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Abstract Coordination mechanisms aim to mitigate the impact of selfishness when
scheduling jobs to different machines. Such a mechanism defines a scheduling policy
within each machine and naturally induces a game among the selfish job owners. The
desirable properties of a coordination mechanism includes simplicity in its definition
and efficiency of the outcomes of the induced game. We present a broad class of
coordination mechanisms for unrelated machine scheduling that are simple to define
and we identify one of its members (mechanism DCOORD) that is superior to all
known mechanisms. In particular, DCOORD induces potential games with logarithmic
price of anarchy and only constant price of stability. Both bounds are almost optimal.
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1 Introduction

We consider a selfish scheduling setting where each job owner acts as a non-
cooperative player and aims to assign her job to one of the available machines so
that the completion time of the job is as low as possible. An algorithmic tool that can
be utilized by the designer of such a system is a coordination mechanism [9]. The
coordination mechanism uses a scheduling policy within each machine that aims to
mitigate the impact of selfishness to performance.

We focus on unrelated machine scheduling. There are m available machines and
n players, each controlling a distinct job. The job (owned by player) u has a (pos-
sibly infinite) positive processing time (or load) wu,j when processed by machine
j . A scheduling policy defines the way jobs are scheduled within a machine. In its
simplest form, such a policy is non-preemptive and processes jobs uninterruptedly
according to some order. Preemptive scheduling policies (which is our focus here)
do not necessarily have this feature (e.g., they may process jobs in parallel) and may
even introduce some idle time.

Naturally, a coordination mechanism induces a game with the job owners as play-
ers. Each player has all machines as possible strategies. The term assignment is used
for a snapshot of the game, where each player has selected a strategy, i.e., she has
selected a particular machine to process her job. Given an assignment, the cost a
player experiences is the completion time of her job on the machine she has selected.
This is well-defined by the scheduling policy of the machine and typically depends
on the characteristics of all jobs assigned to the machine.

Assignments in which no player has any incentive to change her strategy are called
pure Nash equilibria (or, simply, equilibria). When studying a coordination mecha-
nism, we are interested in bounding the inefficiency of equilibria of the game induced
by the mechanism. We use the maximum completion time among all jobs to measure
the social cost. A related quantity is the load of a machine which is defined as the total
processing time of the jobs assigned to the machine. The makespan of an assignment
is the maximum load over all machines. Clearly, the makespan of an assignment is a
lower bound on the maximum completion time. The price of anarchy (respectively,
price of stability) of the game induced by a coordination mechanism is defined as the
worst (respectively, best) ratio of the maximum completion time over all equilibria
over the optimal makespan.

We prefer mechanisms that induce games that always have equilibria. Further-
more, we would like these equilibria to be easy to find. A highly desirable property
that ensures that equilibria can be reached by the players themselves (for example,
with best-response play) is the existence of a potential function. A potential function
is defined over all possible assignments and has the property that, in any two assign-
ments that differ in the strategy of a single player, the difference of the two values of
the potential and the difference of the completion time of the deviating player have
the same sign.

Coordination mechanisms for scheduling were introduced by Christodoulou et
al. [9]. Immorlica et al. [12] were the first to consider coordination mechanisms
in the unrelated machine setting and studied several intuitive mechanisms, includ-
ing ShortestFirst and Makespan. In ShortestFirst, the jobs in each
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machine are scheduled non-preemptively, in monotone non-decreasing order of their
processing time. Since ties are possible, the mechanism has to distinguish between
jobs with identical processing times, e.g., using distinct IDs for the jobs. This is nec-
essary for every deterministic non-preemptive coordination mechanism in order to be
well-defined. In contrast, in Makespan, each machine processes the jobs assigned
to it “in parallel” so that they all have the same completion time. So, no ID informa-
tion is required by Makespan. We use the term anonymous to refer to coordination
mechanisms having this property. These two coordination mechanisms are strongly
local in the sense that the only information that is required to compute the schedule
of jobs within a machine is the processing time of the jobs on that machine only. A
local coordination mechanism may use all parameters of the jobs that are assigned to
a machine (e.g., the whole load vector of each job).

