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Abstract In this work we study the relationship between size and treewidth of cir-
cuits computing variants of the element distinctness function. First, we show that
for each n, any circuit of treewidth t computing the element distinctness function

δn : {0, 1}n → {0, 1} must have size at least Ω( n2

2O(t) log n
). This result provides a non-

trivial generalization of a super-linear lower bound for the size of Boolean formulas
(treewidth 1) due to Nečiporuk. Subsequently, we turn our attention to read-once cir-
cuits, which are circuits where each variable labels at most one input vertex. For each
n, we show that any read-once circuit of treewidth t and size s computing a variant
τn : {0, 1}n → {0, 1} of the element distinctness function must satisfy the inequal-
ity t · log s ≥ Ω( n

log n
). Using this inequality in conjunction with known results in

structural graph theory, we show that for each fixed graph H , read-once circuits com-
puting τn which exclude H as a minor must have size at least Ω(n2/ log4 n). For
certain well studied functions, such as the triangle-freeness function, this last lower
bound can be improved to Ω(n2/ log2 n).
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1 Introduction

The problem of explicitly defining a function in NP which requires super-linear
circuit size has proven to be notoriously hard. Currently, the best known lower
bound for a function in NP is of the order1 of 3n − o(1) for circuits with arbitrary
fan-in-2 gates [4, 9], and of the order of 5n − o(1) for circuits with gates from
the binary De-Morgan basis [20, 23]. In the particular case of Boolean formulas,
Nečiporuk proved an Ω(n2/ log n) lower bound for the size of Boolean formulas
over the full binary basis computing the n-bit element distinctness function [27].
Intuitively, the element distinctness function δn : {0, 1}n → {0, 1} takes as input a
sequence of m numbers s1, s2, ..., sm ∈ {1, ..., m2} encoded as binary strings with
2 log m bits, and returns 1 if and only if all numbers in this sequence are distinct.
Remarkably, Nečiporuk’s lower bound has resisted improvements during the last
four decades, and remains the strongest known lower bound for the size of formulas
over the full binary basis. In the restricted setting of formulas over the De-Morgan
basis, a size lower bound of n3−o(1) was obtained by Håstad [17] using different
techniques.

In this work, we consider the problem of proving circuit size lower bounds for
circuits of low treewidth. During the past decade a considerable amount of research
has been devoted to the study of the computational power and the combinatorial
properties of circuits parameterized by treewidth [1, 2, 6, 13, 14, 18, 21]. In our
first result we generalize Nečiporuk’s lower bound to the context of circuits of low
treewidth.

Theorem 1 Let C be a circuit of treewidth t computing the element distinctness

function δn. Then C has size Ω( n2

2O(t) log n
).

Here the size of a circuit C is defined as its wire-complexity, i.e., the total
number of edges in C. Therefore, our lower bound holds for circuits containing
unbounded fan-in AND and OR gates, and more generally, unbounded fan-in associa-
tively constructible gates, which we will define in Section 2. Theorem 1 generalizes
Nečiporuk’s non-linear lower bound, from the context of Boolean formulas (that is to
say, circuits of treewidth 1) to the context of circuits of low treewidth. In particular,
our result implies an Ω(n2/ log n) lower bound for the size of circuits whose under-
lying undirected graph belongs to several interesting classes, such as trees (treewidth
at most 1), TTSP series-parallel graphs (treewidth at most 2), outer-planar graphs
(treewidth at most 2), Halin graphs (treewidth at most 3), k-outerplanar graphs for
fixed k (treewidth at most O(k)), etc. Additionally, Theorem 1 implies non-linear
lower bounds even for circuits of treewidth o(log n).

It is worth comparing our result with another prominent restricted family of
circuits for which no non-linear lower bound is known, namely, circuits whose under-
lying graph belongs to the class of Valiant Series-Parallel graphs [34]. We refer to

1Recently, this lower bound was improved to (3 + 1/86)n − o(n) [12].
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[7] for a clear definition of this class. It can be shown that the class of Valiant-series-
parallel graphs strictly contains the class of TTSP-series-parallel graphs (which
have treewidth 2). Nevertheless, Valiant-series-parallel graphs are incomparable with
graphs of treewidth k, for k ≥ 3. On the one hand, there are Valiant-series-parallel
graphs of treewidth at least k for every k ∈ N. For instance, the k × k grid-graph is
Valiant-series-parallel but has treewidth k. On the other hand, it is easy to construct
graphs of treewidth 3 which are not Valiant-series-parallel. Proving a non-linear
lower bound for Valiant-series-parallel circuits remains a major open problem in
circuit complexity [29, 31].

Next, we turn our attention to read-once circuits, which are circuits where each
variable labels at most one input vertex. These circuits have also been known in
the VLSI literature as semilective circuits [19]. Read-once circuits parameterized by
treewidth have been studied by the SAT-solving and proof-complexity communities.
Part of the interest in these circuits is due to the fact that the satisfiability problem
for read-once circuits of size s and treewidth t can be solved in time 2O(t) · sO(1)

[1, 2, 6, 14]. Questions related to the design of optimal VLSI circuits have motivated
the study of the complexity of planar read-once circuits computing explicit functions
(i.e. functions in NP). Within this line of research, quadratic lower bounds have been
obtained for the size of planar read-once circuits computing both multiple-output
functions [24] and single-output functions [32]. We contrast these quadratic lower
bounds with the fact that for multilective planar circuits, i.e., planar circuits in which
variables can label arbitrarily many input gates, the best known lower bounds are of
the order of O(n log n) for single-output functions and of the order of O(n3/2) for
multiple-output functions [33].

In this work we introduce the symmetric non-deterministic state complexity
(symmetric-NSC) of a Boolean function, a complexity measure that is lower-bounded
by the size of the smallest read-once oblivious branching program computing the
function in question. We show that if C is a read-once circuit of size s and treewidth
t computing a function fn : {0, 1}n → {0, 1} of symmetric-NSC snsc(fn), then t ·
log s ≥ Ω(log snsc(fn)). Using this tradeoff in conjunction with known results from
structural graph theory, we show that for each fixed graph H , read-once H -minor-

free2 circuits computing fn must have size at least Ω
(

log2 snsc(fn)

log2 n

)
. Subsequently,

we introduce a variant τn : {0, 1}n → {0, 1} of the element distinctness function and
show that its symmetric-NSC is lower bounded by 2Ω(n/ log n). From these results we
have that read-once H -minor-free circuits computing τn require size Ω(n2/ log4 n).
Near-quadratic lower bounds can also be obtained for the size of read-once H -minor-
free circuits computing certain well studied functions, such as the triangle-freeness
function �n, and the triangle-parity function

⊕
Clique3,n. A result from [11] implies

that the symmetric-NSC of these functions is lower-bounded by 2Ω(n). Therefore,
read-once H -minor-free circuits computing both �n and

⊕
Clique3,n require size

Ω( n2

log2 n
).

2We say that a circuit C is H -minor-free if its underlying undirected graph excludes H as a minor.
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2 Preliminaries

Let Σ be a finite set of symbols. A k-ary gate over Σ is a function g : Σk → Σ

where k ≥ 1. We say that a k-ary gate g is associatively constructible if either k = 1
or k ≥ 2 and there exists an associative commutative operation ⊕ : Σ × Σ → Σ

such that g(x1, ..., xk) = x1 ⊕ ...⊕ xk . In this last case, we may alternatively say that
g is a k-ary ⊕-gate. Unbounded fan-in AND and OR gates are clearly associatively
constructible. An unbounded fan-in MODr gate can be simulated by an associatively
constructible gate g that computes the sum of its inputs modulo r , together with a
unary gate g′ : Σ → Σ that returns 0 if this sum is congruent to 0 mod r , and
which returns 1 otherwise.

An associatively constructible circuit with n inputs is a directed acyclic graph
C = (V , E, g) where V is a set of vertices, E is a set of directed edges, and g is a
function that labels each vertex v ∈ V with a symbol from Σ , a gate over Σ , or a
variable from {x1, ..., xn}. The function g must satisfy the following conditions.

1. If the in-degree of v is 0, then g(v) is either an element of Σ or a variable in
{x1, ..., xn}.

2. If the in-degree of v is k, then g(v) is an associatively constructible k-ary gate
over Σ .

Vertices of in-degree 0 are called inputs. An input is initialized if it is labeled
with an element of Σ , and uninitialized if it is labeled with a variable. Vertices of
out-degree 0 are called outputs. A formula is a circuit, with a unique output, whose
underlying graph is a tree. We say that a circuit C = (V , E, g) is read once if no
two input vertices are labeled with the same variable. Since our circuits may contain
associatively constructible gates of unbounded fan-in and unbounded fan-out, we
define the size |C| of a circuit C as the number of edges in C. Below, we define the
notion of tree-decomposition of a circuit.

Definition 1 (Tree-Decomposition and Treewidth) A tree-decomposition of a circuit
C = (V , E, g) is a triple T = (N, F, β) where (N, F ) is a tree with set of nodes N

and set of arcs F , and β : N → 2V is a function that associates with each node u ∈ N

a subset β(u) of vertices of V such that the following three conditions are satisfied.

1.
⋃

u∈N β(u) = V .
2. For each edge (v, v′) ∈ E there is some u ∈ N such that {v, v′} ⊆ β(u).
3. For each vertex v ∈ V , the set of nodes N(v) = {u ∈ N | v ∈ β(u)} induces a

connected subtree of T .

The width of T is defined as w(T ) = maxu∈N |β(u)| − 1. The treewidth of a
circuit C, denoted tw(C), is the minimum width of a tree-decomposition of C.

