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Abstract The classical center based clustering problems such as k-
means/median/center assume that the optimal clusters satisfy the locality property
that the points in the same cluster are close to each other. A number of clustering
problems arise in machine learning where the optimal clusters do not follow such
a locality property. For instance, consider the r-gather clustering problem where
there is an additional constraint that each of the clusters should have at least r points
or the capacitated clustering problem where there is an upper bound on the cluster
sizes. Consider a variant of the k-means problem that may be regarded as a general
version of such problems. Here, the optimal clusters O1, ..., Ok are an arbitrary
partition of the dataset and the goal is to output k-centers c1, ..., ck such that the
objective function

∑k
i=1

∑
x∈Oi

||x − ci ||2 is minimized. It is not difficult to argue
that any algorithm (without knowing the optimal clusters) that outputs a single set of
k centers, will not behave well as far as optimizing the above objective function is
concerned. However, this does not rule out the existence of algorithms that output a
list of such k centers such that at least one of these k centers behaves well. Given an
error parameter ε > 0, let � denote the size of the smallest list of k-centers such that
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Õ notation hides a O
(
log k

ε

)
factor.
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at least one of the k-centers gives a (1+ε) approximation w.r.t. the objective function
above. In this paper, we show an upper bound on � by giving a randomized algo-
rithm that outputs a list of 2Õ(k/ε) k-centers. We also give a closely matching lower

bound of 2�̃(k/
√

ε). Moreover, our algorithm runs in time O
(
nd · 2Õ(k/ε)

)
. This is

a significant improvement over the previous result of Ding and Xu (2015) who gave
an algorithm with running time O

(
nd · (log n)k · 2poly(k/ε)

)
and output a list of size

O
(
(log n)k · 2poly(k/ε)

)
. Our techniques generalize for the k-median problem and

for many other settings where non-Euclidean distance measures are involved.

Keywords Constrained k-means clustering · D2 sampling

1 Introduction

Clustering problems intend to classify high dimensional data based on the proxim-
ity of points to each other. There is an inherent assumption that the clusters satisfy
locality property – points close to each other (in a geometric sense) should belong to
the same category. Often, we model such problems by the notion of a center based
clustering problem. We would like to identify a set of centers, one for each cluster,
and then the clustering is obtained by assigning each point to the nearest center. For
example, the k-means problem is defined in the following manner: given a dataset
X = {x1, . . . , xn} ⊂ R

d and an integer k, output a set of k centers {c1, . . . , ck} ⊂ R
d

such that the objective function
∑

x∈X minc∈{c1,...,ck} ||x − c||2 is minimized. The
k-median and the k-center problems are defined in a similar manner by defining a
suitable objective function.

However, often such clustering problems entail several side constraints. Such
constraints limit the set of feasible clusterings. For example, the r-gather k-means
clustering problem is defined in the same manner as the k-means problem, but has
the additional constraint that each cluster must have at least r points in it. In such set-
tings, it is no longer true that the clustering is obtained from the set of centers by the
Voronoi partition. Ding and Xu [5] began a systematic study of such problems, and
this is the starting point of our work as well. They defined the so-called constrained
k-means problem. An instance of such a problem is specified by a set of points X, a
parameter k, and a set C, where each element of C is a partitioning of X into k dis-
joint subsets (or clusters). Since the set C may be exponentially large, we will assume
that it is specified in a succinct manner by an efficient algorithm which decides mem-
bership in this set. A solution needs to output an element O = {O1, . . . , Ok} of C,
and a set of k centers, c1, . . . , ck , one for each cluster in O. The goal is to minimize∑k

i=1
∑

x∈Oi
||x − ci ||2. It is easy to check that the center ci must be the mean of

the corresponding cluster Oi . Note that the k-means problem is a special case of this
problem where the set C contains all possible ways of partitioning X into k subsets.
The constrained k-median problem can be defined similarly. We will make the nat-
ural assumption (which is made by Ding and Xu as well) that it suffices to find a
set of k centers. In other words, there is an (efficient) algorithm AC, which given
a set of k centers c1, . . . , ck , outputs the clustering {O1, . . . , Ok} ∈ C such that
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∑k
i=1

∑
x∈Oi

||ci − x||2 is minimized. Such an algorithm is called a partition algo-

rithm by Ding and Xu [5].1 For the case of the k-means problem, this algorithm will
just give the Voronoi partition with respect to c1, . . . , ck , whereas in the case of the
r-gather k-means clustering problem, the algorithm AC will be given by a suitable
min-cost flow computation (see section 4.1 in [5]).

Ding and Xu [5] considered several natural problems arising in diverse areas, e.g.
machine learning, which can be stated in this framework. These included the so-
called r-gather k-means, r-capacity k-means and l-diversity k-means problems. Their
approach for solving such problems was to output a list of candidate sets of centers
(of size k) such that at least one of these were close to the optimal centers. We for-
malize this approach and show that if k is small, then one can obtain a PTAS for the
constrained k-means (and the constrained k-median) problems whose running time
is linear plus a constant number of calls to AC.

We define the list k-means problem. Given a set of points X and parameters k and
ε, we want to output a list Ł of sets of k points (or centers). The list Ł should have
the following property: for any partitioning O = {O1, . . . , Ok} of X into k clusters,
there exists a set c1, . . . , ck in the list Ł such that (up-to reordering of these centers)

k∑

i=1

∑

x∈Oi

||ci − x||2 ≤ (1 + ε)

k∑

i=1

∑

x∈Oi

||x − mi ||2, (1)

where mi =
∑

x∈Oi
x

|Oi | denotes the mean of Oi . Note that the latter quantity is the k-
means cost of the clustering O, and so we require c1, . . . , ck to be such that the cost
of assigning to these centers is close to the optimal k-means cost of this clustering.
We shall use optk(O) to denote the optimal k-means cost of O.

Although such an oblivious approach to clustering may appear too optimistic, we

show that it is possible to obtain such a list Ł of size 2Õ(k/ε) in O
(
nd · 2Õ(k/ε)

)
time.

This improves the result of Ding and Xu [5], where they gave an algorithm which
outputs a list of size O

(
(log n)k · 2poly(k/ε)

)
. Observe that we address a question

which is both algorithmic and existential : how small can the size of Ł be, and how
efficiently can we find it ? We also give almost matching lower bounds on the size of
such a list Ł. Our algorithm for finding Ł relies on the D2-sampling idea – iteratively
find the centers by picking the next one to be far from the current set of centers.
Although these ideas have been used for the k-means problems (see e.g. [9]), they
rely heavily on the fact that given a set of centers, the corresponding clustering is
obtained by the corresponding Voronoi partition. Our approach relies in showing that
there is a small sized list Ł which works well for all possible clusterings.

It is not hard to show that a result for the list k-means problem implies a cor-
responding result for the constrained k-means problem with the number of calls to
AC being equal to the size of the list Ł. Therefore, we obtain as corollary of our

1Ding and Xu [5] also gave a discussion on such partition algorithms for a number of clustering problems
with side constraints.
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main result efficient algorithms for the constrained k-means (and the constrained
k-median) problems.