Azar et al. [4] prove lower bounds of �(m) and �(logm) on the price of
anarchy for any strongly local and local non-preemptive coordination mechanism,
respectively. On the positive side, they presented two local coordination mechanisms
with price of anarchy o(m). Their first coordination mechanism (henceforth called
AFJMS-1) is non-preemptive and may induce games without equilibria. When the
induced game has equilibria, the price of anarchy is at most O(logm). Their sec-
ond coordination mechanism (henceforth called AFJMS-2) is preemptive, induces
potential games (and, hence, the existence of equilibria is guaranteed), and has price
of anarchy O(log2 m). Both mechanisms are not anonymous.

Caragiannis [7] presents three more coordination mechanisms. The mechanism
ACOORD, induces potential games with price of anarchy O(logm). The mechanism
uses the distinct IDs of the jobs to ensure that the equilibria of the game are essentially
assignments that are reached by a greedy-like online algorithm for minimizing the p-
norm of machine loads. [3] and [6] study this online scheduling problem; the results
therein imply that the price of stability of mechanism ACOORD is �(logm) as well.
A different coordination mechanism with similar characteristics (called Balance)
is presented in [10]. The coordination mechanism BCOORD (defined also in [7]) has

even better price of anarchy O
(

logm
log logm

)
(matching a lower bound due to Abed and

Huang [2] for all deterministic coordination mechanisms) but the induced games are
not potential ones and may not even have equilibria. However, the price of anarchy
bound for BCOORD indicates that preemption may be useful in order to beat the
�(logm) lower bound for non-preemptive mechanisms from [4]. Interestingly, this
mechanism is anonymous. The third mechanism CCOORD is anonymous as well,
induces potential games, and has price of anarchy and price of stability O(log2 m)

andO(logm), respectively. To the best of our knowledge, this is the only anonymous
mechanism that induces potential games and has polylogarithmic price of anarchy.1

Table 1 summarizes the known local coordination mechanisms.
In the discussion above, we have focused on papers that define the social cost as

the maximum completion time (among all players). An alternative social cost that has

1Even though their mechanism Balance heavily uses job IDs, Cohen et al. [10] claim that it is anony-
mous. This is certainly false according to our terminology since anonymity imposes that two jobs with
identical load vectors should be indistinguishable.
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Table 1 A comparison between DCOORD and other local coordination mechanisms from the literature. A
dash (-) indicates that no bound is known (or is implied by related results in the literature). The question
mark (?) indicates that it is not known whether all games induced by mechanism BCOORD have equilibria

Coordination PoA PoS PNE Pot. IDs Preempt. Reference

mechanism

AFJMS-1 �(logm) − No No Yes No [4]

AFJMS-2 O(log2 m) − Yes Yes Yes Yes [4]

ACOORD O(logm) �(logm) Yes Yes Yes Yes [7]

Balance O(logm) �(logm) Yes Yes Yes Yes [10]

BCOORD �(
logm

log logm
) − ? No No Yes [7]

CCOORD O(log2 m) O(logm) Yes Yes No Yes [7]

DCOORD O(logm) O(1) Yes Yes No Yes this paper

received much attention is the weighted average completion time; see [1, 5, 8, 11] for
some recent related results. Interestingly, the design principles that lead to efficient
mechanisms in their case are considerably different.

Our contribution is as follows. We introduce a quite broad class (called M(d))
of local anonymous coordination mechanisms that induce potential games. The class
contains the coordination mechanism CCOORD as well as the novel coordination
mechanism DCOORD, which has additional almost ideal properties. In particular, we
prove that it has logarithmic price of anarchy (i.e., only an O(log logm) factor away
from the lower bound of Abed and Huang [2]) and only constant price of stabil-
ity. A (qualitative and quantitative) comparison of DCOORD to other known local
coordination mechanisms is depicted in Table 1.

