = u.

On the second step we further reduce the problem to uniform words. We act as in
the first step, using Theorem 2 and Lemma 4. Namely, we check for uniform contexts
and if û has no uniform context w of length 2|û| + 3 such that ûw is right extendable
and w has no prefix ababa/babab, we append the shortest context v ending with
a marker, repeating the search for û1 = ûv. Theorem 2 guarantees that we will
find the required uniform context in at most k iterations, where k is as in Lemma 6.
Thus at this step we build a right context ŷŵ of û such that ûŷŵ is right extendable,
|ŵ| ≥ 2|ûŷ| + 3 and ŵ is uniform and has no prefix ababa/babab.
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Finally we choose, as described in Lemma 4, a suffix T[r ..∞] of T which is a
right context of ŵ: if ŵ = T[i..j ] for some i, j , then we take r = j + 1, otherwise
the choice is performed according to Case 1 in the proof of Lemma 3. Now Lemma 4
guarantees that ûŷŵT[r ..∞] is cube free. Thus the infinite right context of the orig-
inal word u is given by the finite word Y = yûŷŵ and the number r . The above
description is summarized below as Algorithm 2.

Again, the natural direction of the future work is to make Algorithm 2 efficient.
Finally we approach Problem 5. We first run Algorithm 1, which can provide us

with an example of a transition word if u or
←
v is not right extendable. If both u,

←
v

are right extendable, we run for each of them Algorithm 2, getting Y1, Y2, r1, r2 such

that uY1T[r1..∞] and ←
T[∞..r2]Y2v are cube free. It remains to use Lemma 2: take

big enough r ′
1, r

′
2 and find a word w such that T[r1..r ′

1]w
←
T[r ′

2..r2] is a factor of T and
a transition word for the pair (uY1, Y2v); the uniform recurrence of T ensures that the

word w can be found in finite time. Thus Y1T[r1..r ′
1]w

←
T[r ′

2..r2]Y2 is the transition
word for the pair (u, v), so Problem 5 is solved.

Once again, it is clear that some steps of the above solution can be significantly
sped up, so it would be nice to finally get a polynomial-time algorithm for Problem 5
(and thus for Problems 1, 2, 4 as well). From the experimental study we learned that
if a length-n cube-free word is not right extendable, then likely not only all its right
contexts have the length O(log n), but the number of such contexts is O(log n). The
proof of this fact would lead to a linear-time solution of Problem 1.

Another obvious continuation of the current research is the study of the same
problems for other power-free languages. One line is to use Thue-Morse words to
solve Problems 2, 4, and 5 for other binary power-free languages. For example, we
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are able to extend the results of Section 3.1 to α-power-free binary words for any
α ∈ (5/2, 3], changing only some constants. Another line is to obtain similar results
for ternary square-free words, in the absence of such a strong tool as Thue-Morse
words.
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