1.1 Related Work

The classical k-means problem is one of the most well-studied clustering problems.
There is a long sequence of work on obtaining fast PTAS for the k-means and the
k-median problems (see e.g., [1–4, 6, 7, 9, 11, 12] and references therein). Some of
these works implicitly maintain a list of centers of size k such that the condition (1)
is satisfied for all clusterings O which correspond to a Voronoi partition (with respect
to a set of k centers) of the input set of points, and one picks the best possible set
of centers from this list (see e.g., [1, 9, 11]). The list has at most 2poly(k/ε) elements,
and from this, one can recover a (1 + ε)-approximation algorithm for the k-means
problem with running time O

(
nd · 2poly(k/ε)

)
.

The more general case of the constrained k-means problem was studied
by Ding and Xu [5] who also gave an algorithm that outputs a list of size
O

(
(log n)k · 2poly(k/ε)

)
. Our work improves upon this result.

Moreover, we consider the formulation of the list k-means problem as an important
contribution, and feel that similar formulations in other classification settings would
be useful.

1.2 Preliminaries

We formally define the problems considered in this paper. The centroid or mean of

a finite set of points X ⊂ R
d is denoted by �(X) =

∑
x∈X x

|X| . Let �(X) denote the

1-means cost of these set of points, i.e.,
∑

x∈X ||x − �(X)||2.
An input instance I for the list k-means (or the list k-median) problem consists of

a set of points X, a positive integer k and a positive parameter ε. A partition of X into
disjoint subsets O1, . . . , Ok will be called a clustering of X. Given a clustering O

� =
{O�

1, . . . , O�
k } of X and a set of k centers C = {c1, . . . , ck}, define costC(O�) as the

minimum, over all permutations π of C, of
∑k

i=1
∑

x∈O�
i
||x − cπ(i)||2. Recall that

optk(O
�) denotes the optimal k-means cost of O�, i.e.,

∑k
i=1

∑
x∈O�

i
||x−�(O�

i )||2.
For a set of points X and a set of points C (of size at most k), define 	C(X)

as
∑

x∈X minc∈C ||x − c||2, i.e., we consider the Voronoi partition of X induced
by C, and consider the k-means cost of X with respect to this partition. When
considering the list k-median problem, we will use the same notation, except that
we will consider the Euclidean norm instead of the square of the Euclidean norm.
When C is a singleton set {c}, we shall abuse notation by using 	c(X) instead of
	{c}(X).

As mentioned in the introduction, the constrained k-means problem is specified
by a set of points X, a positive integer k, and a set C of feasible clusterings of X.
Further, we are given an algorithm AC, which given a set of k centers C, outputs
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the clustering O in C which minimizes costC(O). The goal is to find a clustering
O ∈ C and a set C of size k which minimizes costC(O). Note that the centers in C

should just be the mean of each cluster in O. On the other hand, if we know C, then
we can find the best clustering in C by calling AC. We use the same notation for the
constrained k-median problem.

We now mention a few results which will be used in our analysis. The following
fact is well known.

Fact 1 For any X ⊂ R
d and c ∈ R

d we have
∑

x∈X ||x − c||2 = ∑
x∈X ||x −

�(X)||2 + |X| · ||c − �(X)||2.

We next define the notion of D2-sampling.

Definition 1 (D2-sampling) Given a set of points X ⊂ R
d and another set of points

C ⊂ R
d , D2-sampling from X w.r.t. C samples a point x ∈ X with probability

	C({x})
	C(X)

. For the case C = ∅, D2-sampling is the same as uniform sampling from X.

The following result of Inaba et al. [8] shows that a constant size random sample
is a good enough approximation of a set of points X as far as the 1-means objective
is concerned.

Lemma 1 ([8]) Let S be a set of points obtained by independently sampling M points
with replacement uniformly at random from a point set X ⊂ R

d . Then for any δ > 0,

Pr
[

	�(S)(X) ≤
(

1 + 1

δM

)

· �(X)

]

≥ (1 − δ).

We will also use the following simple fact that may be interpreted as approximate
version of the triangle inequality for squared Euclidean distance.

Fact 2 (Approximate triangle inequality) For any x, y, z ∈ R
d , we have ||x −

z||2 ≤ 2 · ||x − y||2 + 2 · ||y − z||2.

1.3 Our Results

We now state our results for the list k-means and the list k-median problems.

Theorem 1 Given a set of n points X ⊂ R
d , parameters k > 0 and 0 < ε ≤ 1, there

is a randomized algorithm which outputs a list Ł of 2Õ(k/ε) sets of centers of size k

such that for any clustering O
� = {O�

1, ..., O�
k } of X, the following event happens

with probability at least 1/2 : there is a set C ∈ Ł such that

costC(O�) ≤ (1 + ε) · optk(O
�).
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Moreover, the running time of our algorithm is O
(
nd · 2Õ(k/ε)

)
. The same

statement holds for the list k-median problem as well, except that the size of

the list Ł becomes 2Õ(k/εO(1)) and the running time of our algorithm becomes

O
(
nd · 2Õ(k/εO(1))

)
.

As a corollary of this result we get PTAS for the constrained k-means problem
(and similarly for the constrained k-median problem).

Corollary 1 There is a randomized algorithm which given an instance of the con-
strained k-means problem and parameter ε > 0, outputs a solution of cost at most
(1 + ε)-times the optimal cost with probability at least 1/2. Further, the time taken

by this algorithm is O
(
nd · 2Õ(k/ε)

)
+ 2Õ(k/ε) · T , where T denotes the time taken

by AC on this instance.

Proof We use the algorithm in Theorem 1 to get a list Ł for this data-set. For
each set C ∈ Ł, we invoke AC with C as the set of centers – let O(C) denote
the clustering produced by AC. We output the clustering for which costC(O(C))

is minimum. Let O� be the optimal clustering, i.e., the clustering in C for which
optk(O

�) is minimum. We know that with probability at least 1/2, there is a set
C ∈ Ł for which costC(O�) ≤ (1 + ε)optk(O

�). Now, the solution produced by
our algorithm has cost at most costC(O(C)), which by definition of AC, is at most
costC(O�).

We also give a nearly matching lower bound on the size of Ł. The following result
along with Yao’s Lemma shows that one cannot reduce the size of Ł to less than

2
�̃

(
k√
ε

)

.

Theorem 2 Given a parameter k and a small enough positive constant ε, there exists
a set X of points in R

d and a set C of clusterings of X such that any list Ł of k-

centers of size k with the following property must have size at least 2
�̃

(
k√
ε

)

: for at
least half of the clusterings O ∈ C, there exists a set C in Ł such that costC(O) ≤
(1 + ε)optk(O).

Our techniques also extend to settings involving many other “approximate” metric
spaces (see the discussion in Section 6).