The rest of the paper is structured as follows. We begin with preliminary defini-
tions in Section 2. Section 3 is devoted to the definition of the class of mechanisms
M(d) and to the proof that all mechanisms in this class induce potential games. Then,
the novel mechanism DCOORD from this class is defined in Section 4; its feasibility
as well as preliminary statements that are useful for the analysis are also presented
there. Finally, in Section 5, we prove the bounds on the price of anarchy and stability.

2 Definitions and Preliminaries

Throughout the paper, we denote the number of machines by m. The index j always
refers to a machine; the sum

∑
j runs over all available machines. An assignment

is a partition N = (N1, ..., Nm) of the players to the m machines. So, Nj is the set
of players assigned to machine j under N . We use the notation Lj (Nj ) to refer to
the load of machine j , i.e., Lj (Nj ) = ∑

u∈Nj
wu,j . Recall that wu,j is the (possibly

infinite) positive processing time (or load) that the job (owned by player) u has when
processed by machine j .

A coordination mechanism uses a scheduling policy per machine. For every set of
jobs assigned to machine j , the scheduling policy of the machine defines a detailed



118 Theory Comput Syst (2019) 63:114–127

schedule of the jobs in the machine, i.e., it defines which job is executed in each point
in time, whether more than one jobs are executed in parallel, or whether a machine
stays idle for particular time intervals. Instead of defining coordination mechanisms
at this level of detail, it suffices to focus on the definition of the completion time
P(u, Nj ) for the job of each player u ∈ Nj . This definition should correspond to
some feasible detailed scheduling of jobs in the machine. A sufficient condition that
guarantees feasibility is to define completion times that are never smaller than the
machine load.

Like the coordination mechanisms in [4, 7, 10], our coordination mechanisms are
local. The completion time P(u, Nj ) of the job belonging to player u in machine j

depends on the processing times the jobs in Nj have on machine j , as well as on the
minimum processing time wu = minj wu,j of job u over all machines.

Our proofs exploit simple facts about Euclidean norms of machine loads.
Recall that, for p ≥ 1, the p-norm of the vector of machine loads
L(N) = (L1(N1), L2(N2), ..., Lm(Nm)) under an assignment N is ‖L(N)‖p =(∑

j Lj (Nj )
p
)1/p

. By convention, we denote the makespan maxj Lj (Nj ) as

‖L(N)‖∞. The following property follows easily by the definition of norms; we use
it extensively in the following.

Lemma 1 For any p ≥ 1 and any assignment N , ‖L(N)‖∞ ≤ ‖L(N)‖p ≤
m1/p‖L(N)‖∞.

We also use the well-known Minkowski inequality (or triange inequality for the
p-norm). For machine loads, it reads as follows:

Lemma 2 (Minkowski inequality) For every p ≥ 1 and two assignments N and N ′,
‖L(N) + L(N ′)‖p ≤ ‖L(N)‖p + ‖L(N ′)‖p.

The notation L(N) + L(N ′) denotes the m-entry vector with Lj (Nj ) + Lj (N
′
j )

at the j -th entry. Another necessary technical lemma follows by the convexity
properties of polynomials; see [7] for a proof.

Lemma 3 For r ≥ 1, t ≥ 0, positive integer p, and ai ≥ 0 for i = 1, ..., p, it holds

p∑
i=1

(
(t + ai)

r − t r
) ≤

(
t +

p∑
i=1

ai

)r

− t r .

3 A Broad Class of Coordination Mechanisms

In this section, we show that the coordination mechanism CCOORD from [7] can be
thought of as belonging to a broad class of coordination mechanisms, which we call
M(d). This class contains also our novel coordination mechanism DCOORD, which
will be presented in Section 4.
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The definition of CCOORD uses a positive integer d ≥ 2 and the functions �j

that map sets of players to the non-negative reals as follows. For any machine j ,
�j(∅) = 0 and for any non-empty set of players U = {u1, u2, ..., u�},

�j(U) = d!
∑

t1+t2+...+t�=d

�w
tk
uk,j∏

k=1

.

