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Abstract We consider nonatomic routing games with one source and one destina-
tion connected by multiple parallel edges. We examine the asymptotic behavior of the
price of anarchy as the inflow increases. In accordance with some empirical obser-
vations, we prove that under suitable conditions on the costs the price of anarchy is
asymptotic to one. We show with some counterexamples that this is not always the
case, and that these counterexamples already occur in simple networks with only 2
parallel links.

Keywords Nonatomic routing games · Price of Anarchy · Regularly varying
functions · Wardrop equilibrium · Parallel networks · High congestion

1 Introduction

The study of network routing equilibria and their efficiency goes back to Pigou
[24] who, in the first edition of his book, introduced his famous two-road example.
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Wardrop [32] developed an equilibrium model where many players (vehicles on the
road) choose a road in order to minimize their cost (travel time) and the influence
of each one of them, singularly taken, is negligible. His concept of equilibrium has
become the standard in the literature on nonatomic network games.

When drivers minimize their travel time ignoring the negative externalities
imposed on other travelers, the collective outcome is typically inefficient, i.e., it is
worse than the outcome that a benevolent planner would have achieved. Various mea-
sures have been proposed to quantify this inefficiency, among which the price of
anarchy has been the most successful. Introduced by Koutsoupias and Papadimitriou
[15] and given this name by Papadimitriou [22], it is the ratio of the worst social
equilibrium cost and the minimum achievable cost.

The price of anarchy has been studied intensively and many interesting bounds
have been established for different classes of cost functions. However, most of these
results consider worst-case scenarios which need not be representative of practical
situations. In a recent paper O’Hare et al. [20] show, both theoretically and with
the aid of simulations, how the price of anarchy is affected by changes in the total
inflow of players. Considering data for three different cities they have found that:
“In each city, it can be seen that there are broadly three identifiably distinct regions
of behaviour: an initial region in which the Price of Anarchy is one; an intermediate
region of fluctuations; and a final region of decay, which has a similar characteristic
shape across all three networks. The similarities in this general behaviour across the
three cities suggest that there may be common mechanisms that drive this variation.”

The core of the paper [20] is an analysis of the intermediate fluctuations. Here
we will focus instead on the asymptotic behavior of the price of anarchy as the mass
of players grows to infinity. We consider nonatomic congestion games with a single
source and a single destination connected by multiple parallel edges. We show that
for a large class of cost functions the price of anarchy is indeed asymptotic to one.
Nevertheless, we also present counterexamples in which the lim sup is larger than 1
and it can even be infinite.

1.1 Contribution

The goal of this paper is twofold. On one hand we provide some positive results show-
ing that under some conditions the price of anarchy for nonatomic parallel network
games is indeed asymptotic to one. On the other hand, we present counterexamples
where the lim sup of the price of anarchy is larger than one.

We first show that, for any single-source and single-destination network, the price
of anarchy is asymptotic to one whenever the cost of at least one path is bounded.
Then we focus on parallel graphs and we show that the price of anarchy is asymptotic
to one for a large class of costs that we characterize in terms of regularly varying
functions [3]. This class includes polynomial functions and functions that can be
bounded by a pair of affine functions with the same slope.

Next, we present counterexamples where the behavior of the price of anarchy is
periodic on a logarithmic scale, so that its lim sup is larger than one both as the mass
of players grows unbounded and as it goes to zero. In another counterexample the
lim sup of the price of anarchy is infinite. A further counterexample shows that the
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price of anarchy may not converge to one even for convex costs. An interesting point
is that all the counterexamples concern a very simple parallel graph with just two
edges, so that the bad behavior of the price of anarchy depends solely on the costs
and not on the topology of the graph. This is in stark contrast with the results in [20],
where the irregular behavior of the price of anarchy in the intermediate region of
inflow heavily depends on the structure of the graph.

1.2 Related Literature

Wardrop’s nonatomic model has been studied by Beckmann et al. [2] and many
others. The formal foundation of games with a continuum of players came with
Schmeidler [31] and then with Mas Colell [17]. Nonatomic congestion games have
been studied, among others, by Milchtaich [18, 19].

Various bounds for the price of anarchy in nonatomic games have been reported
under different conditions. In particular Roughgarden and Tardos [28] prove that,
when the cost functions are affine, the price of anarchy in nonatomic games is at most
4/3, irrespective of the topology of the network. The bound is sharp and is attained
even in very simple networks. Specifically, for any positive flow there is a parallel
network with two edges and affine costs such that the price of anarchy is exactly 4/3.
In this paper we show that the order of the quantifiers in this result is fundamental.
Namely, for every parallel network with given affine costs the price of anarchy goes
to 1 as the inflow grows large.

Several authors have extended this bound to larger classes of functions. Roughgar-
den [26] shows that if the class of cost functions includes the constants, then the worst
price of anarchy is achieved on parallel networks with just two edges. In his paper he
considers bounds for the price of anarchy when the cost functions are polynomials of
degree at most d. Dumrauf and Gairing [9] do the same when the degrees of the poly-
nomials are between s and d. Roughgarden and Tardos [29] provide a unifying result
for the class of standard costs, i.e., costs c that are differentiable and such that xc(x)

is convex. Correa et al. [5] consider the price of anarchy for networks where edges
have a capacity and costs are not necessarily convex, differentiable, or even contin-
uous. In [7] they reinterpret and extend these results using a geometric approach. In
[6] they consider the problem of minimizing the maximum latency rather than the
average latency and provide results about the price of anarchy in this framework. The
reader is referred to [27, 30] for a survey.