Another important observation is that in the lower bound result above, the clus-
terings in C correspond to Voronoi partitions of X. This throws light on the previous
works [1, 6, 9–11] as to why the running time of all the algorithms was proportional
to 2poly(k/ε): they were implicitly maintaining a list which satisfied (1) for all Voronoi
partitions of X, and therefore, our lower bound result applies to their algorithms as
well.
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1.4 Our Techniques

Our techniques are based on the idea of D2-sampling that was used by Jaiswal et
al. [9] to give a (1 + ε)-approximation algorithm for the k-means problem.

Our ideas also have similarities to the ideas of Ding and Xu [5]. We discuss these
similarities towards the end of this subsection.

One of the crucial ingredients that is used in most of the (1 + ε)-approximation
algorithms for k-means is Lemma 1. This result essentially states that given a set of
points P , if we are able to uniformly sample O(1/ε) points from it, then the mean of
these sampled points will be a good substitute for the mean of P . Consider an opti-
mal clustering O�

1, . . . , O�
k for a set of points X. If we could uniformly sample from

each of the clusters O�
i , then by the argument above, we would be done. The first

problem one encounters is that one can only sample from the input set of points, and
so, if we sample sufficiently many points from X, we need to somehow distinguish
the points which belong to O�

i in this sample. This can be dealt with using the fol-
lowing argument: suppose we manage to get a small sample S of points (say of size
O(poly(k/ε))) that contain at least �(1/ε) points uniformly distributed in O�

i , then
we can try all possible subsets of S of size O(1/ε) and ensure that at least one of
the subsets is a uniform sample of appropriate size from O�

i . Another issue is – how
do we ensure that the sample S has sufficient representation from O�

i ? Uniform sam
pling from the input X will not work since |O�

i | might be really small compared to
the size of |X|. This is where D2-sampling plays a crucial role and we discuss this
next.

Given a set of points X ⊆ R
d and candidate centers c1, ..., ci ∈ R

d , D2-sampling
with respect to the centers c1, ..., ci samples a point x ∈ X with probability propor-
tional to minc∈{c1,...,ci } ||x − c||2. Note that this process “boosts” the probability of a
cluster O�

j that has many points far from the set {c1, . . . , ci}.
Therefore, even if a cluster O�

j has a small size, we will have a good chance of
sampling points from it (if it is far from the current set of centers). However, this
nonuniform sampling technique gives rise to another issue. The points being sampled
are no longer uniform samples from the optimal clusters. Depending on the current
set of centers, different points in a cluster O�

j have different probability of getting
sampled. This issue is not that grave for the k-means problem where the optimal
clusters are Voronoi regions since we can argue that the probabilities are not very dif-
ferent. However, for the constrained k-means problem where the optimal clusters are
allowed to be arbitrary partition of the input points, this problem becomes more seri-
ous. This can be illustrated using the following example. Suppose we have managed
to pick centers c1, . . . , ci that are good (in terms of cluster cost) for the optimal clus-
ters O�

1, . . . , O�
i . At this point let O�

j denote the cluster other than O�
1, . . . , O�

i , such

that a point sampled using D2 sampling w.r.t. c1, . . . , ci is most likely to be from O�
j .

Suppose we sample a set S of O(k/ε) points using D2-sampling. Are we guaran-
teed (w.h.p.) to have a subset in S that is a uniform sample from O�

j ? The answer is
no (actually quite far from it). This is because the optimal clusters may form an arbi-
trary partition of the data-set and it is possible that most of the points in O�

j might
be very close to the centers c1, . . . , ci . In this case the probability of sampling such
points will be close to 0. The way we deal with this scenario is that we consider a
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multi-set S′ that is the union of the set of samples S and O(1/ε) copies of each of
c1, . . . , ci . We then argue that all the points in O�

j that are far from c1, . . . , ci will
have a good chance of being represented in S (and hence in S′). On the other hand,
even though the points that are close to one of c1, . . . , ci will not be represented in S

(and hence S′), the center (among c1, . . . , ci) that is close to these points have good
representation in S′ and these centers may be regarded as “proxy” for the points in
O�

j .

Ding and Xu [5], instead of using the idea of D2-sampling, rely on the ideas of
Kumar et al. [11] which involves uniform sampling of points and then pruning the
data-set by removing the points that are close to centers that are currently being
considered. In their work, they also encounter the problem that points from some
optimal cluster might be close to the current set of good centers (and hence will
be removed before uniform sampling). Ding and Xu [5] deal with this issue using
what they call a “simplex lemma”. Consider the same scenario as in the previous
paragraph. At a very high level, they consider grids inside several simplices defined
by the current centers c1, . . . , ci and the sampled points.

Using the simplex lemma, they argue that one of the points inside these grids will
be a good center for the cluster O�

j .
We now give an overview of the paper. In Section 2, we give the algorithm for

generating the list of sets of centers for an instance of the list k-means problem. The
algorithm is analyzed in Section 3. In Section 4, we give the lower bound result on
the size of the list Ł. In Section 5, we discuss how our algorithm can be extended
to the list k-median problem. We conclude with a brief discussion on extensions to
other metrics in Section 6.

2 The Algorithm

Consider an instance of the list k-means problem. Let X denote the set of points,
and ε be a positive parameter. The algorithm List-k-means is described in Algo-
rithm 2.1. It maintains a set C of centers, which is initially empty. Each recursive
call to the function Sample-centers increases the size of C by one. In Step 2 of
this function, the algorithm tries out various candidates which can be added to C

(to increase its size by 1). First, it builds a multi-set S as follows: it independently
samples (with replacement) O(k/ε3) points using D2-sampling from X w.r.t. the set
C. Further, it adds O(1/ε) copies of each of the centers in C to the set S. Hav-
ing constructed S, we consider all subsets of size O(1/ε) of S – for each such
subset we try adding the mean of this set to C. Thus, each invocation of Sample-
centers makes multiple recursive calls to itself (

(|S|
M

)
to be precise). It will be useful

to think of the execution of this algorithm as a tree T of depth k. Each node in
the tree can be labeled with a set C – it corresponds to the invocation of Sample-
centers with this set as C (and i being the depth of this node). The children of a
node denote the recursive function calls by the corresponding invocation of Sample-
centers. Finally, the leaves denote the set of candidate centers produced by the
algorithm.
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3 Analysis

In this section we prove Theorem 1 for the list k-means problem. Let Ł denote the set
of candidate solutions produced by List-k-means, where a solution corresponds to a
set of centers C of size k. These solutions are output at the leaves of the execution
tree T . Fix a clustering O

� = {O�
1, . . . , O�

k } of X.
Recall that a node v at depth i in the execution tree T corresponds to a set C of

size i – call this set Cv . Our proof will argue inductively that for each i, there will be
a node v at depth i such that the centers chosen so far in Cv are good with respect to
a subset of i clusters in O�

1, . . . , O�
k . We will argue that the following invariant P(i)

is maintained during the recursive calls to Sample-centers:

P(i): With probability at least 1
2i−1 , there is a node vi at depth (i − 1) in the

tree T and a set of (i − 1) distinct clusters O�
j1

, O�
j2

, ..., O�
ji−1

such that

∀l ∈ {1, ..., i − 1}, 	cl
(O�

jl
) ≤

(
1 + ε

2

)
· �(O�

jl
) + ε

2k
· optk(O

�), (2)

where c1, . . . , ci−1 are the centers in the set Cvi
corresponding to vi . Recall

that �(O�
jl
) refers to the optimal 1-means cost of jl .