The sum runs over all multi-sets of non-negative integers {t1, t2, ..., t�} that satisfy
t1 + t2 + ...+ t� = d. So, �j(U) is the sum of all possible degree-d monomials of the
processing times of the jobs belonging to players from U on machine j , with each
term in the sum having a coefficient of d!. CCOORD schedules the job of player ui on
machine j in an assignment N so that its completion time is

P(ui, Nj ) =
(

wui,j�j (Nj )

wui

)1/d

.

We will extend CCOORD to define a broad class of coordination mechanisms; we
use M(d) to refer to this class, where d ≥ 2 is a positive integer. Each member of
M(d) is identified by a coefficient function γ . The coefficient functions are defined
over multi-sets of non-negative integers that have sum equal to d + 1 and take non-
negative values. An important property of the coefficient functions is that they are
invariant to zeros that requires that for a multi-set A of integers that sum up to d + 1,
γ (A) = γ (A ∪ {0}). Hence, the value returned by γ depends only on the non-zero
elements in the multiset it takes as argument.

The definition of a coordination mechanism inM(d) uses the quantity �ui,j (U),
which is defined as follows for a machine j and a job ui from a set of jobs U =
{u1, u2, ..., u�}:

�ui,j (U) =
∑

t1+t2+...+t�=d+1
ti≥1

γ ({t1, t2, ..., t�})
�∏

k=1

w
tk
uk,j

. (1)

The sum runs over all multi-sets of non-negative integers, with each integer corre-
sponding to a distinct player of U , so that the integer ti corresponding to player ui

is strictly positive. Notice that γ is defined over (unordered) multi-sets; this implies
that symmetric monomials have the same coefficient. For example, for d = 2, the set
of players U = {u1, u2}, and a machine j ,

�u1,j (U) = γ ({3, 0})w3
u1,j

+ γ ({2, 1})w2
u1,j

wu2,j + γ ({1, 2})wu1,jw
2
u2,j

.

Clearly, {2, 1} and {1, 2} denote the same multi-set and, hence, the coefficients of the
(symmetric) second and third monomial are identical.

A coordination mechanism of M(d) sets the completion time of player ui to

P(ui, Nj ) =
(

�ui,j (Nj )

wui

)1/d

. (2)

when her job is scheduled on machine j under assignment N .



120 Theory Comput Syst (2019) 63:114–127

By simply setting γ (A) = d! for every multi-set A of non-negative integers sum-
ming up to d + 1, we obtain CCOORD. Indeed, it is easy to see that �ui,j (U) =
wui,j�j (U) in this case.

The definition of M(d) guarantees that all its members satisfy two important
properties. First, every coordination mechanism in M(d) is anonymous. This is due
to the fact that the definition of the completion time in (2) does not depend on the
identity of a player and the jobs of two different players u and u′ that have equal
processing times wu,j = wu′,j at machine j and the same minimum processing time
(over all machines) will enjoy identical completion times therein, when each is sched-
uled together with a set U of other players (i.e., P(u, U ∪ {u}) = P(u′, U ∪ {u′})) or
when the set of playersNj assigned to machine j contains both u and u′ (P(u, Nj ) =
P(u′, Nj ) in this case).

Another important property of the coordination mechanisms in M(d) is that they
always induce potential games. We will prove this in a while, after defining the func-
tion �j(U), again for a machine j and a set of players U = {u1, u2, ..., u�}, as
follows:

�j(U) =
∑

t1+t2+...+t�=d+1

γ ({t1, t2, ..., t�})
�∏

k=1

w
tk
uk,j

. (3)

Compared to the definition of �ui,j (U) in (1), the sum in (3) runs just over all multi-
sets of non-negative integers (corresponding to players in U ) that sum up to d + 1,
without any additional constraint.

We will sometimes use the informal term �-functions to refer to the functions
defined in both (1) and (3). We can now state and prove the following property of
�-functions that we will use several times in our analysis below.