Recent papers have pointed out that in real situations the price of anarchy may
substantially differ from the worst-case scenario [16, 33]. González Vayá et al. [13]
deal with a problem of optimal schedule for the electricity demand of a fleet of plug-
in electric vehicles. Without using the term, they show that the price of anarchy goes
to one as the number of vehicles grows. Cole and Tao [4] study large Walrasian auc-
tions and large fisher markets and show that in both cases the price of anarchy goes
to one as the market size increases. Feldman et al. [11] define a concept of (λ, μ)-
smoothness for sequences of games, and show that the price of anarchy in atomic
congestion games converges to the price of anarchy of the corresponding nonatomic
game, when the number of players grows. Patriksson [23] and Josefsson and Patriks-
son [14] perform sensitivity analysis of Wardrop equilibrium to some parameters of
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the model. Closer to the scope of our paper, Englert et al. [10] examine how the
equilibrium of a congestion game changes when either the total mass of players is
increased by ε or an edge that carries an ε fraction of the mass is removed. For poly-
nomial cost functions they bound the increase of the equilibrium cost when a mass
ε of players is added to the system. Other recent papers, such as [21, 25], have also
raised questions about the practical utility of the worst case results about the price of
anarchy.

2 The Model

Consider a finite directed multigraph G = (V , E), where V is a set of vertices and
E is a set of edges. The multigraph G together with a source s ∈ V and a destination
t ∈ V , is called a network. A path P is a set of consecutive edges that go from source
to destination. Call P the set of all paths. Each path P has a flow xP ≥ 0 and we
call x = (xP )P∈P . The total flow from source to destination is denoted by M ∈ R+.
A flow x is feasible if

∑
P∈P xP = M . Call FM the set of feasible flows. For each

edge e ∈ E there exists a cost function ce(·) : R+ → R+, which is assumed (weakly)
increasing and continuous. Call c = (ce)e∈E . This defines a nonatomic congestion
game �M = (G , M, c) where the number M is interpreted as the mass of players in
the routing game.

The cost of a path P with respect to a flow x is the sum of the costs of its edges:
cP (x) = ∑

e∈P ce(xe), where

xe =
∑

P ∈ P :
e ∈ P

xP .

A flow x∗ is an equilibrium flow if for every P,Q ∈ P such that x∗
P > 0 we have

cP (x∗) ≤ cQ(x∗). Denote E (�M) the set of all such equilibrium flows.
For each flow x define the social cost associated to it as

C(x) :=
∑

P∈P

xP cP (x) =
∑

e∈E

xece(xe),

and let Opt(�M) = minx∈FM
C(x) be the optimum cost of �M . Define also the worst

equilibrium cost of �M as WEq(�M) = maxx∈E (�M) C(x). Actually, in the present
setting the cost C(x∗) is the same for every equilibrium x∗ (see [12]).

The price of anarchy of the game �M is then defined as

PoA(�M) := WEq(�M)

Opt(�M)
.

We are interested in the price of anarchy of this game, as M → ∞. We will show
that, under suitable conditions, it is asymptotic to one, and we will call asymptotically
well behaved the congestion games for which this happens.
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3 Asymptotically Well Behaved Congestion Games

3.1 General Result for Bounded Costs

The following general result shows that for any network the price of anarchy is
asymptotic to one when at least one path has a bounded cost.

Theorem 1 For each path P ∈ P denote

c∞
P =

∑

e∈P

c∞
e with c∞

e = lim
z→∞ ce(z)

and suppose that B := minP∈P c∞
P is finite. Then, limM→∞ PoA(�M) = 1.

Proof Let x∗ be an equilibrium for �M . Then if x∗
P > 0 we have

cP (x∗) = min
Q∈P

cQ(x∗) ≤ min
Q∈P

c∞
Q = B

and therefore

WEq(�M) =
∑

P∈P

x∗
P cP (x∗) ≤

∑

P∈P

x∗
P B = MB.

It follows that

PoA(�M) ≤ MB

Opt(�M)
,

so that it suffices to prove that Opt(�M)/M → B. To this end denote �(P) the
simplex defined by y = (yP )P∈P ≥ 0 and

∑
P∈P yP = 1, so that

1

M
Opt(�M) = min

x∈FM

∑

P∈P

xP

M
cP (x)

= min
y∈�(P)

∑

P∈P

yP cP (My).

Denote �M(y) = ∑
P∈P yP cP (My). Since the cost functions ce(·) are non-

decreasing, the family �M(·) monotonically increases with M towards the limit
function �∞ : �(P) → R ∪ {∞} defined as follows

�∞(y) =
∑

P∈P :yP >0

yP c∞
P .

Now, a monotonically increasing family of functions epi-converges (see [1]) and
since �(P) is compact it follows that the minimum miny∈�(P) �M(y) converges
as M → ∞ towards

min
y∈�(P)

�∞(y).

Clearly this latter optimal value is B and is attained by setting yP > 0 only on those
paths P that attain the smallest value c∞

P = B, and therefore we conclude

1

M
Opt(�M) = min

y∈�(P)
�M(y) → B,

as was to be proved.
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3.2 Parallel Graphs

In this section we examine the asymptotic behavior of the price of anarchy when the
game is played on a parallel graph.

Let G = (V , E) be a parallel graph such that V = {s, t} are the vertices and
E = {e1, e2, . . . , en} are the edges. For each edge ei ∈ E the function ci(·) represents
the cost function of the edge ei . Call �M = (G , M, c) the corresponding game. In
the whole section we will deal with this graph.

3.2.1 Adding a Constant to Costs

First we prove a preservation result. We show that if the price of anarchy of a
game converges to 1, then adding positive constants to each cost does not alter this
asymptotic behavior.

Theorem 2 Given a game �M = (G , M, c) and a vector a ∈ [0, ∞)n, consider a
new game �a

M(G , M, ca) where ca
i (x) = ai + ci(x). If ci(·) is strictly increasing and

continuous with limM→∞ PoA(�M) = 1, then limM→∞ PoA(�a
M) = 1.