We note that the directions of the edges of a circuit play no role in the definition
of tree-decomposition. In other words, only the underlying undirected graph of C is
relevant when considering its treewidth.

Let C = (V , E, g) be an associatively constructible circuit. For each v ∈ V ,
we let indeg(v) = |{v′ | (v′, v) ∈ E}| be the in-degree of v, and outdeg(v) =
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|{v′ | (v, v′) ∈ E}| be the out-degree of v. We let ι : Σ → Σ be the identity gate,
which sends each element a ∈ Σ to itself. We say that C is normalized if for every
vertex v ∈ V , outdeg(v) > 1 implies that g(v) = ι and that indeg(v) = 1. We note
that any associatively constructible circuit C of treewidth t can be transformed into a
normalized circuit C′ of size at most 2 · |C| and treewidth at most 2 · t computing the
same function as C. Indeed, the transformation consists into splitting each vertex v

with outdeg(v) > 1 into two vertices vin, vout connected by an edge (vin, vout), where
vin is labeled with the same gate as v, vout is labeled with the identity gate ι, the in-
neighbors of v in C are in-neighbors of vin in C′, and the out-neighbors of v in C are
the out-neighbors of vout in C′.

Circuits with constant treewidth may have arbitrarily large maximum in-degree
and maximum out-degree. Lemma 1 below states that, at the expense of a linear
increase in size and treewidth, one can reduce the maximum in-degree and out-degree
of a circuit C to a constant without changing the function computed by C. A variant
of Lemma 1 was originally proved in [25]. We include a self-contained proof of this
lemma for completeness.

Lemma 1 (Markov-Shi [25]) Let C be a associatively constructible circuit of
treewidth t , computing a function f : Σn → Σ . Then f can be computed by a
normalized circuit C′ of size |C′| = O(|C|), maximum-degree at most 3, maximum
in-degree at most 2, maximum out-degree at most 2, and treewidth at most O(t).
Additionally, for each variable x, the number of input vertices labeled with x in C is
equal to the number of input vertices labeled with x in C′.

Proof First, we derive from C a normalized circuit Ĉ = (V , E, g) of size at most
2 · |C| and treewidth at most 2 · t , which computes the same function as C.

Let T = (N, F, β) be a tree decomposition of Ĉ of width at most 2 · t . We may
assume that this decomposition satisfies the following additional properties.

1. (N, F ) is a sub-cubic tree, i.e., each node has degree at most 3.
2. There is an injective function μ : E → N such that μ(v, v′) has degree at most

2 and for each (v, v′) ∈ E, {v, v′} ⊆ β(μ(v, v′)).

For each v ∈ V , let N(v) = {u ∈ N | v ∈ β(u)} be the set of nodes of T

whose associated bag contains the vertex v. Let ρ : V → N be an injective function
satisfying the following properties.

1. ρ(v) ∈ N(v).
2. If outdeg(v) = 1 then ρ(v) = μ(v, v′) where v′ is the unique vertex in V such

that (v, v′) ∈ E.
3. If outdeg(v) > 1 then ρ(v) = μ(v′, v) where v′ is the unique vertex in V such

that (v′, v) ∈ E.

Note that if outdeg(v) = 0 then ρ(v) can be any node in N(v). Note also that since
Ĉ is normalized, if outdeg(v) ≥ 1 then indeg(v) = 1. Therefore, Condition 3 above
is well defined. Since T is a tree decomposition, for each v ∈ V the set N(v) induces
a connected subtree T (v) = (N(v), F (v)) of (N, F ). Intuitively, for each v ∈ V ,
the function ρ chooses a root for the tree T (v). Note that ρ(v) and any other node
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in N(v) have at most two children. The leaves of the subtree T (v) are the nodes in
N(v) at maximal depth with respect to the root ρ(v). We say that a leaf u of T (v) is
useful if either outdeg(v) ≤ 1 and there exists (v, v′) ∈ E such that μ(v, v′) = u, or
if outdeg(v) > 1 and there exists (v, v′) ∈ E with μ(v, v′) = u. We say that the tree
decomposition T is reduced with respect the pair (μ, ρ) if for every v ∈ V all leaves
in N(v) are useful. We can assume without loss of generality that T is reduced, since
if u is a non-useful leaf of N(v), then we may safely remove v from the bag β(u) and
still have a valid tree decomposition of Ĉ with at most the same width as T .

Now we are in a position to describe the construction of the circuit C′ =
(V ′, E′, g′). Intuitively, each vertex v of the circuit C will correspond to a rooted
binary tree τ(v) in C′ which has the same shape as the subtree T (v) = (N(v), F (v))

of (N, F ). If outdeg(v) ≤ 1, then τ(v) is in-branching.3 If g(v) is a k-ary ⊕ gate,
then the nodes of τ(v) which have two children are labeled by g′ with the binary ⊕
gate, while all other nodes are labeled with the identity gate ι. If v is labeled with a
unary gate, then the root of τ(v) is labeled with g(v) and all other nodes of τ(v) are
labeled with the identity gate ι. On the other hand, if outdeg(v) > 1, then τ(v) is out-
branching. In this case, all nodes of τ(v) are labeled with the identity gate ι. Finally,
the edge set E′ is defined as follows. For each (v, v′) ∈ E with outdeg(v) > 1, we
add an edge from a node of the out-branching tree τ(v) to a node of the in-branching
tree τ(v′). On the other hand for each (v, v′) ∈ E with indeg(v) ≤ 1 we add an edge
from the root of τ(v) to a node of τ(v′). The precise way in which such edges are
created is specified in the formal construction below.

V ′ = {[v, u] | v ∈ V, u ∈ N(v)}
E′ = {([v, u], [v′, u]) | (v, v′) ∈ E,μ(v, v′) = u}

∪ {([v, u], [v, u′]) | v ∈ V, outdeg(v) = 1, u is a child of u′ in N(v)}
∪ {([v, u], [v, u′]) | v ∈ V, outdeg(v) ≥ 1, u′ is a child of u in N(v)}

Note that the first set corresponds to edges between distinct trees, while the
second set corresponds to edges belonging to in-branching trees, and the third set
corresponds to edges belonging to out-branching trees.

Finally, the gate map g′ is formally defined as follows. For each v ∈ V with
outdeg(v) > 1, we set g′([v, u]) = ι for every u ∈ N(v). On the other hand, for each
v ∈ V with outdeg(v) ≤ 1, and each u ∈ N(v) we proceed as follows.

1. If g(v) is a k-ary ⊕-gate for some associative commutative operation ⊕, then we
set g′([v, u]) = ⊕ if u has two children in N(v), and set g′([v, u]) = ι if u has
at most one child in N(v).

2. If g(v) is a unary gate, then we set g′([v, u]) = g(v) if u is the root of N(v), and
set g′([v, u]) = ι if u is not the root of N(v). We note that in this case the subtree
induced by N(v) is a line, since N(v) has a unique useful leave.

3. If v is an input of C, then N(v) has a single node u and we set g′([v, u]) = g(v).

3An in-branching tree is a directed tree where all edges are oriented toward the root. An out-branching
tree is a directed tree where all edges are oriented toward the leaves.
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A tree decomposition T ′ = (N, F, β ′) of C′ can be obtained as follows.4 For each
u ∈ N , we set

β ′(u) = {[v, u] | v ∈ β(u)} ∪ {[v, u′] | v ∈ β(u), u′is a child or the parent of u}.
Since the tree (N, F ) is ternary, the width of T ′ is at most 4 times the width of
T . Note that the size of the circuit C′ constructed above is of the order of O(t ·
|C|). Nevertheless this size can be reduced to O(|C|), i.e., without the multiplicative
dependence on t , by contracting maximal induced paths v1v2....vr where all vertices
are labeled with the identity gate into a single vertex labeled with the identity gate.
Since contraction can only decrease the treewidth of a graph, the statement of the
theorem is proved.

Lemma 1 implies that to prove non-linear size lower bounds for associatively con-
structible circuits of constant treewidth, it is enough to prove non-linear lower bounds
for circuits of constant treewidth and constant maximum fan-in and fan-out.

Below, we define the notion of rooted carving decomposition of a circuit, a variant
of the notion of carving decomposition defined in [30]. If T is a rooted tree, we
denote by nodes(T ) the set of all nodes of T , and by leaves(T ) the set of all leaves
of T . For each node u ∈ nodes(T ), we let T [u] denote the subtree of T rooted
at u.

Definition 2 (Carving Decomposition) A rooted carving decomposition of a circuit
C = (V , E, g) is a pair (T , γ ) where T is a rooted binary tree and γ : leaves(T ) → V

is a bijection mapping each leaf u ∈ leaves(T ) to a single vertex γ (u) ∈ V .

Observe that the internal nodes of a carving decomposition T are unlabeled. Given
a node u ∈ nodes(T ), we let V (u) = γ (leaves(T [u])) = {γ (v) | v ∈ leaves(T [u])}
be the image of the leaves of T [u] under γ . For two distinct subsets V1, V2 of vertices
of a circuit C we let E(V1, V2) denote the set of edges in G with one endpoint in
V1 and another endpoint in V2. The width carw(T , γ ) of the carving decomposition
(T , γ ) is defined as

max{|E(V (u), V \V (u))| : u ∈ nodes(T )}.
The carving width carw(C) of a circuit C is the minimum width of a carving decom-
position of C. The following lemma relates carving width and treewidth of an
associatively constructible circuit.