Lemma 4 Consider a machine j and a set of players U = {u1, u2, ..., u�}. Then, for
every player ui ∈ U ,

�j(U) = �ui,j (U) + �j(U \ {ui}).

Proof Without loss of generality, let us assume that i = 1. Using the definition of
�-functions in (1) and (3), we obtain

�j(U) =
∑

t1+t2+...+t�=d+1

γ ({t1, t2, ..., t�})
�∏

k=1

w
tk
uk,j

=
∑

t1+t2+...+t�=d+1t1≥1

γ ({t1, t2, ..., t�})
�∏

k=1

w
tk
uk,j

+
∑

t1+t2+...+t�=d+1t1=0

γ ({t1, t2, ..., t�})
�∏

k=1

w
tk
uk,j

= �u1,j (U) +
∑

t2+...+t�=d+1

γ ({t2, ..., t�})
�∏

k=2

w
tk
uk,j

= �u1,j (U) + �j(U \ {u1}).
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In the third equality, we have used the fact that the coefficient function is invariant to
zeros.

Lemma 4 is particularly useful in order to prove that mechanisms ofM(d) induce
potential games as our next Theorem 5 states.

Theorem 5 The non-negative function �, which is defined over assignments of play-
ers to machines as�(N) = ∑

j �j (Nj ), is a potential function for the game induced
by any coordination mechanism inM(d).

Proof Consider two assignments N and N ′ that differ in the assignment of a single
player u. Assume that player u is assigned to machine j1 and j2 in the assignments
N and N ′, respectively. Using the definition of function � and Lemma 4, we have

�(N) − �(N ′) =
∑
j

�j (Nj ) −
∑
j

�j (N
′
j )

= �j1(Nj1) + �j2(Nj2) − �j1(N
′
j1

) − �j2(N
′
j2

)

= �u,j1(Nj1) + �j1(Nj1 \ {u}) + �j2(Nj2)

−�j1(N
′
j1

) − �u,j2(N
′
j2

) − �j2(N
′
j2

\ {u}).
Now observe that Nj1 \{u} = N ′

j1
and N ′

j2
\{u} = Nj2 . Hence, using this observation

and the definition of the completion time for u in assignments N and N ′, the above
derivation becomes

�(N) − �(N ′) = �u,j1(Nj1) − �u,j2(N
′
j2

)

= wu

(
P(u, Nj1)

d − P(u, N ′
j2

)d
)

,

which implies that the difference in the potentials and the difference P(u, Nj1) −
P(u, N ′

j2
) in the completion time of the deviating player u in the two assignments

have the same sign as desired.

Additional desirable properties for coordination mechanisms in classM(d), such
as feasibility and low price of anarchy/stability, strongly depend on the coefficient
function γ . The next two sections are devoted to proving such properties specifically
for mechanism DCOORD.

4 The Coordination Mechanism DCOORD

Like CCOORD, our new coordination mechanism DCOORD belongs to classM(d). It
uses the coefficient function defined as

γ ({t1, t2, ..., t�}) =
{
1 if ∃i such that ti = d + 1

d!d
t1!t2!...t�! otherwise
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for every multi-set of integers {t1, t2, ..., t�} such that t1 + t2 + ... + t� = d + 1.
Observe that γ ({t1, t2, ..., t�}) is very similar (but not identical) to the multinomial

coefficient defined as
(

d+1
t1,t2,...,t�

) = (d+1)!
t1!...t�! . This is exploited in the proof of the next

statement.

Lemma 6 Consider a machine j and a set of players U = {u1, u2, ..., u�}. Then,

�j(U) = d

d + 1
Lj (U)d+1 + 1

d + 1

∑
u∈U

wd+1
u,j .

Proof By the definition of �j(U), Lj (U), and the coefficient function γ , we have

�j(U) =
∑

t1+t2+...+t�=d+1

γ ({t1, t2, ..., t�})
�w

tk
uk ,j∏

k=1

= d

d + 1

∑
t1+t2+...+t�=d+1

(
d + 1

t1, t2, ..., t�

) �w
tk
uk,j∏

k=1

+ 1

d + 1

∑
u∈U

wd+1
u,j

= d

d + 1
Lj (U)d+1 + 1

d + 1

∑
u∈U

wd+1
u,j

as desired.