Proof If some ci(·) remains bounded the conclusion follows from Theorem 1, so
we focus on the case where ci(x) → ∞ as x → ∞ for all i. In this case all the
equilibrium flows x∗

i must diverge to ∞ as M → ∞. In particular they will be
all positive and the equilibrium is characterized by ci(x

∗
i ) = λ for some λ → ∞

as M → ∞. In fact, since
∑n

i=1 x∗
i = M we can get λ by solving the equation

g(λ) = M where g(λ) = ∑n
i=1 c−1

i (λ).
The same applies to �a

M . Call λa the cost at the equilibrium on each edge in �a
M

and xa the equilibrium of �a
M . Then we have ai + ci(x

a
i ) = λa so that

M =
∑

ei∈E

c−1
i (λa − ai).

Denoting a := minei∈E ai and ā : maxei∈E ai , the monotonicity of ci(·) gives

g(λa − ā) ≤ M ≤ g(λa − a)

and since M = g(λ) we get the inequality λa − ā ≤ λ ≤ λa − a which implies

lim
M→∞

λa

λ
= 1. (1)

Now, for the optimum we have

Opt(�a
M) = min

x∈FM

∑

ei∈E

xi(ai + ci(xi)) ≥ aM + Opt(�M)

and we derive the estimate

PoA(�a
M) = Mλa

Opt(�a
M)

≤ Mλa

aM + Opt(�M)
= λa/λ

a/λ + Opt(�M)
Mλ

→ 1,
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which follows from the assumption Opt(�M)/(Mλ) = PoA(�M)−1 → 1, combined
with (1) and the fact that λ → ∞.

3.2.2 Regularly Varying Functions

Our next result shows that asymptotically the price of anarchy goes to 1 as soon as the
cost functions ci(·) are symptotically equivalent to some regular benchmark function
c(·). The notion of regularity that we use is as follows.

Definition 1 Let β ≥ 0. A function c: (0, +∞) → (0, +∞) is called β-regularly
varying if for all a > 0

lim
x→∞

c(ax)

c(x)
= aβ ∈ (0, +∞).

The class of regularly varying functions, introduced by Karamata, contains all
polynomials as well as polylogarithmic functions and many others. It basically
requires that for all a > 0 the quotient c(ax)/c(x) converges for x → ∞ (in which
case the limit is necessarily of the form aβ for some β). Roughly speaking, this con-
dition states that c(·) grows at the same rate when looked at different scales. For an
in depth survey of this concept and its many applications in probability and analysis,
we refer to the monograph [3].

In the following result, we use regularly varying functions as a benchmark for
the network’s cost functions. The goal is twofold: (i) to rule out pathological cost
functions that behave irregularly when the flow goes to infinity, and (ii) to ensure
that there is at least one edge with a cost function that does not grow too fast. Both
conditions can be achieved if the network’s cost functions can be asymptotically
compared with a regularly varying function. Note however that the cost functions
themselves are not required to be regularly varying.

Theorem 3 Let c(·) be a C1 increasing function with x 	→ c(x) + xc′(x) strictly
increasing, and assume that c(·) is β-regularly varying for some β > 0. Consider the
game �M and suppose that for each ei ∈ E the cost ci(·) is strictly increasing and
continuous and that the following limit exists

lim
x→∞

c−1 ◦ ci(x)

x
= αi ∈ (0, +∞] (2)

with at least one αi finite. Then

lim
M→∞PoA(�M) = 1.

Proof If some cost ci(·) is bounded the result follows directly from Theorem 1, so we
may restrict to the case where for all links we have ci(x) → ∞ when x → ∞. In this
case the equilibrium flows x∗

i must diverge to ∞ as M → ∞ and the equilibrium is
characterized by ci(x

∗
i ) = λ for some λ → ∞. Thus in this proof λ describes the cost

experienced on each edge with positive flow. This allows to derive an upper bound
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for the cost of the equilibrium. Namely, let I0 = {i : αi < ∞} and take ai > αi for
all i ∈ I0. Then (2) implies that for M large enough and all i ∈ I0 we have

c−1(λ)

x∗
i

= c−1 ◦ ci(x
∗
i )

x∗
i

< ai.

Hence
∑

i∈I0

c−1(λ)

ai

≤
∑

i∈I0

x∗
i ≤ M

so that denoting a =
(∑

i∈I0
1/ai

)−1
we get λ ≤ c(Ma) and therefore

WEq(�M) = Mλ ≤ Mc(Ma).

Next we derive a lower bound for the optimal cost

Opt(�M) = min
x∈FM

n∑

i=1

xici(xi).

We note that when M → ∞ the optimal solutions are such that xi(M) → ∞ for all
i. Indeed, suppose by contradiction that there is a link i and a sequence Mk → ∞
such that xk

i = xi(Mk) remains bounded. Now, some link j must get an amount of
flow xk

j ≥ Mk/n. Passing to a subsequence we may assume that j is the same for

all k so that xk
j → ∞. Now, if we transfer a fixed amount ε of flow from j to i, the

optimality of xk implies

(xk
i + ε)ci(x

k
i + ε) + (xk

j − ε)cj (x
k
j − ε) ≥ xk

i ci(x
k
i ) + xk

j cj (x
k
j ).

Since by monotonicity we have xk
j cj (x

k
j − ε) ≤ xk

j cj (x
k
j ), it follows that

(xk
i + ε)ci(x

k
i + ε) − ε cj (x

k
j − ε) ≥ xk

i ci(x
k
i ) ≥ 0,

which yields a contradiction since the left hand side tends to −∞.
Now, let us choose bi < αi for all i = 1, . . . , n. Since xi(M) → ∞, using (2) we

get for all M large enough

min
x∈FM

n∑

i=1

xici(xi) ≥ min
x∈FM

n∑

i=1

xic(bixi).

The optimality condition for the latter problem yields

c(bixi) + bixi c′(bixi) = μ for all i ∈ E.