The proof of the main theorem follows easily from this invariant property – indeed,
the statement P(k) holds with probability at least 1/2k . Since the algorithmList-k-
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means invokes Sample-centers 2k times, the probability of the statement in P(k)

being true in at least one of these invocations is at least a constant. We now prove
the invariant by induction on i. The base case for i = 1 follows trivially: the vertex
v1 is the root of the tree T and Cv1 is empty. Now assume that P(i) holds for some
i ≥ 1. We will prove that P(i + 1) also holds. We first condition on the event in
P(i) (which happens with probability at least 1

2i−1 ). Let vi and O�
j1

, . . . , O�
ji−1

be as
guaranteed by the invariant P(i). Let Cvi

= {c1, . . . , ci−1} (as in the statement P(i)).
For sake of ease of notation, we assume without loss of generality that the index ji

is i, and we shall use Ci to denote Cvi
. Thus, the center cl corresponds to the cluster

O�
l , 1 ≤ l ≤ i − 1. Note that for a cluster O�

i′, i
′ ≥ i, 	Ci

(O�
i′) is proportional to the

probability that a point sampled from X using D2-sampling w.r.t. Ci comes from the
set O�

i′ – let ī ∈ {i, . . . , k} be the index i′ for which 	Ci
(O�

i′) is maximum. We will
argue that the invocation of Sample-centers corresponding to vi will try out a point
ci (in Step 2(d)(i)) such that the following property will hold with probability at least
1/2: 	ci

(O�

ī
) ≤ (1 + ε/2) · �(O�

ī
) + (ε/2k) · optk(O

�). For doing this, we break
the analysis into the following two parts. These two parts are discussed in the next
two subsections that follow.

Case I
(

	Ci
(O�

ī
)

∑k
j=1 	Ci

(O�
j )

< ε
13k

)

: This captures the scenario where the probability

of sampling from any of the uncovered clusters is very small. Note that
for the classical k-means problem, this is not an issue because in this case
we can argue that the current set of centers C already provides a good
approximation for the entire set of data points and we are done. However,
for us this is an issue — for example, assuming i > 2, it is possible that
some of the points in O�

ī
are close to c1, whereas the remaining points

of this cluster are close to c2. Still we need to output a center for O�

ī
. In

this case we argue that it will be sufficient to output a suitable convex
combination of c1 and c2.

Case II
(

	Ci
(O�

ī
)

∑k
j=1 	Ci

(O�
j )

≥ ε
13k

)

: In this case, we argue that with good probability

we will sample sufficient points from O�

ī
during Step 2(a) of Sample-

centers. Further, we will show that a suitable combination of such points
along with centers in Ci will be a good center for O�

ī
.

Case I
(

�Ci
(O�

ī
)∑k

j=1 �Ci
(O�

j
)

< ε
13k

)
In this case we argue that a convex combination

of the centers in Ci provides a good approximation to �(O�

ī
). Intuitively, this is

because the points in O�

ī
are close to the points in the set Ci . This convex com-

bination is essentially “simulated” by taking O(1/ε) copies of each of the centers
c1, ..., ci−1 in the multi-set S and then trying all possible subsets of size O(1/ε). The
formal analysis follows. First, we note that 	Ci

(O�

ī
) should be small compared to

optk(O
�).



Theory Comput Syst (2018) 62:93–115 103

Lemma 2 	Ci
(O�

ī
) ≤ ε

6k
· optk(O

�).

Proof Let D denote
∑k

j=1 	Ci
(O�

j ). The induction hypothesis and the fact that ∀j ≥
i,	Ci

(O�

ī
) ≥ 	Ci

(O�
j ) imply that

D=
i−1∑

j=1

	Ci
(O�

j )+
k∑

j=i

	Ci
(O�

j )≤
(

1+ ε

2

)
·
i−1∑

j=1

�(O�
j )+

ε

2
·optk(O

�)+k·	Ci
(O�

ī
).

Since 	Ci
(O�

ī
) ≤ ε

13k
· D and

∑i−1
j=1 �(O�

j ) ≤ optk(O
�), we get D ≤ ε

13 · D +
(1 + ε) ·optk(O

�). Thus, D ≤
(

1+ε
1−ε/13

)
·optk(O

�). Finally, 	Ci
(O�

ī
) ≤ ε

13k
·D ≤

ε
6k

· optk(O
�).

For each point p ∈ O�

ī
, let c(p) denote the closest center in Ci . We now define a

multi-set O ′̄
i

as {c(p) : p ∈ O�

ī
}. Note that O ′̄

i
is obtained by taking multiple copies

of points in Ci . The remaining part of the proof proceeds in two steps. Let m� and m′
denote the mean of O�

ī
and O ′̄

i
respectively. We first show that m� and m′ are close,

and so, assigning all the points of O�

ī
to m′ will have cost close to �(O�

ī
). Secondly,

we show that if we have a good approximation m′′ to m′, then assigning all the points
of O�

ī
to m′′ will also incur small cost (comparable to �(O�

ī
)). We now carry out

these steps in detail. Observe that
∑

p∈O�
ī

||p − c(p)||2 = 	Ci
(O�

ī
). (3)

Lemma 3 ||m� − m′||2 ≤ 	Ci
(O�

ī
)

|O�
ī
| .

Proof Let n denote |O�

ī
|. Then,

||m� − m′||2 = 1

n2

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

∑

p∈O�
ī

(p − c(p))

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

2

≤ 1

n

∑

p∈O�
ī

||p − c(p)||2 = 	Ci
(O�

ī
)

n
,

where the second last inequality follows from Cauchy-Schwartz.2

Now we show that �(O�

ī
) and �(O ′̄

i
) are close.

Lemma 4 �(O ′̄
i
) ≤ 2 · 	Ci

(O�

ī
) + 2 · �(O�

ī
).

2For any real numbers a1, ..., am, (
∑

r ar )
2/m ≤ ∑

r a2
r .
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Proof The lemma follows by the following inequalities:

�(O ′̄
i
) =

∑

p∈O�
ī

||c(p) − m′||2 Fact 1≤
∑

p∈O�
ī

||c(p) − m�||2

Fact 2≤ 2 ·
∑

p∈O�
ī

(
||c(p) − p||2 + ||p − m�||2

)
= 2 · 	Ci

(O�

ī
) + 2 · �(O�

ī
).

Finally, we argue that a good center for O ′̄
i

will also serve as a good center for O�

ī
.