Lemma 2 Let C = (V , E, g) be an associatively constructible circuit of treewidth
t . There is a circuit C′ of size |C′| = O(|C|), maximum degree 3, and carving width
O(t) such that C and C′ compute the same function. Additionally, for each variable
x, the number of input vertices labeled with x in C is equal to the number of input
vertices labeled with x in C′.

4The structure (N, F ) of the decomposition remains the same. Only function assigning bags to nodes in
N is updated.
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Proof By Lemma 1, if C is an associatively constructible circuit of treewidth t , then
one can construct a circuit C′ of size O(|C|), maximum degree at most 3 and treewidth
at most O(t) which computes the same function as C. Additionally, for each variable
x, the number of input vertices labeled with x in C is equal to the number of input
vertices labeled with x in C′. Since any graph of treewidth w and maximum degree �

has carving-width O(� · w) (Lemma 4 of [26]), the carving width of C′ is bounded
by O(t).

3 Nečiporuk’s Method

In this section, we briefly describe Nečiporuk’s method for proving non-linear lower
bounds on the size of Boolean formulas over the complete binary basis. For our
purposes, it will be convenient to divide this method into three steps. Our first main
result (Theorem 1) follows from a generalization of Step 1 given below. A complete
proof of Nečiporuk’s theorem can be found in [22].

Step 1 Let X = {x1, ..., xn} be a set of variables, f : {0, 1}X → {0, 1} be a Boolean
function on X, and Y ⊆ X be a subset of variables of X. We denote by Nf (Y ) the
number of distinct functions that can be obtained by initializing all variables in X\Y
with values in {0, 1}. The first step in the proof of Nečiporuk’s theorem consists in
providing an upper bound for Nf (Y ). If f can be computed by a Boolean formula
F , such an upper bound can be given in terms of the number of inputs of F labeled
with variables in Y .

Proposition 1 Let f : {0, 1}X → {0, 1} be a function computable by a Boolean
formula F . Let Y ⊆ X be a subset of variables such that at most l inputs of F are
labeled with variables in Y . Then Nf (Y ) is at most 2O(l).

We briefly sketch the proof of Proposition 1. Let g : {0, 1}Y → {0, 1} be a function
obtained from f by initializing all variables in X\Y according to an assignment
α : X\Y → {0, 1}. Let Fg be the Boolean formula obtained from F by initializing
inputs labeled with variables in X\Y according to α. Then, Fg computes g, and has
at most l uninitialized inputs. Now, the formula Fg can be shrunk into a formula F ′

g

which still computes the function g, but which satisfy the following two properties.

1. F ′
g has at most l inputs, all of which are labeled with variables in Y .

2. All internal nodes of F ′
g have fan-in (precisely) 2.

These two properties imply that F ′
g has at most l−1 internal nodes. Since there are

16 possible Boolean functions of fan-in 2, there are at most 16l−1 = 2O(l) choices
for g. Therefore, Nf (Y ) is at most 2O(l).

Step 2 The second step consists in exhibiting an explicit Boolean function with many
sub-functions. Intuitively, a function f : {0, 1}X → {0, 1} has many sub-functions
if the quantity Nf (Y ) is large for some subsets Y ⊆ X of suitable size. Let X =
{x1, ..., xn} be a set of n = 2m log m distinct variables partitioned into m blocks
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Y1, Y2, ..., Ym, where each block Yi has 2 log m variables. The element distinctness
function δn : {0, 1}X → {0, 1} is defined as follows for each assignment s1, s2, ..., sm
of the blocks Y1, Y2, ..., Ym respectively.

δn(s1, s2, ..., sm) =
{

1 if si 
= sj for i 
= j,

0 otherwise.
(1)

The following lemma states that the element distinctness function defined in (1)
has many sub-functions.

Lemma 3 (See [22], Section 6.5) Let δn : {0, 1}X → {0, 1} be the element distinct-
ness function defined in (1), where |X| = n and X = Y1 ∪̇ Y2 ∪̇... ∪̇ Ym with
|Yi | = 2 log m. Then for each i ∈ {1, ..., m}, Nδn(Yi) ≥ 2Ω(n).

Step 3 In the third step, we combine Proposition 1 with Lemma 3 to obtain a
non-linear lower bound for the size of Boolean formulas computing the element dis-
tinctness function δn : {0, 1}X → {0, 1} defined in (1). Let F be a Boolean formula
computing δn. Let li denote the number of inputs of F labeled with some variable in
Yi . By Proposition 1, we have that Nδn(Yi) ≤ 2O(li ). On the other hand, by Lemma 3,
Nδn(Yi) ≥ 2Ω(n). Combining these two inequalities, we have that

2O(li ) ≥ Nδn(Yi) ≥ 2Ω(n). (2)

This implies that li ≥ Ω(n). In other words, there are Ω(n) inputs of F labeled
with variables from Yi . Since there are m = Ω( n

log n
) blocks Yi , we have that the

number of inputs of F labeled with variables in X is at least Ω( n2

log n
).

3.1 Generalizing Nečiporuk’s Theorem

In this section we will generalize Nečiporuk’s non-linear lower bound to the context
of circuits of low treewidth (Theorem 1). We call attention to the fact that this lower
bound concerns circuits in which each variable can label arbitrarily many input ver-
tices. The following lemma, which generalizes Proposition 1, is the main technical
result toward the proof of Theorem 1.

Lemma 4 Let f : {0, 1}X → {0, 1} be a function computable by a Boolean circuit
C of treewidth t . Let Y ⊆ X be a subset of variables such that at most l inputs of C
are labeled with variables in Y . Then Nf (Y ) is at most 2l·2O(t)

.

The next two subsections will be dedicated to the proof of Lemma 4. Before, we
show how Lemma 4 can be used to prove Theorem 1.

Proof of Theorem 1 Let |X| = n = 2m log m, and Y1, ..., Ym be a partition of the
variables in X, where for each i, |Yi | = 2 log m. Let li be the number of inputs of C
labeled with a variable from Yi . By Lemma 3, Nδn(Yi) ≥ 2Ω(n). On the other hand,

by Lemma 4, Nδn(Yi) ≤ 2li ·2O(t)
. Therefore, by combining these two inequalities, we

have 2li ·2O(t) ≥ Nδn(Yi) ≥ 2Ω(n). This implies that li ≥ Ω(n/2O(t)). Since there are
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m = Ω( n
log n

) blocks of variables Yi , we have that the number of inputs of C is at

least n2

2O(t)·log n
.

3.2 Defining Relations via Constraint Satisfaction Problems

In this subsection we will introduce some terminology and basic results which will
be used in the proof of Lemma 4. Let X be a set of variables. An assignment of
X is a function a : X → {0, 1} that associates with each variable x ∈ X a value
a(x) ∈ {0, 1}. We let {0, 1}X denote the set of all assignments of X. A relation over
X is any subset R ⊆ {0, 1}X. We say that each variable x ∈ X is constrained by R. In
some places we write var(R) to denote the set of variables constrained by R. If a is an
assignment of X, and Y ⊆ X, then we let a|Y denote the restriction of a to Y . More
precisely, for each x ∈ Y , a|Y (x) = a(x). We say that an assignment a ∈ {0, 1}X
satisfies a relation R over Y ⊆ X if a|Y ∈ R. If R ⊆ {0, 1}X is a relation over X,
and Y ⊆ X, then the restriction of R to Y is the relation R|Y = {a|Y | a ∈ R}.
The following immediate observation states that the result of restricting a relation
R ⊆ {0, 1}X to a subset X′ and subsequently to a subset Y ⊆ X′ is equivalent to
restricting R directly to Y .

Observation 1 Let R be a relation over X and let Y ⊆ X′ ⊆ X. Then R|Y =
(R|X′)|Y .

Below, we define the notion of constraint satisfaction problem over X.

Definition 3 A constraint satisfaction problem (CSP) over a set of variables X is a
set of relations

K = {R1, R2, ..., Rr} (3)

where for each i ∈ {1, ..., r}, Ri is a relation over some subset Xi ⊆ X of variables.

A CSP K over a set of variables X can be used to define a relation R(K) over
X. Intuitively, the relation R(K) consists of all assignments over X that satisfy each
relation in K .

R(K) = {a ∈ {0, 1}X | a|Xi
∈ Ri for i ∈ {1, ..., r}.} (4)

Let K be a CSP over a set of variables X and let S ⊆ K . We denote by c(S)

the set of variables that are simultaneously constrained by some relation in S and
some relation K\S. We say that c(S) is the cutset of S with respect to K . Given
a CSP K over a set of variables X, and a subset Y ⊆ X, we will deal with the
problem of obtaining a CSP K ′ with less relations than K , but with the property that
R(K)|Y = R(K ′)|Y . The following simple lemma will be crucial for this goal.

Lemma 5 Let K = {R1, ..., Rr} be a CSP over a set of variables X, let Y ⊆ X, and
S ⊆ K be such that var(S) ∩ Y ⊆ c(S). Consider the CSP

K ′ = (K\S) ∪ {R(S)|c(S)}.
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Then R(K)|Y = R(K ′)|Y .

Proof First we note that K ′ is a CSP over the set of variables X′ = (X\var(S)) ∪
c(S). Second, we note that the relation induced by K ′ on X′ is precisely the restriction
of R(K) to the variables in X′. In other words, R(K)|X′ = R(K ′). Finally, since
Y ⊆ X and var(S) ∩ Y ⊆ c(S), we have that Y ⊆ X′. Therefore, by Observation 1,
R(K)|Y = (R(K)|X′)|Y = R(K ′)|Y .