For the sake of brevity we denote c̃(x) = c(x) + xc′(x) and yi = bixi so that the
optimality condition becomes c̃(yi) = μ. This yields yi = c̃−1(μ) and therefore

M =
n∑

i=1

xi =
n∑

i=1

c̃−1(μ)

bi

.
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Denoting b =
(∑n

i=1
1
bi

)−1
we then get μ = c̃(Mb) and we obtain the following

lower bound for the optimal cost

Opt(�M) ≥ min
x∈FM

n∑

i=1

xic(bixi) = Mc(c̃−1(μ)) = Mc(Mb).

Combining the previous bounds we can estimate the price of anarchy as

PoA(�M) ≤ Mc(Ma)

Mc(Mb)
.

Letting M → ∞ and using the fact that c is β-regularly varying we deduce

lim sup
M→∞

PoA(�M) ≤
(a

b

)β

.

Finally, we note that by letting ai ↘ αi for all i ∈ I0 and bi ↗ αi for all i = 1, . . . , n

both a and b converge towards the common value
(∑

i∈I0
1/αi

)−1
, from where we

conclude

lim sup
M→∞

PoA(�M) = 1.

The following results follow easily from Theorem 3.

Corollary 1 In the game �M if for all i ∈ E we have limx→∞ ci(x)/x = mi ∈
(0, +∞] and at least one mi < ∞, then

lim
M→∞PoA(�M) = 1.

Proof Apply Theorem 3 with c equal to the identity.

Corollary 2 In the game �M if for all i ∈ E we have limx→∞ c′
i (x) = mi with

mi ∈ (0, +∞] and at least one mi is finite, then

lim
M→∞PoA(�M) = 1.

Proof Just notice that lim
x→∞ ci(x)/x = lim

x→∞ c′
i (x) = mi .

The next results examines the case where each cost function is bounded above and
below by two affine functions with the same slope, as in Fig. 1.
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Fig. 1 Affinely bounded costs

Corollary 3 Consider the game �M and assume that for every ei ∈ E and for all x

large enough we have

	i(x) := ai + bix ≤ ci(x) ≤ αi + bix =: Li(x).

Then

lim
M→∞PoA(�M) = 1.

Proof This follows from Corollary 1.

Corollary 4 In the game �M if there is a strictly increasing β-regularly varying
function c(·) with β > 0 such that for all i ∈ E

lim
x→∞

ci(x)

c(x)
= mi ∈ (0, +∞], (3)

and at least one mi is finite, then

lim
M→∞PoA(�M) = 1.

Proof It suffices to show that (3) implies (2) with αi = m
1/β
i . To prove this we note

that when mi < ∞, then using (3) we see that for all ε > 0 the following inequalities
hold for x large enough

(mi − ε)c(x) ≤ ci(x) ≤ (mi + ε)c(x),
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and therefore

c−1((mi − ε)c(x))

x
≤ c−1(ci(x))

x
≤ c−1((mi + ε)c(x))

x
.

Moreover, by Lemma 1(c) in the Appendix we know that:

lim
x→∞

c−1((mi − ε)c(x))

x
= (mi − ε)1/β

lim
x→∞

c−1((mi + ε)c(x))

x
= (mi + ε)1/β

and since
lim
ε↓0

(mi − ε)1/β = lim
ε↓0

(mi + ε)1/β = m
1/β
i = αi,

we get
c−1(ci(x))

x
→ αi.

Similarly, when mi = ∞ we may take m′
i finite and then for x large we have

m′
i ≤ ci(x)

c(x)
=⇒ m′

ic(x) ≤ ci(x) =⇒ c−1(m′
ic(x))

x
≤ c−1(ci(x))

x
.

Now, from

lim
x→∞

c−1(m′
ic(x))

x
= (m′

i )
1/β,

letting m′
i → ∞ we obtain once again

lim
x→∞

c−1(ci(x))

x
= ∞ = αi.

Corollary 5 If the cost function ci(x) in the game �M are polynomials, then

lim
M→∞PoA(�M) = 1.

Proof This follows from Corollary 4.

4 Asymptotically Ill-Behaved Games

In this section we will present some examples where the price of anarchy is not
asymptotic to one as the inflow goes to infinity.

Consider a standard Pigou graph and assume that the costs are as follows:

c1(x) = x,

c2(x) = ak+1 for x ∈ (ak, ak+1], k ∈ Z,
(4)

with a ≥ 2, as in Fig. 2. In this game the cost of one edge is the identity, whereas
for the other edge it is a step function that touches the identity at intervals that grow
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Fig. 2 Step function

exponentially. The cost function c2 is not continuous, but a very similar game can be
constructed by approximating it with a continuous function.

Theorem 4 Consider the game �M with costs as in (4). Then the price of anarchy
presents a periodic behavior on a logarithmic scale. Moreover, we have

infPoA(�M) = 1, supPoA(�M) = 4 + 4a

4 + 3a
.

Remark 1 An immediate consequence of Theorem 4 is that

lim inf
M→∞ PoA(�M) = lim inf

M→0
PoA(�M) = 1,

lim sup
M→∞

PoA(�M) = lim sup
M→0

PoA(�M) = 4 + 4a

4 + 3a
.

We can immediately see that

lim sup
M→∞

PoA(�M) = 6

5
for a = 2

and

lim sup
M→∞

PoA(�M) → 4

3
as a → ∞.

As a referee pointed out, since when a → ∞ we have lim supM→∞ PoA(�M) →
4/3, the reader may wonder if there is a relation with the celebrated 4/3 bound by
Roughgarden and Tardos [28]. The two results would be similar, if the parameter a

were allowed to scale with the total inflow M , but in our game the parameter is fixed
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Fig. 3 Price of anarchy for M ∈ [2ak, 2ak+1], with a = 3, k = 1

and the demand grows. The bound 4/3 for the limsup of the price of anarchy can be
approximated in our class of games by taking a large enough.

Figure 3 plots the price of anarchy for M ∈ [2ak, 2ak+1], when a = 3.
The next theorem shows that the price of anarchy may fail to be asymptotic to one,

even when the cost functions are all convex.