We proceed with two properties which relate �-functions to machine loads. The
first one follows as a trivial corollary of Lemma 6 after observing that

∑
u∈U wd+1

u,j ≤
Lj (U)d+1.

Corollary 7 Consider a machine j and a set of players U . Then,

d

d + 1
Lj (U)d+1 ≤ �j(U) ≤ Lj (U)d+1.

The second one will be very useful in proving that DCOORD is feasible and in
bounding its price of anarchy.

Lemma 8 Let U = {u1, ..., u�} be a set of players. For every player ui ∈ U and
every machine j , it holds that

wui,jLj (U)d ≤ �ui,j (U) ≤ d · wui,jLj (U)d .



Theory Comput Syst (2019) 63:114–127 123

Proof Without loss of generality, let us assume that i = 1. We will first expand the
quantities �u1,j (U) and wu1,jLj (U)d . We have

�u1,j (U) =
∑

t1+t2+...+t�=d+1t1≥1

γ ({t1, t2, ..., t�})
�w

tk
uk ,j∏

k=1

= wu1,j ·
∑

t1+t2+...+t�=d

γ ({t1 + 1, t2, ..., t�})
�w

tk
uk,j∏

k=1

(4)

and

wu1,j · Lj (U)d = wu1,j ·
⎛
⎝

�wuk,j∑
k=1

⎞
⎠

d

= wu1,j ·
∑

t1+t2+...+t�=d

(
d

t1, t2, ..., t�

) �w
tk
uk,j∏

k=1

. (5)

We can prove the two desired inequalities by comparing the corresponding coeffi-
cients of each monomial in (4) and (5). Recall that, when t1 + t2 + ... + t� = d, the
coefficient γ ({t1 + 1, t2, ..., t�}) from (4) is equal to 1 when t1 = d. In this case, the
corresponding coefficient in (5) is

(
d

d,0,...,0

) = 1 as well. Otherwise,

γ ({t1 + 1, t2, ..., t�}) = d

t1 + 1

(
d

t1, t2, ..., t�

)
.

Since t1 is non-negative and at most d − 1, we have that
(

d

t1, t2, ..., t�

)
≤ γ ({t1 + 1, t2, ..., t�}) ≤ d ·

(
d

t1, t2, ..., t�

)
,

which, together with (4) and (5), concludes the proof.

Feasibility of DCOORD follows easily now.

Theorem 9 DCOORD produces feasible schedules.

Proof Consider player u1 and any assignment N which assigns it to machine j

together with � − 1 other players u2, u3, ..., u�. By the leftmost inequality of Lemma
8, we have that

P(u1, Nj ) =
(

�u1,j (Nj )

wu1

)1/d

≥
(

wu1,j

wu1

)1/d

Lj (Nj ) ≥ Lj (Nj ),
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as desired. The inequality holds since, by definition, wu1,j ≥ wu1 .

5 Bounding the Price of Anarchy and Stability

For proving the price of anarchy bound, we will need the following lemma which
relates the load of any machine at an equilibrium with the optimal makespan.

Lemma 10 Let N be an equilibrium and N∗ an assignment of optimal makespan.
Then, for every machine j , it holds that

Lj (Nj ) ≤ m
1

d+1
d + 1

ln 2
‖L(N∗)‖∞.