3.3 Circuits vs CSPs

In this section we prove Lemma 4. The idea behind the proof is the following. Let
C = (V , E, g) be a circuit of carving width w computing a function f : {0, 1}Y →
{0, 1}. As a first step, we associate with C a CSP K(C) over a set of variables Y ∪
{xe | e ∈ E}. This CSP has the property that R(K(C))|Y consists precisely of those
assignments that cause C to evaluate to 1. In a second step, we use the fact that C
has carving width w to obtain a new CSP K ′ such that each relation in K ′ constrains
at most 2 · w variables, and such that the number of relations in K ′ is proportional
to the number of uninitialized inputs of C. This new CSP K ′ has the property that
R(K ′)|Y = R(K(C))|Y . Finally, if we are given a function f : {0, 1}X → {0, 1}
and a subset Y ⊆ X of variables with |Y | = l, then we will have that there are at
most 2l·2O(w)

distinct functions arising by restricting all variables in X\Y to values
in {0, 1}.

Definition 4 (CSP Derived from a Circuit) Let C = (V , E, g) be a circuit whose
inputs are labeled with variables from Y . We let K(C) = {Rv | v ∈ V } be the CSP
over the variables Y ∪ {xe | e ∈ E} which is defined as follows.

1. If v is an input vertex labeled by g with a variable x, and v is the source of edges
e1, ..., ek , then Rv is a relation over the variables Yv = {x, xe1, ..., xek

}, and an
assignment a : Yv → Σ is in Rv if and only if

a(x) = a(xe1) = ... = a(xek
).

2. If v is an internal vertex labeled with a gate g(v), v is the target of edges e1, ...ek ,
and v is the source of edges e′

1, ..., e
′
k′ , then Rv is a relation over the variables

Yv = {xe1 , ..., xek
, xe′

1
, ..., xe′

k′ }, and an assignment a : Yv → Σ is in Rv if and
only if

g(v)(a(xe1), ..., a(xek
)) = a(xe′

1
) = ... = a(xe′

k′ ).

3. If v is the output vertex of C, and v is the target of edges e1, ..., ek , then Rv is a
relation over the variables Yv = {xe1 , ..., .xek

}, and a : {xe1, ..., xek
} → Σ is in

Rv if and only if

g(v)(xe1 , ..., xek
) = 1.

Intuitively, the variables Y are input variables of the circuit C, while the vari-
ables {xe | e ∈ E} are used to keep track of the evaluation of the circuit C when the
variables in Y are initialized. The relation R(K(C)) associated with the CSP K(C)
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contains all assignments of Y ∪ {xe | e ∈ E} which encode an initialization of the
input variables together with an evaluation of the gates of the circuits which evalu-
ate to 1. If we restrict the relation R(K(C)) to the variables in Y , then we recover
precisely the set of assignments that cause C to evaluate to 1.

Observation 2 Let C be a circuit computing a function f : {0, 1}Y → {0, 1}. Let
K(C) be the CSP associated with C. Then R(K(C))|Y = {a ∈ {0, 1}Y | f (a) = 1}.

We note that the number of relations in R(K(C)) is precisely the number of gates
of C, and therefore there is no a priori correspondence between the number of rela-
tions in R(K(C)) and the number of inputs of C labeled by variables in Y . The
following theorem says that if C is a circuit of carving width w then one can construct
a CSP K whose size is proportional to the number of inputs of C labeled with vari-
ables in Y , in such a way that the number of variables constrained by each relation in
K is proportional to w, and such that R(K)|Y = R(K(C))|Y .

Theorem 2 (CSP Reduction) Let C be a circuit of carving width w computing a
function f : {0, 1}Y → {0, 1}. Let l ≥ |Y | be the number of inputs of C labeled
with variables in Y . Then there exits a CSP K = {R1, ..., Rk} with k ≤ 3 · l such
that for each i ∈ {1, ..., k}, Ri constrains at most 2 · w variables and such that
R(K)|Y = {a ∈ {0, 1}Y | f (a) = 1}.

It is worth noting that the CSP K in Theorem 2 is obtained from the CSP K(C) by
applying several non-trivial simplification steps. Before proving Theorem 2 we show
how this theorem can be used to prove Lemma 4.

Proof of Lemma 4 Let f : {0, 1}X → {0, 1} be a Boolean function which is com-
putable by a circuit C of treewidth t . By Lemma 2, there exists a circuit C′ of size
|C′| ≤ O(|C|), maximum degree 3 and carving width w = O(t) such that C′ com-
putes f . Additionally, for each variable x, the number of input vertices labeled with
x in C is equal to the number of input vertices labeled with x in C′.

Now let Y ⊆ X. Then each initialization b ∈ {0, 1}X\Y of the variables in X\Y ,
gives rise to a circuit Cb in which all l uninitialized inputs are labeled with variables
in Y . Let fb : {0, 1}Y → {0, 1} be the function computed by the circuit Cb. By
Theorem 2, there is a CSP Kb = {Rb

1 , ..., Rb
kb

} with kb ≤ 3 · l such that for each

i ∈ {1, ..., kb}, Rb
i constrains at most 2·w = O(t) variables and such that R(Kb)|Y =

{a ∈ {0, 1}Y | fb(a) = 1}.
We note that by the way in which the CSP Kb is constructed in the proof of The-

orem 2, the set of variables constrained by each relation Rb
i does not depend on the

initialization b. In other words, for each two distinct initializations b, b′ ∈ {0, 1}X\Y ,
we have that kb = kb′ and that Rb

i constrains the same variables as Rb′
i for each

i ∈ {1, ..., kb}.
Therefore, since there are at most 22O(t)

possible relations for each i ∈ {1, ..., kb},
we can conclude that there are at most 2l·2O(t)

distinct functions which can be obtained
from f by restricting the variables outside Y . In other words, Nf (Y ) ≤ 2l·2O(t)

.
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In the remainder of this subsection, we prove Theorem 2. Let C = (V , E, g) be
a circuit of carving-width w computing a function f : {0, 1}Y → {0, 1}. Let K =
K(C) = {Rv | v ∈ V } be the CSP associated with C. We note that Y ∪ {xe | e ∈ E}
is the set of variables constrained by relations in K . We say that a relation Rv is a Y -
relation if Rv constrains some variable in Y . Let (T , γ ) be a carving decomposition
of (V , E). For a node u of T we let leaves(T [u], Y ) denote the set of leaves u′ of
T [u] such that the relation Rγ(u′) is a Y -relation. We say that a node u ∈ nodes(T )

is a Y-node if u is either a leaf such that Rγ(u) is a Y -relation, or if u is an internal
node u ∈ nodes(T ) such that leaves(T [u.l], Y ) 
= ∅ and leaves(T [u.r], Y ) 
= ∅. If u

is a Y -node, then we say that a node u′ 
= u is the Y -parent of u if u′ is the ancestor
of u at minimal distance from u with the property that u′ is itself a Y -node. We let
nodes(T , Y ) denote the set of all Y -nodes of T .

Lemma 6 |nodes(T , Y )| = 2 · |leaves(T , Y )| − 1.

Proof First, we show that if u is an internal Y -node of T then u has precisely two
Y -children. Suppose that u has at most one Y -child. Then by definition u is not a Y -
node, since in this case either leaves(T [u.l], Y ) = ∅ or leaves(T [u.r], Y ) = ∅. Now
suppose that u has at least 3 Y -children. Since T is a binary tree, two Y -children of u

are either descendants of u.l or descendants of u.r . Lets assume that z and z′ are two
distinct Y -children of u which are also descendants of u.l. We observe that neither z

is a descendant of z′ nor z′ is a descendant of z, since otherwise, only one of these
two vertices could have been a Y -child of u. Now let u′ be the closest ancestor of z

which is also an ancestor of z′. Then u′ is by definition a Y -node. Since u′ is a strict
descendant of u, this contradicts the assumption that u is the Y -parent of z and z′.

Now let T [Y ] be the tree whose nodes are Y -nodes of T and such that (u, v) is an
arc of T [Y ] if and only if u is the Y -parent of v. Then by the discussion above we
have that T [Y ] is a binary tree with |leaves(T , Y )| leaves. Since any binary tree with
l leaves has l − 1 internal nodes, the total number of Y -nodes in T is 2 · |leaves(T ,

Y )| − 1.

Now let T ′ = T \nodes(T , Y ) be the forest which is obtained by deleting from T

all of its Y -nodes. Then the number of connected components in the forest T ′ is at
most |nodes(T , Y )| = 2|leaves(T , Y )| − 1. We let T1, ..., Tk , for k ≤ |nodes(T , Y )|
be the connected components of T ′. For each i ∈ {1, ..., k}, let

Si = {Rv | ∃u ∈ leaves(Ti), γ (u) = v}
be the sub-CSP of K(C) formed by the relations associated to vertices of C that label
the leaves of the connected component Ti . Let c(Si) = var(K(C)\Si) ∩ var(Si) be
the cut-set of Si with respect to K(C). In other words, c(Si) is the set of variables
that are constrained by some relation in Si , and another relation in K\Si . Note that
c(Si) ∩ Y = ∅, since the connected component Ti has no Y -node. Additionally, the
fact that (T , γ ) is a carving decomposition of C of width w implies the following
claim.

Claim The number of variables in c(Si) is at most 2 · w.
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Let Ri = R(Si)|c(Si ). Then we define our CSP as follows.