Theorem 5 There exist congestion games �M where the cost functions are all
increasing and convex and both

lim sup
M→∞

PoA(�M) > 1 and lim sup
M→0

PoA(�M) > 1.

Our final result shows that the lim sup of the price of anarchy may even be infinite.

Theorem 6 There exist congestion games �M with lim sup
M→∞

PoA(�M) = ∞.

5 Conclusions

We have examined the asymptotic behavior of the price of anarchy for highy
congested nonatomic routing games in parallel networks. Coherently with some
empirical results, we have shown that under fairly general conditions on the cost func-
tions the price of anarchy goes to one as the inflow grows to infinity. In the case of
general networks, the condition requires the cost of at least one path to be bounded.
In the case of parallel networks, it requires all the cost functions to behave well with
respect to some regularly varying function. Moreover, we have provided counterex-
amples to this behavior, even under a very simple network structure, showing that
what matters is the shape of the cost functions.

It is worth pointing out that the worst case analysis in Roughgarden and Tardos
[28] shows that for any fixed total inflow M one can build a two-link network with
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affine costs—which depend on M—such that the price of anarchy of the correspond-
ing game is 4/3. In contrast, here we have proved that once the affine costs are fixed,
the price of anarchy converges to 1 as the total flow M increases.

This paper is just a first step to investigate the behavior of the price of anarchy as a
function of the demand. The natural next step is the study the asymptotic behavior of
the price of anarchy in non-parallel networks. A first result in this direction has been
provided by Theorem 1. In order to move beyond this setting the main difficulty lies
in the fact that edges and paths are now decoupled and a benchmark for edges does
not seem to be sufficient to guarantee the convergence of the price of anarchy.

A further natural next step is represented by the analysis of networks with multiple
O/D pairs. In this case the study of the price of anarchy seems even harder because
different O/D pairs may contribute in different ways to the total flow that is traversing
the network.

Finally, the study of the light traffic case when the flow approaches zero is also
an interesting complementary direction. The light traffic case is well motivated by
Theorem 4, which shows that, even when the traffic is low, the price of anarchy is not
guaranteed to converge to one, unlike many empirical observations would suggest.
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Appendix A: Regularly Varying Functions

The reader is referred to [3] for an extended treatment of regularly varying functions.
Here we gather a few basic properties that are useful for our results.

Lemma 1 Let β > 0 and let 
 be a continuous and strictly increasing function, then
the following properties are equivalent:

(a) the function 
 is β-regularly varying,
(b) the function 
−1 is 1

β
-regularly varying,

(c) for all γ > 0

lim
x→∞

1

x

−1(γ
(x)) = γ 1/β .

Proof The equivalence of (a) and (b) is proved in [8, page 22]. The equivalence of
(b) and (c) is immediate, since, by setting u = 
(x), we have

1

x

−1(γ · 
(x)) = 
−1(γ · u)


−1(u)
→ γ 1/β .
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Lemma 2 If 
 is a continuous and strictly increasing β-regularly varying function,
then x · 
(x) and

∫ x

0 
(s) ds are (1 + β)-regularly varying functions.

Proof For the function x · 
(x) it suffices to note that

lim
x→∞

ax
(ax)

x
(x)
= a · aβ = a1+β.

For
∫ x

0 
(s) ds a direct application of l’Hôpital rule gives

lim
x→∞

∫ ax

0 
(s) ds
∫ x

0 
(s) ds
= lim

x→∞

(ax)a


(x)
= aβa = a1+β.

The following two lemmata appear in [3, Proposition 1.5.7].

Lemma 3 For i = 1, 2, let 
i be a continuous and strictly increasing βi-regularly
varying function. Then 
1 ◦ 
2 is β1 · β2-regularly varying.

Lemma 4 Let 
1 and 
2 be two continuous and strictly increasing β-regularly
varying functions, then 
1 + 
2 is β-regularly varying.

Appendix B: Omitted Proofs

Proofs of Section 4

In the whole subsection, for the sake of simplicity, we call x the flow on e1 and y the
flow on e2.

Proof (of Theorem 4) Let us study the price of anarchy for M ∈ (2ak, 2ak+1],
keeping in mind that a ≥ 2.

Equilibrium cost. In the subinterval M ∈ (2ak, ak + ak+1] we have

x∗ = M − ak, c1(x
∗) = M − ak ≤ ak+1,

y∗ = ak, c2(y
∗) = ak.

For M ∈ (ak + ak+1, 2ak+1] we have

x∗ = ak+1, c1(x
∗) = ak+1,

y∗ = M − ak+1, c2(y
∗) = ak+1.

Therefore

WEq(�M) =
{

(M − ak)2 + a2k for M ∈ (2ak, ak + ak+1],
Mak+1 for M ∈ (ak + ak+1, 2ak+1].
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Optimal cost. In order to compute the optimal cost

Opt(�M) = min
0≤y≤M

yc2(y) + (M − y)2

we decompose the problem over the intervals Ij = (aj , aj+1] on which c2(·) is
constant, namely, we consider the subproblems

Cj = min
y∈Ij ,y≤M

aj+1y + (M − y)2.

We observe that for j ≥ k + 2 we have aj ≥ ak+2 ≥ 2ak+1 ≥ M so that Cj

is infeasible and therefore Opt(�M) = min{C0, C1, . . . , Ck+1}. In fact, we will
show that Opt(�M) = min{Ck−1, Ck}.

Let us compute Cj . Since (M − y)2 is symmetric around M , the constraint
y ≤ M can be dropped and then the minimum Cj is obtained by projecting onto
[aj , aj+1] the unconstrained minimizer yj = M − aj+1/2. We get

Cj =

⎧
⎪⎪⎨

⎪⎪⎩

aj+1aj + (M − aj )2 if M < aj + aj+1

2 ,

aj+1
(
M − aj+1

2

)
+

(
aj+1

2

)2
if aj + aj+1

2 ≤ M ≤ aj+1 + aj+1

2 ,

aj+1aj+1 + (M − aj+1)2 if M > aj+1 + aj+1

2 .