Lemma 5 Let m′′ be a point such that 	m′′(O ′̄
i
) ≤ (

1 + ε
8

) · �(O ′̄
i
). Then

	m′′(O�

ī
) ≤ (

1 + ε
2

) · �(O�

ī
) + ε

2k
· optk(O

�).

Proof Let n� denote |O�

ī
|. Observe that

	m′′(O�

ī
) =

∑

p∈O�
ī

||m′′ − p||2 Fact 1=
∑

p∈O�
ī

||m� − p||2 + n� · ||m� − m′′||2

Fact 2≤ �(O�

ī
) + 2n�

(
||m� − m′||2 + ||m′ − m′′||2

) Lemma3≤ �(O�

ī
)

+2 · 	Ci
(O�

ī
) + 2n�||m′ − m′′||2

Fact 1≤ �(O�

ī
) + 2 · 	Ci

(O�

ī
) + 2

(
	m′′(O ′̄

i
) − �(O ′̄

i
)
)

≤ �(O�

ī
)

+2 · 	Ci
(O�

ī
) + ε

4
· �(O ′̄

i
)

Lemma 4≤ �(O�

ī
) + 2 · 	Ci

(O�

ī
) + ε

2
·
(
	Ci

(O�

ī
) + �(O�

ī
)
) Lemma 2≤

(
1 + ε

2

)

·�(O�

ī
) + ε

2k
· optk(O

�).

This completes the proof of the lemma.

The above lemma tells us that it will be sufficient to obtain a (1 + ε/8)-
approximation to the 1-means problem for the dataset O ′̄

i
. Now, Lemma 1 tells us

that there is a subset (again as a multi-set) O ′′ of size 16
ε

of O ′̄
i

such that the mean m′′
of these points satisfies the conditions of Lemma 5. Now, observe that O ′′ will be a
subset of the set S constructed in Step 2 of the algorithm Sample-center – indeed, in
Step 2(c), we add more than 16

ε
copies of each point in Ci to S. Now, in Step 2(d),

we will try out all subsets of size 16
ε

of S and for each such subset, we will try adding
its mean to Ci . In particular, there will be a recursive call of this function, where we
will have Ci+1 = Ci ∪ {m′′} as the set of centers. Lemma 5 now implies that Ci+1
will satisfy the invariant P(i + 1). Thus, we are done in this case.
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Case II
(

�Ci
(O�

ī
)∑

j �Ci
(O�

j
)

≥ ε
13k

)
In this case, we would like to prove that we add a

good approximation to the mean of O�

ī
to the set Ci . Again, consider the invocation

of Sample-centers corresponding to Ci . We want the multi-set S to contain a good
representation from points in the set O�

ī
. Secondly, in order to apply Lemma 1, we

will need this representation to be a uniform sample from O�

ī
. Since 	Ci

(O�

ī
) ≥

ε
13k

·∑j 	Ci
(O�

j ), the probability that a point sampled using D2 sampling w.r.t. Ci is
from O�

ī
is not too small. So, the multi-set S will have non-negligible representation

from the set O�

ī
. However the points from O�

ī
in S may not be a uniform sample from

O�

ī
. Indeed, suppose there is a good fraction of points of O�

ī
which are close to Ci ,

and remaining points of O�

ī
are quite far from Ci . Then, D2-sampling w.r.t. to Ci will

not give us a uniform sample from O�

ī
. To alleviate this problem, we take sufficiently

many copies of points in Ci and add them to the multi-set S. In some sense, these
copies act as proxy for points in O�

ī
that are too close to Ci . Finally, we argue that

one of the subsets of S “simulates” a uniform sample from O�

ī
and the mean of

this subset provides a good approximation for the mean of O�

ī
. The formal analysis

follows.
We divide the points in O�

ī
into two parts – points which are close to a cen-

ter in Ci , and the remaining points. More formally, let the radius R be given
by

R2 = ε2

41
· 	Ci

(O�

ī
)

|O�

ī
| (4)

Define On

ī
as the points in O�

ī
which are within distance R of a center in Ci , and

O
f

ī
be the rest of the points in O�

ī
. As in Case I, we define a new set O ′̄

i
where

each point in On

ī
is replaced by a copy of the corresponding point in Ci . For a point

p ∈ On

ī
, define c(p) as the closest center in Ci to p. Now define a multi-set O ′̄

i
as

O
f

ī
∪ {c(p) : p ∈ On

ī
}. Intuitively, O ′̄

i
denotes the set of points that are same as

O�

ī
except that points close to centers in Ci have been “collapsed” to these centers

by taking appropriate number of copies. Clearly, |O ′̄
i
| = |O�

ī
|. At a high level, we

will argue that any center that provides a good 1-means approximation for O ′̄
i

also
provides a good approximation for O�

ī
. We will then focus on analyzing whether the

invocation of Sample-centers tries out a good center for O ′̄
i
.

We give some more notation. Let m� and m′ denote the mean of O�

ī
and O ′̄

i
respec-

tively. Let n� and n denote the size of the sets O�

ī
and On

ī
respectively. First, we show

that �(O�

ī
) is large with respect to R.

Lemma 6 �(O�

ī
) = 	m�(O�

ī
) ≥ 16n

ε2 R2.

Proof Let c be the center in Ci which is closest to m�. We divide the proof into two
cases:
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(i) ||m� − c|| ≥ 5
ε

· R: For any point p ∈ On

ī
, triangle inequality implies that

||p − m�|| ≥ ||c(p) − m�|| − ||c(p) − p|| ≥ 5

ε
· R − R ≥ 4

ε
· R.

Therefore,

�(O�

ī
) ≥

∑

p∈On

ī

||p − m�||2 ≥ 16n

ε2
R2.

(ii) ||m� − c|| < 5
ε

· R: In this case, we have

	m�(O�

ī
)

Fact 1= 	c(O
�

ī
) − n� · ||m� − c||2 ≥ 	Ci

(O�

ī
) − n� · ||m� − c||2

(4)≥ 41n�

ε2
· R2 − 25n�

ε2
· R2 ≥ 16n

ε2
R2.

This completes the proof of the lemma.

Lemma 7 ||m� − m′||2 ≤ n
n� · R2

Proof Since the only difference between O�

ī
and O ′̄

i
are the points in On

ī
, we get

||m� − m′||2 = 1

(n�)2

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

∑

p∈On

ī

(p − c(p))

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

2

≤ n

(n�)2

∑

p∈On

ī

||p − c(p)||2 ≤ n2

(n�)2
R2 ≤ n

n�
· R2.

where the first inequality follows from the Cauchy-Schwartz inequality.

We now show that �(O ′̄
i
) is close to �(O�

ī
).

Lemma 8 �(O ′̄
i
) ≤ 4nR2 + 2 · �(O�

ī
).

Proof The lemma follows from the following sequence of inequalities:

�(O ′̄
i
) =

∑

p∈On

ī

||c(p) − m′||2 +
∑

p∈O
f

ī

||p − m′||2

Fact 2≤
∑

p∈On

ī

2(||c(p) − p||2 + ||p − m′||2) +
∑

p∈O
f

ī

||p − m′||2

≤ 2nR2 + 2
∑

p∈O�
ī

||p − m′||2 = 2nR2 + 2 · 	m′(O�

ī
)

Fact 1= 2nR2 + 2 ·
(
�(O�

ī
) + n� · ||m′ − m�||2

)

Lemma 7≤ 4nR2 + 2 · �(O�

ī
).