Proof Consider a player u that is assigned to machine j in the equilibrium assign-
ment N and to machine j ′ in the assignment Ñ that minimizes the (d + 1)-norm of
the machine loads. First, consider the case where j �= j ′. In the equilibrium assign-
ment N , player u has no incentive to deviate from machine j to machine j ′ and,
hence, P(u, Nj ) ≤ P(u, Nj ′ ∪ {u}). By the definition of DCOORD, we obtain that
�u,j (Nj ) ≤ �u,j ′(Nj ′ ∪ {u}). Using this observation, Lemma 4, and Lemma 6, we
get

�u,j (Nj ) ≤ �u,j ′(Nj ′ ∪ {u}) = �j ′(Nj ′ ∪ {u}) − �j ′(Nj ′)

= d

d + 1
Lj ′(Nj ′ ∪ {u})d+1 − d

d + 1
Lj ′(Nj ′)d+1 + 1

d + 1
wd+1

u,j ′

= d

d + 1
(Lj ′(Nj ′) + wu,j ′)d+1 − d

d + 1
Lj ′(Nj ′)d+1 + 1

d + 1
wd+1

u,j ′

We will now prove that the same inequality holds when j = j ′. In this case, together
with Lemmas 4 and 6, we need to use a different argument that exploits a convexity
property of polynomials. We have

�u,j (Nj ) = �u,j ′(Nj ′) = �j ′(Nj ′) − �j ′(Nj ′ \ {u})
= d

d + 1
Lj ′(Nj ′)d+1 − d

d + 1
Lj ′(Nj ′ \ {u})d+1 + 1

d + 1
wd+1

u,j ′

= d

d + 1
Lj ′(Nj ′)d+1 − d

d + 1
(Lj ′(Nj ′) − wu,j ′)d+1 + 1

d + 1
wd+1

u,j ′

≤ d

d + 1
(Lj ′(Nj ′) + wu,j ′)d+1 − d

d + 1
Lj ′(Nj ′)d+1 + 1

d + 1
wd+1

u,j ′ .

The last inequality follows since zd+1 − (z − α)d+1 ≤ (z + α)d+1 − zd+1 for every
z ≥ α ≥ 0, due to the convexity of the polynomial function zd+1. Notice that we
have used z = Lj ′(Nj ′) and α = wu,j ′ .
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Let us sum the above inequality over all players. We obtain
∑
j

∑
u∈Nj

�u,j (Nj )

≤ d

d + 1

∑
j

∑

u∈Ñj

((
Lj (Nj ) + wu,j

)d+1 − Lj (Nj )
d+1

)
+ 1

d + 1

∑
j

∑

u∈Ñj

wd+1
u,j

≤ d

d + 1

∑
j

⎛
⎜⎝

⎛
⎜⎝Lj (Nj ) +

∑

u∈Ñj

wu,j

⎞
⎟⎠

d+1

− Lj (Nj )
d+1

⎞
⎟⎠ + 1

d + 1

∑
j

Lj (Ñj )
d+1

= d

d + 1
‖L(N) + L(Ñ)‖d+1

d+1 − d

d + 1
‖L(N)‖d+1

d+1 + 1

d + 1
‖L(Ñ)‖d+1

d+1

≤ d

d + 1

(‖L(N)‖d+1 + ‖L(Ñ)‖d+1
)d+1 − d − 1

d + 1
‖L(N)‖d+1

d+1. (6)

The second inequality follows by Lemma 3 and since
∑

u∈Ñj
wd+1

u,j ≤ Lj (Ñ)d+1.
The equality follows by the definition of (d+1)-norms and the last inequality follows
by Minkowski inequality (Lemma 2) and by the fact that ‖L(Ñ)‖d+1 ≤ ‖L(N)‖d+1.

Using the definition of norms and Lemma 8, we also have

‖L(N)‖d+1
d+1 =

∑
j

Lj (Nj )
d+1 =

∑
j

∑
u∈Nj

wu,jLj (Nj )
d ≤

∑
j

∑
u∈Nj

�u,j . (7)

By combining (6) and (7), we have

2‖L(N)‖d+1
d+1 ≤ (‖L(N)‖d+1 + ‖L(Ñ)‖d+1

)d+1

and, equivalently,

‖L(N)‖d+1 ≤ 1

2
1

d+1 − 1
‖L(Ñ)‖d+1 ≤ d + 1

ln 2
‖L(N∗)‖d+1

≤ m
1

d+1
d + 1

ln 2
‖L(N∗)‖∞.