(5)

Claim 7 For j ≤ k − 1 we have Cj = aj+1aj+1 + (M − aj+1)2 and Cj−1 ≥ Cj .

Proof The expression for Cj follows from (5) if we note that M > 2ak ≥ 3
2aj+1. In

order to prove that Cj−1 ≥ Cj we observe that

Cj−1 ≥ Cj ⇐⇒ (aj )2 + (M − aj )2 ≥ (aj )2a2 + (M − aja)2

⇐⇒ 2(aj )2 + M2 − 2Maj ≥ 2(aj )2a2 + M2 − 2Maja

⇐⇒ Maj(a − 1) ≥ (aj )2(a2 − 1)

⇐⇒ M ≥ aj (a + 1) = aj + aj+1.

Since M > 2ak = ak + ak ≥ aj + aj+1, this holds true.

Claim 8 Ck+1 = ak+2ak+1 + (M − ak+1)2 ≥ Ck−1.

Proof Since M ≤ 2ak+1 ≤ ak+1 + ak+2

2 we get the expression for Ck+1 from (5).
Then

Ck−1 ≤ Ck+1 ⇐⇒ (ak)2 + (M − ak)2 ≤ ak+2ak+1 + (M − ak+1)2

⇐⇒ 2(ak)2 + M2 − 2Mak ≤ (ak)2a3 + (ak)2a2 + M2 − 2Mak+1

⇐⇒ 2Mak(a − 1) ≤ (ak)2(a − 1)(a2 + 2a + 2)

⇐⇒ 2M ≤ ak(a2 + 2a + 2).

Since M ≤ 2ak+1 it suffices to have 4ak+1 ≤ ak(a2 + 2a + 2) which is easily seen
to hold.
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Combining the previous claims we get that Opt(�M) = min{Ck−1, Ck}. It remains
to figure out which one between Ck−1 and Ck attains the minimum. This depends on
where M is located within the interval (2ak, 2ak+1] as explained in our next claim.
In the sequel we denote

α = 1 + a

2

β = 1 + a

2
+ √

a − 1

γ = 3

2
a

and we observe that
2 ≤ α ≤ β ≤ γ ≤ 2a.

Claim 9 For M ∈ (2ak, 2ak+1] we have

Opt(�M) =

⎧
⎪⎪⎨

⎪⎪⎩

Ck−1 = (ak)2 + (M − ak)2 if M ∈ (2ak, αak)

Ck−1 = (ak)2 + (M − ak)2 if M ∈ [αak, βak)

Ck = ak+1(M − 1
4ak+1) if M ∈ [βak, γ ak]

Ck = (ak+1)2 + (M − ak+1)2 if M ∈ (γ ak, 2ak+1].

Proof Recall that a ≥ 2. From (5) we have Ck−1 = (ak)2 + (M − ak)2 whereas the
expression for Ck changes depending where M is located.

(a) Initial interval M ∈ (2ak, αak).
Here M < ak + 1

2ak+1 so that (5) gives Ck = ak+1ak + (M − ak)2. Hence,
clearly Ck−1 ≤ Ck and Opt(�M) = Ck−1.

(b) Final interval M ∈ (γ ak, 2ak+1].
Here M > γak = 3

2ak+1 so that (5) gives Ck = (ak+1)2 + (M − ak+1)2.
Proceeding as in the proof of Claim 7, we have Ck−1 ≥ Ck if and only if
M ≥ ak + ak+1. The latter holds since M ≥ 3

2ak+1 ≥ ak+1 + ak . Hence
Opt(�M) = Ck .

(c) Intermediate interval M ∈ [αak, γ ak].
Here ak + 1

2ak+1 ≤ M ≤ 3
2ak+1 so that (5) gives

Ck = ak+1
(

M − 1

2
ak+1

)

+
(

1

2
ak+1

)2

= ak+1
(

M − 1

4
ak+1

)

.

Then, denoting z = M/ak we have

Ck−1 ≤ Ck ⇐⇒ 2(ak)2 + M2 − 2Mak ≤ ak+1M −
(

1

2
ak+1

)2

.

⇐⇒ z2 − z(2 + a) +
(

2 + 1

4
a2

)

≤ 0

⇐⇒ 1 + 1

2
a − √

a − 1 ≤ z ≤ 1 + 1

2
a + √

a − 1.
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The upper limit for z is precisely β while the lower limit is smaller than α. Hence
Opt(�M) = Ck−1 for M ∈ [αak, βak] and Opt(�M) = Ck for M ∈ [βak, γ ak].

Figure 4 illustrates the different intervals in which the equilibrium (above) and the
optimum (below) change. Notice that Opt(�M) varies continuously even at break-
points, whereas WEq(�M) has a jump at ak + ak+1. We now proceed to examine the
price of anarchy which will be expressed as a function of z = M/ak .

From the expressions of WEq(�M) and Opt(�M) (see Fig. 4) it follows that
PoA(�M) = 1 throughout the initial interval M ∈ (2ak, βak). Over the next interval
M ∈ [βak, ak+ak+1] we have

PoA(�M) = (ak)2 + (M − ak)2

ak+1(M − ak+1/4)
= 1 + (z − 1)2

a(z − a/4)
,

which increases from 1 at z = β up to (4 + 4a2)/(a(4 + 3a)) at z = 1 + a.
At M = ak + ak+1 the equilibrium has a discontinuity and PoA(�M) jumps to

(4 + 4a)/(4 + 3a) and then it decreases over the interval M ∈ (ak + ak+1, 3
2ak+1) as

PoA(�M) = ak+1M

ak+1(M − ak+1/4)
= z

z − a/4
.