K =
(

K(C)\
k⋃

i=1

Si

)
∪

k⋃
i=1

{Ri} (5)

Note that each subset of relations Si ⊆ K(C) corresponding to the connected
component Ti is replaced by a unique relation Ri . By Lemma 6, there are at most
2 · |leaves(T , Y )|−1 connected components in T ′. Therefore, the number of relations
in K is upper-bounded by |leaves(T , Y )| + 2|leaves(T , Y )| − 1 < 3|leaves(T , Y )|.
We claim that R(K)|Y = R(K(C))|Y . To prove this claim, let K0, K1, ..., Kk be a
sequence of CSPs where K0 = K(C), and for each i ∈ {1, ..., k}, Ki = (Ki−1\Si) ∪
{Ri}. Then clearly we have that K = Kk . We claim that for each j ∈ {0, ..., k},
Kj |Y = K(C)|Y . In the base case k = 0, and the claim follows trivially. Now assume
that Kj |Y = K(C)|Y . By Lemma 5, we have that Kj |Y = Kj+1|Y .

4 Symmetric Non-deterministic State Complexity

Let Σ be a finite set of symbols. In this section we define the notion of symmetric
non-deterministic state complexity of functions of the form f : Σn → {0, 1} and of
finite languages included in Σn. We note that this notion is polynomially related with
the size of the smallest non-deterministic oblivious, read-once branching program
[35] computing f . A non-deterministic finite automaton (NFA) over Σ is a 5-tuple
A = (Q, Σ,R, Q0, F ) where Q is a set of states, Q0 ⊆ Q is a set of initial states,
F ⊆ Q is a set of final states and R ⊆ Q × Σ × Q is a transition relation. We write
q

a−→ q ′ to denote that the triple (q, a, q ′) belongs to R. We say that a string w =
w1w2...wn ∈ Σn is accepted by A if there is a sequence q0

w1−→ q1
w2−→ ...

wn−→ qn

such that q0 ∈ Q0 and qn ∈ QF . We denote by L(A) the set of all strings accepted
by A.

Let L ⊆ Σn be a set of length-n strings over Σ . The non-deterministic state
complexity (NSC) of L, denoted nsc(L), is defined as the minimum number of states
of a NFA accepting L. Let f : Σn → {0, 1} be a function. We denote by L(f ) the
set of all strings w ∈ Σn for which f (w) = 1. We define the non-deterministic state
complexity of f as nsc(f ) := nsc(L(f )).

For each positive integer n, we let Perm(n) be the set of all permutations of the
set [n] = {1, ..., n}. If π : [n] → [n] is a permutation in Perm(n) and w ∈ Σn, then
we let π(w) be the string in Σn that is defined by setting π(w)π(j) = wj for each
j ∈ [n]. Intuitively, the j -th position of w is mapped to the position π(j) of π(w).
If L ⊆ Σn is a set of length-n strings over Σ , then we denote by π(L) the language
obtained from L by permuting the coordinates of each string in L according to π .
More precisely,

π(L) = {π(w) | w ∈ L}. (6)

The symmetric non-deterministic state complexity (symmetric-NSC) of a lan-
guage L ⊆ Σn is defined as the minimum non-deterministic state complexity of a
permuted version of L.
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Definition 5 (Symmetric Nondeterministic State Complexity) Let L ⊆ Σn. The
symmetric non-deterministic state complexity of L is defined as

snsc(L) = min
π∈Perm(n)

nsc(π(L)). (7)

The symmetric-NSC of a function f : Σn → {0, 1} is defined as snsc(f ) =
snsc(L(f )).

We note that the symmetric-NSC of a function f : {0, 1}n → {0, 1} is lower-
bounded by the size of the smallest non-deterministic oblivious read-once |Σ |-
way branching program computing f . Therefore, functions requiring exponen-
tial size branching programs of this particular form have exponential symmet-
ric non-deterministic state complexity. Two examples of such functions are the
triangle-freeness function �n : {0, 1}n → {0, 1}, and the triangle-parity func-
tion

⊕
Clique3,n : {0, 1}n → {0, 1}. Both functions take as input an array x =

(xij )1≤i<j≤m consisting of n = (
m
2

)
Boolean variables representing an undirected

graph G(x) on m vertices {1, ..., m}. The graph G(x) has an edge connecting vertices
i and j , with i < j , if and only if xij = 1. The triangle-freeness function �n returns
1 on an input x if and only if the graph G(x) does not contain a triangle. The triangle-
parity function

⊕
Clique3,n returns 1 if and only if the parity of the number of the

triangles in G(x) is odd. Building on techniques from communication complexity
theory [28], it can be shown that read-once non-deterministic branching programs
computing the functions �n and

⊕
Clique3,n require size 2Ω(n) [11]. Therefore, the

same lower bound holds for the symmetric-NSC of these functions.

Theorem 3 ([11]) snsc(�n) ≥ 2Ω(n) and snsc(
⊕

Clique3,n) ≥ 2Ω(n).

4.1 On a Variant of the Element Distinctness Function

We say that a binary string w is even if w has an even number of ones. Analogously,
we say that w is odd if w has an odd number of ones. For each r ∈ N, we let even(r)
denote the set of all strings of even parity in the set {0, 1}r . Let Σ(m) = {1, ..., m},
and P(m) ⊆ Σ(m)m be the set of all length-m strings over Σ(m) = {1, ..., m} whose
entries are pairwise distinct. Let n = (�log m� + 1) · m and let b : {1, ..., m} →
even(�log m� + 1) be an injection that maps each number j ∈ {1, ..., m} to an even
binary string b(j) of length �log m� + 1. We let

B(n) = {b(w1)b(w2)...b(wm) ∈ {0, 1}n | w1w2...wm ∈ P(m)}
be the binary language that is obtained from P(m) by mapping each string in P(m)

to its binary representation. We define the even element distinctness function τn :
{0, 1}n → {0, 1} as the function that returns 1 on an input w ∈ {0, 1}n if and only if
w ∈ B(n). Note that by definition, the symmetric-NSC of τn is the symmetric-NSC
of B(n).

Theorem 4 The function τn : {0, 1}n → {0, 1} has symmetric-NSC 2Ω(n/ log n).
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The proof of Theorem 4 will use the following result.

Theorem 5 (Glaister-Shallit [15]) Let L ⊆ Σn be a set of length-n strings over Σ ,
and suppose that there exists a set F = {(xi, wi) | 1 ≤ i ≤ k} of pairs of strings
such that

1. xi · wi ∈ L for 1 ≤ i ≤ k

2. xi · wj /∈ L for 1 ≤ i, j ≤ k and i 
= j

Then any non-deterministic finite automaton accepting L has at least k states.

The set F in Theorem 5 is called a fooling set for L. We will prove Theorem 4 by
constructing, for each permutation π : [n] → [n], a fooling set Fπ of size 2Ω(n/ log n)

for the language π(B(n)). To construct Fπ it will be convenient to view strings as
Boolean functions over sets of positions. In other words, if S is a set of positive
integers, then a string over S is simply a Boolean function w : S → {0, 1}. We note
that we allow S to be any set of positive integers and not necessarily an interval of
the form [n] = {1, ..., n}. The parity of w is defined as the parity of the number of
positions in which w evaluates to 1: par(w) = |{i ∈ S | w(i) = 1}| mod 2. The
restriction of w to a subset T ⊆ S is the string w|T : T → {0, 1} which is defined by
setting w|T (i) = w(i) for every i ∈ T .

If S ⊆ [n], w : S → {0, 1} is a string, and π : [n] → [n] is a permutation, then we
let π(w) be the string w′ : π(S) → {0, 1} that is defined by setting w′(π(i)) = w(i)

for each i ∈ S. We let L = {1, ..., �n/2�} and R = {�n/2� + 1, ..., n} be respectively
the first and the second halves of the set [n] = {1, ..., n}. We say that a permutation
π : [n] → [n] splits a subset S ⊆ [n] if π(S) ∩ L 
= ∅ and π(S) ∩ R 
= ∅. In other
words, π splits S if some elements of S are mapped by π to the first half of [n] and
some elements of S are mapped by π to the second half of [n].

If S and S ′ are subsets of [n] such that S ∩ S′ = ∅, and w : S → {0, 1} and
w′ : S′ → {0, 1} are strings with domain S and S ′ respectively, then the concatenation
of w with w′ is simply the function w · w′ : S ∪ S′ → {0, 1} which is equal to w

when restricted to S and equal to w′ when restricted to S′.

Lemma 7 Let S be a subset of [n] = {1, ..., n}. Let L ⊆ {0, 1}n be a set of strings
with domain [n] such that w|S is even for every w ∈ L. Let π : [n] → [n] be a
permutation, and w1 and w2 be binary strings with domain [n] such that

1. S is split by π ,
2. π(w1)|π(S)∩L is even and π(w1)|π(S)∩R is even.
3. π(w2)|π(S)∩L is odd and π(w2)|π(S)∩R is odd.

Then [π(w1)|L] · [π(w2)|R] /∈ π(L) and [π(w2)|L] · [π(w1)|R] /∈ π(L).

Proof Let w = [π(w1)|L] · [π(w2)|R]. We show that w /∈ π(L). The proof
is by contradiction. Assume that w ∈ π(L). Since

[
π(w1)|π(S)∩L

]
is even and[

π(w2)|π(S)∩R

]
is odd, we have that w|π(S) is odd. But by definition, w ∈ π(L) if

and only if there exists w′ ∈ L such that w = π(w′). Since by assumption w′|S
is even for every w′ ∈ L, we have that π(w′)|π(S) = w|π(S) is also even. Thus
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we have reached a contradiction and we conclude that w /∈ π(L). The proof that[
π(w2)|π(S)∩L

] · [
π(w1)|π(S)∩R

]
/∈ L is analogous.