This completes the proof of the lemma.



Theory Comput Syst (2018) 62:93–115 107

We now argue that any center that is good for O ′̄
i

is also good for O�

ī
.

Lemma 9 Let m′′ be such that 	m′′(O ′̄
i
) ≤ (

1 + ε
16

) · �(O ′̄
i
). Then 	m′′(O�

ī
) ≤

(
1 + ε

2

) · �(O�

ī
).

Proof The lemma follows from the following inequalities:

	m′′(O�

ī
) =

∑

p∈O�
ī

||m′′ − p||2 Fact 1=
∑

p∈O�
ī

||m� − p||2 + n� · ||m� − m′′||2

Fact 2≤ �(O�

ī
) + 2n�

(
||m� − m′||2 + ||m′ − m′′||2

) Lemma 7≤ �(O�

ī
) + 2nR2

+2n� · ||m′ − m′′||2
Fact 1≤ �(O�

ī
) + 2nR2 + 2 ·

(
	m′′(O ′̄

i
) − �(O ′̄

i
)
)

≤ �(O�

ī
) + 2nR2

+ε

8
· �(O ′̄

i
)

Lemma 8≤ �(O�

ī
) + 2nR2 + ε

2
· nR2 + ε

4
· �(O�

ī
)

Lemma 6≤
(

1 + ε

2

)
· �(O�

ī
).

This completes the proof of the lemma.

Given the above lemma, all we need to argue is that our algorithm indeed considers
a center m′′ such that 	m′′(O ′̄

i
) ≤ (1 + ε/16) · �(O ′̄

i
). For this we would need

about O(1/ε) uniform samples from O ′̄
i
. However, our algorithm can only sample

using D2-sampling w.r.t. Ci . For ease of notation, let c(On

ī
) denote the multi-set

{c(p) : p ∈ On

ī
}. Recall that O ′̄

i
consists of O

f

ī
and c(On

ī
). The first observation is

that the probability of sampling an element from O
f

ī
is reasonably large (proportional

to ε/k). Using this fact, we show how to sample from O ′̄
i

(almost uniformly). Finally,
we show how to convert this almost uniform sampling to uniform sampling (at the
cost of increasing the size of sample).

Lemma 10 Let x be a sample from D2-sampling w.r.t. Ci . Then, Pr[x ∈ O
f

ī
] ≥ ε

15k
.

Further, for any point p ∈ O
f

ī
, Pr[x = p] ≥ γ

|O�
ī
| , where γ denotes ε3

533k
.

Proof Note that
∑

p∈O�
ī
\Of

ī

Pr[x = p] ≤ R2

	Ci
(X)

· |O�

ī
| ≤ ε2

41 · 	Ci
(O�

ī
)

	Ci
(X)

. Therefore,

the fact that we are in case II implies that

Pr[x ∈ O
f

ī
] ≥ Pr[x ∈ O�

ī
]−Pr[x ∈ O�

ī
\O

f

ī
] ≥ 	Ci

(O�

ī
)

	Ci
(X)

− ε2

41

	Ci
(O�

ī
)

	Ci
(X)

≥ ε

15k
.
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Also, if x ∈ O
f

ī
, then 	Ci

({x}) ≥ R2 = ε2

41 · 	Ci
(O�

ī
)

|O�
ī
| . Therefore,

	Ci
({x})

	Ci
(X)

≥ ε

13k
· R2

	Ci
(O�

ī
)

≥ ε

13k
· ε2

41
· 1

|O�

ī
| ≥ ε3

533k
· 1

|O�

ī
| .

This completes the proof of the lemma.

Let X1, . . . Xl be l points sampled independently using D2-sampling w.r.t. Ci .
We construct a new set of random variables Y1, . . . , Yl . Each variable Yu will
depend on Xu only, and will take values either in O ′̄

i
or will be ⊥. These vari-

ables are defined as follows: if Xu /∈ O
f

ī
, we set Yu to ⊥. Otherwise, we assign

Yu to one of the following random variables with equal probability: (i) Xu or (ii)
a random element of the multi-set c(On

ī
). The following observation follows from

Lemma 10.

Corollary 2 For a fixed index u, and an element x ∈ O ′̄
i
, Pr[Yu = x] ≥ γ ′

|O ′̄
i
| , where

γ ′ = γ /2.

Proof If x ∈ O
f

ī
, then we know from Lemma 10 that Xu is x with probability at

least γ

|O ′̄
i
| (note that O ′̄

i
and O�

ī
have the same cardinality). Conditioned on this event,

Yu will be equal to Xu with probability 1/2. Now suppose x ∈ c(On

ī
). Lemma 10

implies that Xu is an element of O
f

ī
with probability at least ε

15k
. Conditioned on

this event, Yu will be equal to x with probability at least 1
2 · 1

|c(On

ī
)| . Therefore, the

probability that Xu is equal to x is at least ε
15k

· 1
2|c(On

ī
)| ≥ ε

30k|O ′̄
i
| ≥ γ ′

|O ′̄
i
| .

Corollary 2 shows that we can obtain samples from O ′̄
i

which are nearly uniform
(up to a constant factor). To convert this to a set of uniform samples, we use the
idea of [9]. For an element x ∈ O ′̄

i
, let γx be such that γx

|O ′̄
i
| denotes the probability

that the random variable Yu is equal to x (note that this is independent of u). Corol-
lary 2 implies that γx ≥ γ ′. We define a new set of independent random variables
Z1, . . . , Zl . The random variable Zu will depend on Yu only. If Yu is ⊥, Zu is also
⊥. If Yu is equal to x ∈ O ′̄

i
, then Zu takes the value x with probability γ ′

γx
, and ⊥

with the remaining probability. Note that Zu is either ⊥ or one of the elements of O ′̄
i
.

Further, conditioned on the latter event, it is a uniform sample from O ′̄
i
. We can now

prove the key lemma.

Lemma 11 Let l be 128
γ ′·ε , and m′′ denote the mean of the non-null samples from

Z1, . . . , Zl . Then, with probability at least 1/2, 	m′′(O ′̄
i
) ≤ (1 + ε/16) · �(O ′̄

i
).
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Proof Note that a random variable Zu is equal to a specific element of O ′̄
i

with prob-

ability equal to γ ′
|O ′̄

i
| . Therefore, it takes ⊥ value with probability 1−γ ′. Now consider

a different set of iid random variables Z′
u, 1 ≤ u ≤ l as follows: each Zu tosses a

coin with probability of Heads being γ ′. If we get Heads, it gets value ⊥, otherwise
it is equal to a random element of O ′̄

i
. It is easy to check that the joint distribution

of the random variables Z′
u is identical to that of the random variables Zu. Thus, it

suffices to prove the statement of the lemma for the random variables Z′
u.