Finally, for M ∈ ( 3
2ak+1, 2ak+1] the price of anarchy continues to decrease as

PoA(�M) = ak+1M

(ak+1)2 + (M − ak+1)2
= az

a2 + (z − a)2
.

going back to 1 at z = 2a which corresponds to M = 2ak+1.
Thus the price of anarchy oscillates over each interval (2ak, 2ak+1] between a

minimum value of 1 and a maximum of (4 + 4a)/(4 + 3a). This completes the proof
of Theorem 4.

Proof (of Theorem 5) Consider a parallel network with two edges with a quadratic
cost c1(x) = x2 on the upper edge and a lower edge cost defined by linearly
interpolating c1, that is, for a ≥ 2 we let (see Fig. 5)

c2(y) = (ak−1 + ak)y − ak−1ak, for y ∈ [ak−1, ak], k ∈ Z.

Fig. 4 Breakpoints for optimum and equilibrium
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Fig. 5 x2 and its linear interpolation

Note that c1 and c2 are convex. Consider the optimal cost problem

Opt(�M) = min
x + y = M
x, y ≥ 0

x3 + yc2(y).

Since the function h(y) = yc2(y) is non-differentiable, the optimality condition
reads 3x2 ∈ ∂h(y). In particular, the subdifferential at y = ak is

∂h(ak) = [a2(k−1)(2a2+a), a2k(2+a)]
and there is a range of values of M for which the optimal solution is y = ak . The
smallest such M is obtained when 3x2 = a2(k−1)(2a2 +a). This gives as optimal
solution y = ak and x = ak−1b, with b = √

(2a2+a)/3, corresponding to Mk =
ak−1[a + b] with optimal value

Opt(�Mk
) = a3(k−1)[b3 + a3].

In order to find the equilibrium for Mk we solve the equation x2 = c2(y) with
x + y = Mk . A routine calculation gives x = ak−1c and y = ak−1d with

c = 1

2

[√
(a + 1)2 + 4a2 + 4(a + 1)b − (a + 1)

]
,

d = a + b − c.

Note that 1 < d < a so that y ∈ (ak−1, ak), and therefore the equilibrium cost is

WEq(�Mk
) = a3(k−1)[c3 + (a + 1)d2 − ad].

Putting together the previous formulae we get

PoA(�Mk
) = c3 + (a + 1)d2 − ad

b3 + a3
.

For a = 2 this expression evaluates to PoA(�Mk
) ∼ 1.0059 from which the result

follows.
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Proof (of Theorem 6) Take a fixed sequence αk > 0 such that αk+1/αk → ∞ and
consider a game �M = (G , M, c), where G = (V , E) is a simple Pigou network
with two parallel links with costs given by

c1(x) = c(x) :=
{

e for x < 1,

ex/x for x ≥ 1,

c2(y) = c̄(y) := c(αk+1) for y ∈ (αk, αk+1].
Since we are interested in asymptotic results, we are concerned only with the case
c(x) = ex/x.

Depending on the location of M , the equilibrium is given by

2αk < M ≤ αk + αk+1 =⇒ y∗ = αk, x
∗ = M − αk,

αk + αk+1 < M ≤ 2αk+1 =⇒ y∗ = M − αk+1, x
∗ = αk+1.

We note that at the point Mk = αk + αk+1 the equilibrium has a discontinuity. The
cost inmediately to the right of this point is

WEq(�M+
k
) = lim

M↓Mk

WEq(�M)

= αk+1c(αk+1) + (Mk − αk+1)c(αk+1)

= Mkc(αk+1). (6)

Let us now turn to computing the optimum

Opt(�M) = min
0≤x≤M

xc(x) + (M − x)c̄(M − x) = min
j

Cj

which we decomposed into the restricted minima Cj given by

Cj = min
αj <M−x≤αj+1

xc(x) + (M − x)c(αj+1).

The unconstrained minimum for each j is obtained by solving the equation ex =
eαj+1

αj+1
so that denoting

xj = αj+1 − ln αj+1,

yj = M − αj+1 + ln αj+1,

we have the following expression for the constrained minimizers ỹj and the values
Cj

yj < αj =⇒ ỹj = αj =⇒ Cj = eM−αj + αj

αj+1
eαj+1 ,

yj > αj+1 =⇒ ỹj = αj+1 =⇒ Cj = eM−αj+1 + eαj+1 ,

αj ≤ yj ≤ αj+1 =⇒ ỹj = yj =⇒ Cj = eαj+1

αj+1
(1 + M − αj+1 + ln αj+1).

We remark that yj varies continuously with M , and therefore the same holds for ỹj

and Cj . It follows that Opt(�M) is also continuous in M .

Claim 10 Let M = Mk . For k large enough we have

Opt(�Mk
) = min{Ck−1, Ck, Ck+1}.
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Proof

a) Cj is decreasing for j ≤ k−1. Indeed, for j ≤ k−1 we have M > 2αj+1 so that

yj = M − αj+1 + ln αj+1 > αj+1 + ln αj+1 > αj+1

and therefore

Cj = eM−αj+1 + eαj+1 .

Denoting h(x) := eM−x + ex , the inequality Cj ≤ Cj−1 is equivalent to
h(αj+1) ≤ h(αj ), which holds because h is decreasing on the interval [0, M/2]
and since αj ≤ αj+1 ≤ αk ≤ M

2 .
b) Cj is increasing for j ≥ k + 1. We first show that if k is large enough then

yj < αj . Considering the expression of yj , this inequality is equivalent to M <

αj + αj+1 − ln αj+1. Now, since M ≤ 2αk+1 ≤ 2αj it suffices to show that

2αj < αj + αj+1 − ln αj+1

which can also be written as

ln αj+1

αj+1
+ αj

αj+1
< 1.

Now, our choice of the sequence αj implies that the right hand side tends to zero
as j → ∞, proving that yj < αj for j ≥ k + 1 provided that k is chosen large
enough. In this situation we have for all j ≥ k + 1

Cj = eM−αj + αj

αj+1
eαj+1 .