Let S = {j1, j2, ..., jk} ⊆ [n] where j1 < j2 < ... < jk . For i ∈ {1, ..., k}, we
let S[i] = ji denote the i-th element of S. Let S and S′ be subsets of [n] of same
size. We say that strings w : S → {0, 1} and w′ : S′ → {0, 1} are equivalent, which
we denote by w ≡ w′, if for each i ∈ {1, ..., |S|}, w(S[i]) = w(S′[i]). Note that if
S = S′ then w ≡ w′ if and only if w = w′.

Let n = (1 +�log m�) ·m, and let I1, ..., Im be the sequence of subsets of [n] such
that for each i ∈ [m],

Ii = {(i − 1) · (1 + �log m�) + 1, ..., i · (1 + �log m�)}.
In other words, I1, ..., Im is a partition of the set [n] into m consecutive intervals

of equal size. We say that I1, ..., Im is the uniform interval partition of [n].

Lemma 8 Let π : [n] → [n] be a permutation where n = (�log m� + 1) · m, and let
I1, ..., Im be the uniform interval partition of [n]. Let w1 and w2 be strings in B(n)

such that for some i, j ∈ [m], with i 
= j , the following conditions are satisfied.

1. π(Ii) ⊆ L and π(Ij ) ⊆ R.
2. w1|Ii

≡ w2|Ij
.

3. w1|Ij
≡ w2|Ii

.

Then [ π(w1)|L ] · [ π(w2)|R ] /∈ π(B(n)) and [ π(w2)|L ] · [ π(w1)|R ] /∈ π(B(n)).

Proof Let w = [ π(w1)|L ] · [ π(w2)|R ]. We show that w /∈ π(B(n)). The proof is
by contradiction. Assume that w ∈ π(B(n)). Then there is a string w′ ∈ B(n) such
that w = π(w′). Since by assumption, π(Ii) ⊆ L and π(Ij ) ⊆ R,

w|π(Ii ) = π(w1)|π(Ii ) = π(w1|Ii
) and w|π(Ij ) = π(w2)|π(Ij ) = π(w2|Ij

).

Now let π−1 be the inverse of π . Then, w′ = π−1(w). Additionally,

w′|Ii
= π−1 ◦ π(w1|Ii

) = w1|Ii
and w′|Ij

= π−1 ◦ π(w2|Ij
) = w2|Ij

.

But by assumption, w1|Ii
≡ w2|Ij

, and therefore, w′|Ii
≡ w′|Ij

. This contradicts
the assumption that w′ ∈ B(n), since for each string w′ ∈ B(n) and each i, j ∈ [m]
with i 
= j , we must have w′|Ii


≡ w′|Ij
(by definition of B(n)). The proof that

[ π(w2)|L ] · [ π(w1)|R ] /∈ B(n) is analogous.

Let n = (�log m� + 1) · m, π : [n] → [n] be a permutation of [n], and I1, ..., Im

be the uniform interval partition of [n]. Let Ii1 , ..., Iik , I�1 , ..., I�l
and Ir1 , ..., Irl be

pairwise distinct intervals of this partition satisfying the following conditions.

1. Iij is split by π for every j ∈ {1, ..., k}.
2. π(I�j

) ⊆ L and π(Irj ) ⊆ R for each j ∈ {1, ..., l}.
Let a1, ..., ak, b1, ..., bk , c1, ..., cl , d1, ..., dl be a sequence of pairwise inequivalent
even strings satisfying the following conditions.

1. aj , bj : Iij → {0, 1} are strings with domain Iij .
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2. cj : I�j
→ {0, 1} are strings with domain I�j

.
3. dj : Irj → {0, 1} are strings with domain Irj .
4. π(aj )|π(Iij

)∩L is even and π(aj )|π(Iij
)∩R is even.

5. π(bj )|π(Iij
)∩L is odd and π(bj )|π(Iij

)∩R is odd.

Next, we define a set of 2k+l strings which will give rise to a fooling set for
π(B(n)) of size 2k+l . For each (k + l) tuple of bits x ∈ {0, 1}k, y ∈ {0, 1}l , let w[xy]
be any string in B(n) satisfying the following properties.

1. For each j ∈ {1, ..., k}, if xj = 0 then w[xy]|Iij
≡ aj .

2. For each j ∈ {1, ..., k}, if xj = 1 then w[xy]|Iij
≡ bj .

3. For each j ∈ {1, ..., l}, if yj = 0 then w[xy]|I�j
≡ cj and w[xy]|Irj

≡ dj .
4. For each j ∈ {1, ..., l}, if yj = 1 then w[xy]|I�j

≡ dj and w[xy]|Irj
≡ cj .

In other words, for each j ∈ {1, ..., k}, the substring of w[xy] corresponding to
the positions in Iij is either equivalent to aj (if xj = 0), or equivalent to bj (if xj =
1). Analogously, for each j ∈ {1, ..., l}, either the substring corresponding to the
positions I�j is equivalent to cj and the substring corresponding to Irj is equivalent to
dj (if yj = 0), or vice-versa (if yj = 1). Now we let Fk,l

π be the set of pairs of strings
obtained by splitting the permuted version π(w[xy]) of each string w[xy] into two
parts of equal size.

Fk,l
π = { ( π(w[xy])|L, π(w[xy])|R ) | x ∈ {0, 1}k, y ∈ {0, 1}l} (8)

Theorem 6 The set Fk,l
π defined in (8) is a fooling set for π(B(n)) of size 2k+l .

Proof It should be clear that, by construction, the set Fk,l
π has 2k+l pairs. There-

fore, we just need to show that if xy and x′y′ are (k + l)-bit strings differing in at
least one entry, then neither (π(w[xy])|L) · (π(w[x′y′])|R) belongs to π(B(n)), nor
(π(w[x′y′])|L) · (π(w[xy])|R) belongs to π(B(n)).

Note that since xy 
= x′y′, we have that xj 
= x′
j for some j ∈ {1, ..., k}, or

yj 
= y′
j for some j ∈ {1, ..., l} (or both).

First, suppose that xj 
= x′
j for some j ∈ {1, ..., k}. We may assume without loss

of generality that xj = 0 and x′
j = 1, since otherwise we may just swap the roles

of the strings xy and x′y′. Since w[xy]|Iij
≡ aj , we have that π(w[xy])|π(Iij

)∩L is

even and π(w[xy])|π(Iij
)∩R is even. Analogously, since w[x′y′]|Iij

≡ bj , we have

that π(w[x′y′])|π(Iij
)∩L is odd and π(w[x′y′])|π(Iij

)∩R is odd. Therefore, Lemma 7

implies that neither (π(w[xy])|L)·(π(w[x′y′])|R) is in π(B(n)), nor (π(w[x′y′])|L)·
(π(w[xy])|R) is in π(B(n)).

Now suppose that yj 
= y′
j for some j ∈ {1, ..., l}. We may assume without

loss of generality that yj = 0 and y′
j = 1, since otherwise, we may simply swap

the roles of xy and x ′y′. Under this assumption, w[xy]|I�j
≡ cj , w[xy]|Irj

≡ dj ,

w[x′y′]|I�j
≡ dj and w[x′y′]|Irj

≡ cj . Therefore, since π(I�j
) ⊆ L and π(Irj ) ⊆

R, Lemma 8 implies that neither (π(w[xy])|L) · (π(w[x′y′])|R) is in π(B(n)), nor
(w[x′y′]|L) · (w[xy]|R) is in π(B(n)).
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Next, we will show that one can always choose appropriate values for k and l in
such a way that the fooling set Fk,l

π has size at least 2m/4 = 2Ω(n/ log n). We start by
stating the following proposition, which is a straightforward consequence of Hall’s
marriage theorem [10].

Proposition 2 Let G = (A∪̇B, E) be a bipartite graph with vertex partitions A and
B be such that |A| ≤ |B|. If each vertex in A has degree at least |A| then G has a
matching of size |A|.

Proof The proof is by induction on the size of A. In the base case, in which |A| = 1,
the proposition holds trivially. Now assume the proposition holds for every graph
such that |A| ≤ n. Let G′ = (A′∪̇B ′, E′) be a graph such that |A′| = n + 1. Select
an arbitrary edge v, u where v ∈ A′ and u ∈ B ′. Let G = (A∪̇B, E) be the graph
obtained by deleting v and u together with all edges incident with these vertices. Then
we have that each vertex in A has at least n neighbors. By the induction hypothesis,
G has a matching M = {{v1, u1}, ..., {vn, un}}. Then we have that M ∪ {{v, u}} is a
matching for G′.

Proposition 2 will be used to prove the following crucial lemma.

Lemma 9 Let n = m · (�log m�+ 1), π : [n] → [n] be a permutation, and I1, ..., Im

be the uniform interval partition of [n]. Let Ii1 , ..., Iik be the intervals that are split by
π . If k ≤ m/4 then there exists a sequence a1, ..., ak, b1, ..., bk of pairwise inequiva-
lent even strings where for each j ∈ {1, ..., k}, aj , bj : Iij → {0, 1} are strings with
domain Iij , and the following conditions are satisfied.

1. π(aj )|π(Iij
)∩L is even and π(aj )|π(Iij

)∩R is even.
2. π(bj )|π(Iij

)∩L is odd and π(bj )|π(Iij
)∩R is odd.