Now we condition on the coin tosses of the random variables Z′
u. Let n′ be the

number of random variables which are not ⊥. (n′ is a deterministic quantity because
we have conditioned on the coin tosses). Let m′′ be the mean of such non-⊥ variables
among Z′

1, . . . , Z
′
l . If m′′ happens to be larger than 64/ε, Lemma 1 implies that with

probability at least 3/4, 	m′′(O ′̄
i
) ≤ (1 + ε/16) · �(O ′̄

i
).

Finally, observe that the expected number of non-⊥ random variables is γ ′ · l ≥
128/ε. Therefore, with probability at least 3/4, the number of non-⊥ elements will
be at least 64/ε.

Let C
(l)
i denote the multi-set obtained by taking l copies of each of the centers

in Ci . Now observe that all the non-⊥ elements among Y1, . . . , Yl are elements of
{X1, . . . , Xl} ∪ C

(l)
i , and so the same must hold for Z1, . . . , Zl . This implies that

in Step 2(d) of the algorithm Sample-centers, we would have tried adding the point
m′′ as described in Lemma 11. Therefore, the induction hypothesis continues to hold
with probability at least 1/2. This concludes the proof of Theorem 1.

4 Lower Bound

In this section, we prove the lower bound result Theorem 2. Consider parameters k

and ε (assume ε is a small enough constant). We first define the set of points X. Let
m denote 
 1√

ε
�. The points will belong to R

d , where d = km. The set X will have d

points, namely, e1, . . . , ed , where ei denotes the vector which has all coordinates 0,
except for the ith coordinate, which is 1. Now, we define the set C of clusterings of
X. The set C will consist of those clusterings O = {O1, . . . , Ok} for which each of
the clusters has exactly m points. Observe that

|C| = (km)!
(m!)k (5)

Now fix a set C of k centers, c1, . . . , ck . We will now upper bound the number of
clusterings O ∈ C for which

costC(O) ≤ (1 + ε)optk(O). (6)
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Let O = {O1, . . . , Ok} be as above. Note that

optk(O) =
k∑

i=1

�(Oi) = km ·
(
(1 − 1/m)2 + (m − 1) · 1/m2

)
= k(m − 1) (7)

Recall that costC(O) is obtained by assigning each cluster in O to a unique cen-
ter in C, and then by computing the sum of square of distances of points in X

to the corresponding centers. Wlog we rearrange the clusters in O such that the
points in Oj are assigned to cj . For a vector v, we shall use (v)j to denote the
j th coordinate of v. For every center cr we define a corresponding vector vr as
follows:

(vr )j =
{

(cr )j if ej /∈ Or

(cr)j − 1
m

otherwise

Lemma 12
∑k

r=1 ||vr ||2 ≤ k
m(m−1)

.

Proof Fix a cluster Or . Let mr denote the mean of Or . Note that (mr)j is 1/m if
ej ∈ Or , 0 otherwise. We now simplify the expression costC(O) as follows:

costC(O) =
k∑

r=1

∑

ej ∈Or

||ej − cr ||2 Fact 1=
k∑

r=1

∑

ej ∈Or

(
||ej − mr ||2 + ||mr − cr ||2

)

= optk(O) +
k∑

r=1

m · ||mr − cr ||2 = optk(O) + m

k∑

r=1

||vr ||2

By our assumption, costC(O) ≤ (1 + ε)optk(O). Therefore,

k∑

r=1

||vr ||2 ≤ ε

m
· optk(O)

(7)= ε

m
· k(m − 1) ≤ k

m(m − 1)
.

Now define a corresponding assignment function f : X → {1, . . . , k} as follows:
f (ej ) = r if ej ∈ Or . Let O′ = {O ′

1, . . . , O
′
k} be another clustering in C which

satisfies condition (6). Define vectors v′
r and the assignment function f ′ in a sim-

ilar manner. The following lemma shows that f and f ′ cannot differ in too many
coordinates.

Lemma 13 Let D denote the set of indices j for which f (ej ) �= f ′(ej ). Then |D| ≤
d/2.
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Proof Assume for the sake of contradiction that |D| > d/2. For cluster Or , let Dr

denote the set of indices j such that ej ∈ Or�O ′
r . Observe that (vr )j and (v′

r )j differ
(in absolute value) by 1/m. Therefore,

||v′
r ||2 =

∑

j∈Dr

(

(vr )j ± 1

m

)2

≥ |Dr |
m2

− 2

m

∑

j∈Dr

|(vr )j |.

Summing over r = 1, . . . , k, we get

k∑

r=1

||v′
r ||2 ≥ 2|D|

m2
− 2

m

k∑

r=1

∑

j∈Dr

|(vr )j | ≥ d

m2
− 2

m
· √

2d ·
√
√
√
√

k∑

r=1

∑

j∈Dr

|(vr)j |2,

where the last inequality follows from Cauchy-Schwarz, and the observation that∑
r |Dr | = 2|D| > d . Using Lemma 12, we see that

k∑

r=1

||v′
r ||2 ≥ k

m
− 2

m
· √

2km ·
√
√
√
√

k∑

r=1

||vr ||2 ≥ k

m
− 4k

m
√

m − 1
>

k

m(m − 1)
,

assuming m is a large enough constant. But this contradicts Lemma 12.

The above lemma shows that the number of clusterings in C satisfying condi-
tion (6) is small.

Corollary 3 The number of clusterings in C satisfying condition (6) is at most
(

km
km/2

) · (km/2)!
((m/2)!)k .

Proof Fix a clustering O = {O1, . . . , Or} satisfying condition (6), and let f be the
corresponding assignment function. How many assignment functions (corresponding
to a clustering in C) can differ from f in at most d/2 coordinates ? There are at most(

km
km/2

)
ways of choosing the coordinates in which the two functions differ. Consider

a fixed choice of such coordinates, and say there are dr coordinates corresponding
to points in Or . Let d ′ denote

∑
r dr (and so, d ′ ≤ d/2). Now, we need to partition

these coordinates into sets of size d1, . . . , dk (note that f ′ corresponds to a clustering
where all clusters are of equal size). The number of possibilities here is d ′!

d1!...dk ! , which

is at most (d/2)!
(d/2k)!)k .

Recall that we want Ł to contain enough elements such that for at least half of the
clusterings in C, condition (6) is satisfied with respect to some set of centers in Ł.
Therefore, Corollary 3 and (5) imply that

|Ł| ≥
(km)!
(m!)k

(
km

km/2

) · (km/2)!
((m/2)!)k

= 2�̃(km) = 2�̃(k/
√

ε).