In order to show that Cj ≤ Cj+1 we note that

Cj ≤ Cj+1 ⇐⇒ eM−αj + αj

αj+1
eαj+1 ≤ eM−αj+1 + αj+1

αj+2
eαj+2 .

For x ≥ 1 the function ex/x is increasing so that

eM−αj + αj

eαj+1

αj+1
≤ eM−αj + αj

eαj+2

αj+2
.

It remains to replace αj by αj+1 on the right for which it suffices to prove that
the function

g(x) := eM−x + x
eαj+2

αj+2

is increasing for x ≥ αk+1. Indeed, since g′(x) = eαj+2

αj+2
− eM−x we have

g′(x) ≥ 0 ⇐⇒ M − x ≤ αj+2 − ln αj+2

⇐⇒ M ≤ x + αj+2 − ln αj+2,
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which is true for x ≥ αk+1 iff M ≤ αk+1 +αj+2 − ln αj+2. Since M ≤ 2αk+1, it
is enough to have αk+1 ≤ αj+2 − ln αj+2, and since x 	→ x − ln x is increasing
for x ≥ 1, it suffices to prove that αk+1 ≤ αk+2 − ln αk+2, that is,

ln αk+2

αk+2
+ αk+1

αk+2
≤ 1. (7)

By our choice of αk this holds for k large enough, which completes the proof of
Claim 10.

Claim 11 Let M = Mk . For all k large enough we have

Opt(�Mk
) = eαk+1

αk+1
(1 + αk + ln αk+1). (8)

Proof From the proof of Claim 10 we have

Ck−1 = eM−αk + eαk = eαk+1 + eαk

Ck+1 = eM−αk+1 + αk+1

αk+2
eαk+2 = eαk + αk+1

αk+2
eαk+2

and it is easy to see that Ck−1 ≤ Ck+1 so that in fact Opt(�Mk
) = min{Ck−1, Ck}.

Now, the expression of Ck depends on the location of yk = M − αk+1 + ln αk+1
with respect to the interval [αk, αk+1]. Substituting the value of M = αk + αk+1 we
get yk = αk + ln αk+1 so that clearly yk > αk . Also, for k large we have yk < αk+1
since

yk

αk+1
= αk

αk+1
+ ln αk+1

αk+1
→ 0.

It follows that

Ck = eαk+1

αk+1
(1 + M − αk+1 + ln αk+1) = eαk+1

αk+1
(1 + αk + ln αk+1)

and therefore it remains to show that Ck ≤ Ck−1. The latter is equivalent to

eαk+1

αk+1
(1 + αk + ln αk+1) ≤ eαk+1 + eαk

which can be rewritten as

1

αk+1
(1 + αk + ln αk+1) ≤ 1 + eαk−αk+1 .

Since the right hand side tends to 0, this inequality holds for k large enough.

Conclusion Let us compute the price of anarchy just to the right of Mk , namely

PoA(�M+
k
) =

WEq(�M+
k
)

Opt(�M+
k
)

.
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Since Opt(�M) is continuous in M , using (6) and (8) we get

PoA(�M+
k
) =

(αk + αk+1)
eαk+1

αk+1

eαk+1

αk+1
(1 + αk + ln αk+1)

= αk + αk+1

1 + αk + ln αk+1

=
αk

αk+1
+ 1

1
αk+1

+ αk

αk+1
+ ln αk+1

αk+1

→ ∞

from which we get the conclusion

lim sup
M→∞

PoA(�M) = +∞.

References

1. Attouch, H.: Variational Convergence for Functions and Operators. Pitman, Boston (1984)
2. Beckmann, M.J., McGuire, C.B., Winsten, C.B.: Studies in the Economics of Transportation. Yale

University Press, New Haven (1956)
3. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation, volume 27 of Encyclopedia of

Mathematics and its Applications. Cambridge University Press, Cambridge (1989)
4. Cole, R., Tao, Y.: Large market games with near optimal efficiency. In: Conitzer, V., Bergemann, D.,

Chen, Y. (eds.) Proceedings of the 2016 ACM Conference on Economics and Computation, EC ’16,
July 24–28, 2016, pp. 791–808. ACM, Maastricht (2016)

5. Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: Selfish routing in capacitated networks. Math. Oper.
Res. 29(4), 961–976 (2004)

6. Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: Fast, fair, and efficient flows in networks. Oper. Res.
55(2), 215–225 (2007)

7. Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: A geometric approach to the price of anarchy in
nonatomic congestion games. Games Econ. Behav. 64(2), 457–469 (2008)

8. de Haan, L.: On Regular Variation and its Application to the Weak Convergence of Sample Extremes,
volume 32 of Mathematical Centre Tracts. Mathematisch Centrum, Amsterdam (1970)

9. Dumrauf, D., Gairing, M.: Price of anarchy for polynomial Wardrop games. In: Spirakis, P., Mavron-
icolas, M., Kontogiannis, S. (eds.) Internet and Network Economics: Second International Workshop,
WINE 2006, Patras, Greece, December 15–17, 2006. Proceedings, pp. 978-3-540-68141-0. Springer,
Berlin (2006)

10. Englert, M., Franke, T., Olbrich, L.: Sensitivity of Wardrop equilibria. Theory Comput. Syst. 47(1),
3–14 (2010)

11. Feldman, M., Immorlica, N., Lucier, B., Roughgarden, T., Syrgkanis, V.: The price of anarchy in large
games. In: Wichs, D., Mansour, Y. (eds.) Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, June 18–21, vol. 2016, pp. 963–976. ACM, Cambridge (2016)

12. Florian, M., Hearn, D.: Network equilibrium and pricing. In: Hall, R.W. (ed.) Handbook of
Transportation Science, pp. 373–411. Springer US, Boston (2003)
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