Proof Let M = {1, ..., �log m� + 1}. If s : M → {0, 1} is a string with domain M ,
then for each j ∈ {1, ..., k}, we let ps

j : Iij → {0, 1} be the string with domain Iij

such that ps
j ≡ s.

Let G = (A ∪̇ B, E) be a bipartite graph whose vertex set is partitioned into sets

A = {a1, ..., ak, b1, ..., bk} and B = {vs | s : M → {0, 1} is even}.
For each j ∈ {1, ..., k}, we add the edge {aj , vs} to E if and only if π(ps

j )|π(Iij
)∩L

is even and π(ps
j )|π(Iij

)∩R is even. Analogously, we add the edge {bj , vs} to E

if and only if π(ps
j )|π(Iij

)∩L is odd and π(ps
j )|π(Iij

)∩R is odd. We note that since

there are 2|π(Iij
)∩L|−1 even strings with domain π(Iij ) ∩ L, and 2|π(Iij

)∩R|−1 even

strings with domain π(Iij ) ∩ R, we have that there are 2|π(Iij
)|−2 ≥ m/2 strings

which are even in both π(Iij ) ∩ L and in π(Iij ) ∩ R. Therefore, the vertex aj has
at least m/2 neighbors. Analogously, the vertex bj has at least m/2 neighbors. Since
k ≤ m/4, we have that |A| ≤ m/2. Therefore, by Proposition 2, G has a matching
M with k edges. Now, for each j ∈ {1, ..., k}, we set aj = ps

j if and only if the



Theory Comput Syst (2018) 62:136–161 155

edge {aj , vs} belongs to M. Analogously, we set bj = ps
j if and only if the edge

{bj , vs} ∈ M. Since M is a matching, all strings a1, ..., ak, b1, ..., bk are pairwise
inequivalent.

Now, assume that the number k of intervals split by π is less than m/4. The fol-
lowing proposition states that there are plenty of pairs of the form (I�j

, Irj ) such that
π(I�j

) ⊆ L and π(Irj ) ⊆ R.

Proposition 3 Let n = m · (�log m� + 1), π : [n] → [n] be a permutation, and
I1, ..., Im be the uniform interval partition [n]. Let k be the number of intervals in
this partition that are split by π . If k < m/2, then there exist at least l = m/2−1−k

pairs of integers (�1, r1), (�2, r2), ..., (�l, rl) such that π(I�j
) ⊆ L and π(Irj ) ⊆ R

for every j ∈ {1, ..., l}.

Proof Recall that L = {1, ..., �n/2�} and R = {�n/2� + 1, ..., n}. Let Ii1 , ..., Iik be
the intervals that are split by π . Let L′ = L\ ⋃k

j=1 π(Iij ) and R′ = R\ ⋃k
j=1 π(Iij ).

Since k ≤ m/2 − 1, and since |Iij | = (�log m� + 1) for each j ∈ {1, ..., k}, we have
that |y| ≥ (m

2 − 1 − k)(�log m� + 1) and that |R′| ≥ (m
2 − 1 − k)(�log m� + 1).

Now we have that for each position q ∈ L′, there must exist an interval Is which is
not split by π such that q ∈ π(Is) ⊆ L. This implies that there must exist at least
l = m/2 − 1 − k intervals I�1 , ..., I�l

such that π(I�j
) ⊆ L for each j ∈ {1, ..., l}. By

a similar reasoning, there exists l intervals Ir1 , ..., Irl such that π(Irj ) ⊆ R for every
j ∈ {1, ..., l}.

By combining Lemma 9 with Proposition 3, we have the following theorem.

Theorem 7 Let n = m·(�log m�+1), π : [n] → [n] be a permutation, and I1, ..., Im

be the uniform interval partition [n]. Let k be the number of intervals split by π . If

k ≥ m/4, then the fooling set F
m
4 ,0

π is well defined. If k < m/4, then the fooling set

F
0, m

4
π is well defined.

Proof Let Ii1 , Ii2 , ..., Iik be the intervals that are split by π . If k ≥ m/4, then by
Lemma 9, there exists pairwise inequivalent strings a1, ..., am/4, b1, ..., bm/4 such
that aj , bj : Iii → {0, 1} are strings with domain Iij , where both π(aj )|π(Iij

)∩L

and π(aj )|π(Iij
)∩R are even, and both π(bj )|π(Iij

)∩L and π(bj )|π(Iij
)∩R are odd.

Therefore, these strings can be used to define the fooling set F
m
4 ,0

π .
On the other hand, if k < m/4, then Proposition 3 implies that there are at least

l = m/2 − 1 − k ≥ m/4 pairs (�1, r1), (�2, r2), ..., (�l, rl) such that π(I�j
) ⊆ L

and π(Irj ) ⊆ R for every j ∈ {1, ..., l}. Let c1, ..., cm/4, d1, ..., dm/4 be pairwise
inequivalent even strings such that for each j ∈ {1, ..., m/4}, cj : I�j

→ {0, 1} is a
string with domain I�j

, and dj : Irj → {0, 1} is a string with domain Irj . Note that
these strings exist, since there are at least m even distinct strings with domain I�j

and m even distinct strings with domain Irj for each j ∈ {1, ..., k}. Therefore, these
strings can be used to construct the fooling set F 0,m/4.
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5 Super-Linear Lower Bounds for Read-Once Circuits Excluding
a Minor

In this section we show that exponential lower bounds for the symmetric non-
deterministic complexity of a function fn : {0, 1}n → {0, 1} imply super-linear lower
bounds for the size of read-once circuits excluding a fixed graph H as a minor. We
start by establishing a connection between the symmetric-NSC of a circuit, and its
pathwidth. More precisely, we show that any function that can be computed by a
read-once circuit of pathwidth k has symmetric-NSC at most 2k · |C|.

Definition 6 (Path Decomposition) A path decomposition of a circuit C = (V , E, g)
is a sequence P = (B1, B2, ..., Bm) of subsets of vertices of G satisfying the
following properties.

i) V = ⋃n
i=1 Bi .

ii) For each i, j, k ∈ N with i < j < k, Bi ∩ Bk ⊂ Bj .
iii) For each edge (u, v) ∈ E there is an j such that {u, v} ⊆ Bj .

The sets Bi are the bags of the decomposition. The path-width of P is defined as
the size of its largest bag minus one. In other words pw(G,P) = maxi{|Bi |}−1. The
pathwidth of a graph G is defined as pw(G) = minP pw(G,P) where P ranges over
all path decompositions of G. Let C be a read-once circuit and P = (B1, B2, ..., Bm)

be a path decomposition of C. If v is a vertex of C then we let first(v,P) denote the
smallest i such that v ∈ Bi . We say that a path decomposition P is ordered if for each
two vertices v and v′, we have that first(v,P) 
= first(v′,P). It can be shown that if a
circuit C has m vertices and pathwidth w, then C has an ordered path decomposition
with O(m) bags and width O(w). If P is an ordered path decomposition of a read-
once circuit C and x is a variable labeling input v, then we define first(x,P) =
first(v,P).

Theorem 8 Let C be a read-once circuit and P = (B1, B2, ..., Bm) be a good path
decomposition of C of widthw. Let x1x2...xn be an ordering of the variables of C such
that first(xi,P) < first(xi+1,P) for each i ∈ {1, ..., n − 1}. Then for each b ∈ Σ ,
one can construct an NFA with m · |Σ |O(w) states accepting the following language.

L(C, b) = {a1a2...an ∈ Σn | C(a1a2...an) = b}.

Theorem 8 will be proven Section 5.1. As a corollary of Theorems 8 and 4 we
have a trade-off between the size of a circuit and its pathwidth.

Theorem 9 Let fn : {0, 1}n → {0, 1} be a function of symmetric-NSC snsc(fn).
Then for any read-once circuit computing fn, the following inequality is satisfied.

pw(C) + log |C| ≥ log snsc(fn). (9)

It is well known that the pathwidth of any graph is greater than its treewidth by
at most a multiplicative logarithmic factor [5]. In other words, the following relation
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between the pathwidth and treewidth of a circuit (graph) can be verified: pw(C) ≤
tw(C) · O(log |C|). Therefore, stated in terms of treewidth, (9) can be rewritten as
follows.

tw(C) · log |C| + log |C| ≥ Ω(log snsc(fn)). (10)

Theorem 10 ([3], Corollary 24 of [16]) For any fixed graph H , every H -minor-free
graph G with s vertices has treewidth at most O(

√
s).

Therefore, combining (10) with Theorem 10 we have the following theorem. We
say that a circuit C is H -minor-free if its underlying undirected graph is H -minor-
free.

Theorem 11 Let C be an H -minor-free, read-once circuit computing a Boolean

function f : {0, 1}n → {0, 1}. Then |C| ≥ Ω

((
log snsc(fn)

log n

)2
)
.

Finally, as a corollary of Theorems 11, 3 and 4 we have that the triangle-
freeness function �n, the triangle-parity function

⊕
Clique3,n and the even element

distinctness function τn require H -minor-free read-once circuits of near quadratic
size.

Corollary 1 Let C, C′ and C′′ be H -minor-free, read-once circuits computing the
triangle-freeness function �n, the triangle-parity function

⊕
Clique3,n and the even

element distinctness function τn respectively. Then |C| ≥ Ω( n2

log2 n
), |C′| ≥ Ω( n2

log2 n
),

and |C′′| ≥ Ω( n2

log4 n
).