This concludes the proof of Theorem 2.
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5 Extension to the List k-median Problem

The setting for the list k-median problem is same as that for the list k-means problem,
except for the fact that distances are measured using the Euclidean norm (instead of
the square of the Euclidean norm). As before, for a set C of k centers, and a clus-
tering O = {O1, . . . , Ok} of a set of points X, define costC(O) as the minimum,
over all permutations π of C, of

∑k
i=1

∑
x∈Oi

||x − cπ(i)||. Define optk(O), 	C(X)

analogously.
For a set of points X, let �(X) denote the optimal 1-median cost of X, i.e.,

minc∈Rd

∑
x∈X ||x−c||. We no longer have an analogue of Fact 1 – for a set of points

X, if c� denotes the optimal center with respect to the 1-median objective, and c is
a point such that 	c(X) ≤ (1 + ε) · 	c�(X), it is possible that ||c − c�|| is large.
This also implies that there is no analogue of the Lemma 1. However, instead of the
approximate triangle inequality (Fact 2), we get triangle inequality in the Euclidean
metric.

We shall use a result of Kumar et al. [11], which gives an alternative to Lemma 1,
although it outputs several candidate centers instead of just the mean of a random
sample.

Lemma 14 (Theorem 5.4 [11]) Given a random sample (with replacement) R

of size 1
ε4 from a set of points X ∈ R

d , there is a procedure construct(R),

which outputs a set core(R) of size 2(1/ε)O(1)
such that the following event hap-

pens with probability at least 1/2 : there is at least one point c ∈ core(R) such
that 	c(X) ≤ (1 + ε) · �(X). The time taken by the procedure construct(R) is

O
(

2(1/ε)O(1) · d
)

.

Now we explain the changes needed in the algorithm and the analysis. Given a set
of points X and another set of points C, D-sampling from X w.r.t. C samples a point
x ∈ X with probability proportional to 	C(x), i.e., minc∈C ||c − x||.

5.1 The Algorithm

The algorithm is the same as that in Algorithm 2.1, except for some minor changes in
the procedure Sample-Centers, and changes in the values of the various parameters.
The parameters α and β in the procedure List-k-median are large enough constants.
We briefly describe the changes in the procedure Sample-Centers. In Step 2(a), we
sample the multi-set S using D-sampling w.r.t C. We replace Step 2(d) by the fol-
lowing: for all subsets T ⊂ S′ of size M , and for all elements c ∈ core(T )

(i) C ← C ∪ {c}, (ii) Sample-centers(X, k, ε, i + 1, C). Recall that core(T )

is the set guaranteed by Lemma 14. In other words, unlike for the k-means set-
ting, where we could just work with the mean of T , we now need to try out
all the elements in core(T ). Algorithm 5.1, gives a detailed description of the
algorithm.
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5.2 Analysis

The analysis proceeds along the same lines as in Section 3, and we would again like
to prove the induction hypothesis P(i). We use the same notation as in Section 3, and
define Cases I and II analogously. Consider Case I first. Proof of Lemma 2 remains
unchanged. The set O ′̄

i
is defined similarly. Let m� be the point for which �(O�

ī
) =

	m(O�

ī
). Define m′ analogously for the set O ′̄

i
. The statement of Lemma 4 now

changes as follows:

�(O ′̄
i
) ≤

∑

p∈O�
ī

||c(p)−m′|| ≤
∑

p∈O�
ī

||c(p)−m�|| ≤
∑

p∈O�
ī

(||c(p)−p||+||p−m�||)

= 	Ci
(O�

ī
) + �(O�

ī
) (8)

Proof of Lemma 5 also changes as follows: let m′′ be as in the statement of this
lemma. Then,

	m′′(O�

ī
) =

∑

p∈O�
ī

||p−m′′|| ≤
∑

p∈O�
ī

(||p−c(p)||+||c(p) − m′′||)

= 	Ci
(O�

ī
)+	m′′(O ′̄

i
) ≤ 	Ci

(O�

ī
) +

(
1 + ε

8

)
· �(O ′̄

i
)

(8)≤ 2·	Ci
(O�

ī
)+

(
1+ ε

8

)
·�(O�

ī
)

Lemma 2≤ ε

3k
·optk(O

�)+
(

1+ ε

8

)
·�(O�

ī
)

Rest of the arguments remain unchanged (we use Lemma 14 instead of Lemma 1).
Now we consider Case II. We redefine the parameter R as

R = ε

9
· 	Ci

(O�

ī
)

|O�

ī
| .
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Define sets O ′̄
i
, c(On

ī
), O

f

ī
as before. Let m� be the point for which �(O�

ī
) =

	m�(O�

ī
), and m′ be the analogous point for O ′̄

i
. Proof of Lemma 6 can be eas-

ily modified to yield the following (instead of Fact 1, we just need to use triangle
inequality) :

�(O�

ī
) = 	m�(O�

ī
) ≥ 4n

ε
· R (9)

We have the following version of Lemma 8:

�(O ′̄
i
) ≤ 	m�(O ′̄

i
) =

∑

p∈On

ī

||c(p) − m�|| +
∑

p∈O
f

ī

||p − m�||

≤
∑

p∈On

ī

(||p − m�|| + ||c(p) − p||) +
∑

p∈O
f

ī

||p − m�||

≤ nR + �(O�

ī
), (10)

where n denotes |O�

ī
|. Finally, let m′′ be as in the statement of Lemma 9. Then,

	m′′(O�

ī
) =

∑

p∈On

ī

||p − m′′|| +
∑

p∈O
f

ī

||p − m′′||

≤
∑

p∈On

ī

(||c(p) − m′′|| + ||c(p) − p||) +
∑

p∈O
f

ī

||p − m′′||

≤ nR + 	m′′(O ′̄
i
) ≤ nR +

(
1 + ε

8

)
· �(O ′̄

i
)

(10)≤ 3nR +
(

1 + ε

8

)
· �(O�

ī
)

(9)≤ (1 + ε) · �(O�

ī
). (11)

Rest of the arguments go through without any changes.

6 Conclusion

We formulated the list k-means problem and gave nearly tight upper and lower
bounds on the size of the list of candidate centers. We also obtained an algorithm for
the constrained k-means problem getting a significant improvement over the previous
results of Ding and Xu [5].

Furthermore, we show how our techniques generalize for the corresponding k-
median problems. We would also like to point out that our techniques generalize
for settings that involve non-Euclidean distance measures. After going through the
analysis of our algorithm, it is not difficult to show that the only properties that are
used in the analysis are:

(i) Symmetry of the distance measure (used implicitly)
(ii) (Approximate) Triangle Inequality: Fact 2

(iii) Centroid property: Fact 1
(iv) Sampling property: Lemma 1
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The analysis holds even for some approximate versions of the above properties.
For instance, for the k-median problem we were able to use Lemma 14 instead of
Lemma 1 (i.e., the sampling property). Also, we were able to work without the cen-
troid property since for the k-median problem the distances follow the exact triangle
inequality instead of the approximate version (i.e., Fact 2). We note that there are
a number of clustering problems in machine learning that are modeled as k-median
problem over distance measures that follow the above properties in some approximate
sense. Mahalanobis distance and μ-similar Bregman divergence are two examples
of such distance measures. Our results can be very easily extended for the k-median
problem over such distance measures.3
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