The second inequality follows since, by definition, ‖L(Ñ)‖d+1 ≤ ‖L(N∗)‖d+1 and
by the inequality ez ≥ z + 1. The third inequality follows by Lemma 1. Since
‖L(N)‖d+1 ≥ Lj (Nj ) for every machine j , the lemma follows.

For the price of stability bound, we will use a qualitatively similar (to Lemma 10)
relation between machine loads at a particular equilibrium and the optimal makespan.

Lemma 11 Let N be the equilibrium that minimizes the potential function and N∗
an assignment of optimal makespan. Then, for every machine j , it holds that

Lj (Nj ) ≤
(

d + 1

d
m

) 1
d+1 ‖L(N∗)‖∞.

Proof Observe that �(N) ≤ �(N∗) since every equilibrium that is reached when
players repeatedly best-respond starting from assignment N∗ has potential at most
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�(N∗). Using this observation, the definition of norms, Corollary 7, and the
definition of the potential function (see the statement of Theorem 5), we have

‖L(N)‖d+1
d+1 =

∑
j

Lj (Nj )
d+1 ≤ d + 1

d

∑
j

�j (Nj ) = d + 1

d
�(N)

≤ d + 1

d
�(N∗) = d + 1

d

∑
j

�j (N
∗
j ) ≤ d + 1

d

∑
j

Lj (N
∗
j )d+1

= d + 1

d
‖L(N∗)‖d+1

d+1.

Hence, for every machine j , by exploiting Lemma 1, we have

Lj (Nj ) ≤ ‖L(N)‖d+1 ≤
(

d + 1

d

) 1
d+1 ‖L(N∗)‖d+1 ≤

(
d + 1

d
m

) 1
d+1 ‖L(N∗)‖∞

as desired.

We are now ready to complete the proofs of the price of anarchy and stability
bounds for DCOORD. We will do so by comparing the completion time of any player
to the optimal makespan ‖L(N∗)‖∞.

Theorem 12 By setting d = O(logm), DCOORD has price of anarchyO(logm) and
price of stability O(1).

Proof Consider a player u that is assigned to machine j at some equilibrium N and
satisfies wu = wu,j∗ for some machine j∗. We use the fact that player u (is either
already at or) has no incentive to deviate to machine j∗ at equilibrium. In this way,
we can bound its completion time as follows:

P(u, Nj ) ≤ P(u, Nj∗ ∪ {u}) =
(

�u,j∗(Nj∗ ∪ {u})
wu

)1/d

≤
(

dwu,j∗Lj∗(Nj∗ ∪ {u})d
wu

)1/d

≤ d1/d(Lj∗(Nj∗) + wu).

The equality follows by the definition of DCOORD, and the second inequality follows
by Lemma 8. The third inequality follows since wu = wu,j∗ and by observing that
Lj∗(Nj∗ ∪ {u}) = L(Nj∗) + wu if u �∈ Nj∗ (i.e., j �= j∗) and Lj∗(Nj∗ ∪ {u}) =
L(Nj∗) otherwise.

Now, using Lemma 10 to bound Lj∗(Nj∗), we obtain that

P(u, Nj ) ≤ d1/d
(

m
1

d+1
d + 1

ln 2
+ 1

)
‖L(N∗)‖∞.

If the equilibrium N is a potential-minimizing assignment, Lemma 11 can be further
used to obtain the better guarantee

P(u, Nj ) ≤ d1/d

((
d + 1

d
m

) 1
d+1 + 1

)
‖L(N∗)‖∞.
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The theorem follows since, by setting d = �(logm), the factors (ignoring
‖L(N∗)‖∞ in the rightmost expressions become O(logm) and O(1), respectively.
So, in general, we have that the completion time of any player at equilibrium is at
mostO(logm) times the optimal makespan (hence, the price of anarchy bound) while
there exists a particular equilibrium where the completion time of any player is at
most O(1) times the optimal makespan (hence, the price of stability bound).
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