5.1 Proof of Theorem 8

Let C be a read-once circuit and P = (B1, B2, ..., Bm) be a path decomposition of
C. If v is a vertex of C then we let first(v,P) denote the smallest i such that v ∈ Bi .
Analogously, we let last(v,P) denote the largest i such that v ∈ Bi . If (u, v) is an
edge in C then we let first(u, v,P) denote the smallest i such that {u, v} ⊆ Bi . For
each i ∈ {1, ..., m}, and each vertex v ∈ Bi the set of active in-neighbors of v on Bi

is defined as follows.

AI(i, v) = {u ∈ Bi | (u, v) ∈ E and first(u, v,P) = i}
Intuitively, if u is an in-neighbor of v, then u belongs to AI(i, v) if Bi is the first

bag containing both u and v together. We note that for each edge (u, v) ∈ E there
exists a unique i such that u ∈ AI(i, v). Intuitively, given an initialization for the input
variables of C, we will simulate the evaluation of the gates of C directly into the path
decomposition P = (B1, B2, ..., Bm). The value of a vertex v is computed gradually
while the path decomposition is traversed from left to right. For each i, the set AI(i, v)

consists of those vertices in Bi whose value will be taken into consideration toward
the computation of the total value of v. This process is well defined due to the fact
that for each in-neighbor u of v, there exists precisely one i for which u ∈ AI(i, v).



158 Theory Comput Syst (2018) 62:136–161

The process of propagating the value of a circuit along a path decomposition can
be formalized via the notion of evaluation defined below (Definition 7). If v is a
vertex of C labeled with a ⊕-gate of arity k and AI(i, v) = {u1, ..., ur}, then we
write

∑
u∈AI(i,v) ti (u) as a shortcut for ti (u1) ⊕ ti (u2) ⊕ ... ⊕ ti (ur ). Note that since

the operation ⊕ is assumed to be associative and commutative, we do not need to
worry with brackets nor with the order in which operations are performed. Also, for
simplicity, we may assume that the operation ⊕ has an identity5 so that we can set∑

u∈AI(i,v) ti (u) as the identity of ⊕ whenever AI(i, v) is empty.

Definition 7 (Evaluation) Let C = (V , E, g) be a circuit where all inputs are ini-
tialized, and let P = (B1, B2, ..., Bm) be a path decomposition of C. An evaluation
of C on P is a sequence E = (p1, t1), (p2, t2), ..., (pn, tm) of pairs of functions
pi : Bi → Σ and ti : Bi → Σ such that the following conditions are satisfied.

1. For every i ∈ {1, ..., m}, and every v ∈ Bi ,

(a) if v is an initialized input vertex then pi(v) = ti (v) = g(v),
(b) if i = first(v,P) then pi(v) = ∑

u∈AI(i,v) ti (u).
(c) If i = last(v,P) then pi(v) = ti (v).

2. For every i ∈ {1, ..., m − 1}, and every v ∈ Bi ∩ Bi+1,

(a) ti+1(v) = ti (v).
(b) pi+1(v) = pi(v) + ∑

u∈AI(i,v) ti+1(u).

For each i, and each vertex v ∈ Bi , we say that ti (v) is the total evaluation of
v on bag Bi , while pi(v) is the partial evaluation of v on Bi . Intuitively the value
of ti (v) is preemptively guessed, and ti (v) = tj (v) for each two bags Bi and Bj

containing v. On the other hand, the partial evaluation pi(v) keeps track of the partial
sum corresponding to all inputs of v that have appeared up to bag Bi . At the last bag
in which v occurs, the partial evaluation of v must equal its total evaluation.

To formalize the intuitive explanation given above, let E be an evaluation of C on
P and let IE : Inputs(C) → Σ denote the function that initializes the inputs of C
consistently with the values assigned by E to these inputs along the path decomposi-
tion. More precisely, for each input u of C, IE (u) = a if and only if there is some i

such that u ∈ Bi and ti (u) = a. We denote by val(C, IE , v) the value of the circuit at
gate v when the inputs of C are initialized according to IE . Lemma 10 below states
that an evaluation E of a read-once circuit C on a path decomposition P is consistent
with the computation realized by C when its inputs are initialized according to IE . In
other words, val(C, IE , v) = ti (v) for each i and each v ∈ Bi .

Lemma 10 Let C be a read-once circuit, P = (B1, B2, ..., Bm) be a path decompo-
sition of C and E = (p1, t1)...(pm, tm) be an evaluation of C on P . Then for each
i ∈ {1, ..., m}, and each vertex v ∈ Bi , ti (v) = val(C, IE , v).

5For instance, the identity of ∧ is 1, while the identity of ∨ is 0. The requirement of an identity can easily
be removed by replacing Condition 1b with a slightly more complicated initialization condition.
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Proof The proof is by induction on the depth of the vertex v in C. In the base case,
v is an input vertex. In this case, there exists some i for which v ∈ Bi and IE (v) =
val(C, IE , v) = ti (v). Since the total sum ti (v) has the same value for each bag
containing the vertex v, we have that tj (v) = IE (v). Now assume that the claim
is valid for every vertex of depth at most d and let v be a vertex of depth d + 1.
Note that for each edge (u, v) there is a unique j such that u ∈ AI(j, v). Therefore,
by Condition 1b and Condition 2b, we have that if i = last(v,P), then pi(v) =∑

(u,v)∈E t(u) = ∑
(u,v)∈E val(C, IE , u) = val(C, IE , v). Since by Condition 1c,

pi(v) = ti (v), we have that ti (v) = val(C, IE , v).

Let C be a read-once circuit. For each variable x labeling a vertex v of C, we write
first(x,P) in place of first(v,P). In other words, first(x,P) denotes the index of the
first bag of P in which the vertex v occurs. Note that first(x,P) is well defined, since
in a read-once circuit each input variable labels at most one vertex. Now let x1, ..., xn

be the sequence of all variables labeling inputs of C, such that first(xj ,P) <

first(xj+1,P) for each j ∈ {1, ..., n}. Then an assignment to the inputs of C can be
represented by a string a = a1a2...an where for each j ∈ {1, ..., n}, aj is the value
assigned to variable xj .

Proof of Theorem 8 For each i ∈ {1, ..., m}, we say that a pair of functions p, t :
Bi → Σ is an assignment for Bi , if together, p and t satisfy Conditions 1a–1c of
Definition 7. In our first step toward the proof of Theorem 8, we will construct an
NFA that accepts all sequences of assignments encoding an evaluation of C on P . To
make this notion precise, for each i ∈ {1, ..., m}, let

i = {(p, t) | (p, t) is an assignment for Bi}
be the set of all assignments for Bi . Since the width of P is w, we have that
|i | ≤ |Σ |2w. We say that i is the alphabet of assignments of Bi . Now let
 = ⋃m

i=1 i . We construct an NFA A = (Q, , �, Q0, F ) that accepts a string
E = (p1, t1)(p2, t2)...(pm, tm) over  if and only if E is an evaluation of C on
P . The set of states Q = Q0 ∪̇ Q1 ∪̇...∪̇ Qm is partitioned into m + 1 levels.
The level Q0 = {q0} has a unique initial state. For each i ∈ {1, ..., m}, the level
Qi = {qi,p,t |(p, t) ∈ i } has one state qi,p,t for each assignment (p, t) of the bag
Bi . The final states of A are those lying at Qm, that is to say, F = Qm. We say that
an assignment (pi, ti) of Bi is compatible with an assignment (pi+1, ti+1) of Bi+1
if the functions pi , pi+1, ti and ti+1 satisfy Conditions 2b and 2b of Definition 7.
The transition relation � has one transition (q0, (p1, t1), q1,p1,t1) for each assign-
ment (p1, t1) of the bag B1, and one transition (qi,pi ,ti , (pi+1, ti+1), qi+1,pi+1,ti+1)

for each pair (pi, ti) and (pi+1, ti+1) of compatible assignments. It is straightforward
to check that A accepts a string E = (p1, t1)(p2, t2)...(pm, tm) if and only if for each
i ∈ {1, ..., m}, (pi, ti) is an assignment of Bi , and for each i ∈ {1, ..., m − 1}, (pi, ti)

is compatible with (pi+1, ti+1). In other words, E is accepted by A if and only if E is
an evaluation of C on P . Now, let v be the output vertex of C. Let A′ be the automaton
over  obtained by deleting all states qi,p,t such that v ∈ Bi and t (v) 
= b. Then we
have that A′ accepts an evaluation E if and only if it causes the circuit C to evaluate
to b.
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Finally, we will construct an automaton A′′ that extracts from each such evaluation
E , only the information concerning the assignments of values to the uninitialized
variables. Let i1 = first(x1,P), ..., in = first(xn,P) and let vi be the unique input
vertex of C labeled with xi . Consider the projection α :  → {0, 1, ε} (where ε is the
empty string) whose action is defined as follows.

α(pi, ti) =
⎧⎨
⎩

ε if i /∈ {i1, ..., in}
0 if i in {i1, ..., in} and ti (vi) = 0
1 if i in {i1, ..., in} and ti (vi) = 1

(11)

One can then construct in time O(|Q|+ |�|) a non-deterministic finite automaton
α(A) which accepts precisely those strings α(p1, t1)α(p2, t2)...α(pm, tm) ∈ (Σ ∪
{ε})∗ with the property that (p1, t1)(p2, t2)...(pm, tm) is accepted by A. If we regard
the symbol ε as being the empty string symbol, then the automaton α(A) may be
regarded as an automaton with ε-transitions that accepts a string a1a2...an ∈ Σn if
and only if the circuit C evaluates to b when its inputs x1x2...xn are are initialized with
a1a2...an. This automaton can be transformed into an automaton without ε-transitions
with the same number of states by folklore results in automata theory.
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