
Theory Comput Syst (2018) 62:63–92
DOI 10.1007/s00224-017-9805-6

A Randomized Polynomial Kernel for Subset Feedback
Vertex Set

Eva-Maria C. Hols1 ·Stefan Kratsch1

Published online: 11 September 2017
© Springer Science+Business Media, LLC 2017

Abstract The SUBSET FEEDBACK VERTEX SET problem generalizes the classi-
cal FEEDBACK VERTEX SET problem and asks, for a given undirected graph G =
(V , E), a set S ⊆ V , and an integer k, whether there exists a set X of at most k

vertices such that no cycle in G − X contains a vertex of S. It was independently
shown by Cygan et al. (ICALP ’11, SIDMA ’13) and Kawarabayashi and Kobayashi
(JCTB ’12) that SUBSET FEEDBACK VERTEX SET is fixed-parameter tractable for
parameter k. Cygan et al. asked whether the problem also admits a polynomial ker-
nelization. We answer the question of Cygan et al. positively by giving a randomized
polynomial kernelization for the equivalent version where S is a set of edges. In a
first step we show that EDGE SUBSET FEEDBACK VERTEX SET has a randomized
polynomial kernel parameterized by |S| + k with O(|S|2k) vertices. For this we use
the matroid-based tools of Kratsch and Wahlström (FOCS ’12) that for example were
used to obtain a polynomial kernel for s-MULTIWAY CUT. Next we present a prepro-
cessing that reduces the given instance (G, S, k) to an equivalent instance (G′, S′, k′)
where the size of S′ is bounded by O(k4). These two results lead to a randomized
polynomial kernel for SUBSET FEEDBACK VERTEX SET with O(k9) vertices.

Keywords Parameterized complexity · Kernelization · Subset feedback vertex set

This article is part of the Topical Collection on Theoretical Aspects of Computer Science

A preliminary version of this work appeared in the proceedings of the 33th International Symposium
on Theoretical Aspects of Computer Science (STACS 2016).

� Eva-Maria C. Hols
hols@cs.uni-bonn.de

Stefan Kratsch
kratsch@cs.uni-bonn.de

1 Friedrich-Ebert-Allee, 144 D-53113 Bonn, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-017-9805-6&domain=pdf
mailto:hols@cs.uni-bonn.de
mailto:kratsch@cs.uni-bonn.de

64 Theory Comput Syst (2018) 62:63–92

1 Introduction

In the SUBSET FEEDBACK VERTEX SET (SUBSET FVS) problem we are given an
undirected graph G = (V , E), a set of vertices S ⊆ V , and an integer k, and have to
determine whether there is a set X of at most k vertices that intersects all cycles that
contain at least one vertex of S. Clearly, because we can choose S = V , this is a gen-
eralization of the well-studied FEEDBACK VERTEX SET (FVS) problem where, given
G and k, we have to determine whether some set X of at most k vertices intersects
all cycles in G. FEEDBACK VERTEX SET has been extensively studied in parameter-
ized complexity: It is known to be fixed-parameter tractable (FPT) with parameter k,
i.e., solvable in time f (k) · |V |c, and after a series of improvements the fastest known
algorithms take deterministic timeO∗(3.619k) [11] and randomized timeO∗(3k) [2].
It is also known to admit a polynomial kernelization [1], i.e., there is an efficient
algorithm that reduces any instance (G, k) of FVS to an equivalent instance of size
polynomial in k; the best known kernelization creates an equivalent instance with
O(k2) vertices [21].

In 2011, Cygan et al. [3] and Kawarabayashi and Kobayashi [10] indepen-
dently showed that SUBSET FVS is FPT. The algorithm of Cygan et al. runs in
time 2O(k log k)nO(1), while the one of Kawarabayashi and Kobayashi runs in time
O(f (k) · n2m). Wahlström [23] then gave the first single-exponential algorithm with
running time 4k · nO(1); an algorithm with subexponential dependence on k is ruled
out under the Exponential-Time Hypothesis (e.g., because SUBSET FVS general-
izes VERTEX COVER). More recently, Lokshtanov et al. [13] gave algorithms with
deterministic time 2O(k log k) · (n + m) and randomized time O(25.6k · (n + m)).

Cygan et al. [3] ask whether the SUBSET FVS problem also admits a polynomial
kernelization and suggest that the matroid-based tools of Kratsch and Wahlström
[12] could be applicable. The latter work uses representative sets of independent
sets in matroids to obtain, among others, polynomial kernels for s-MULTIWAY CUT

and DELETABLE TERMINAL MULTIWAY CUT (DTMWC) with O(ks+1) and O(k3)

vertices, respectively. In MULTIWAY CUT we are given a graphG = (V , E), a set T ⊆
V of terminals, and an integer k and have to determine whether deletion of at most
k non-terminal vertices separates all terminals. In s-MULTIWAY CUT the terminal set
has size at most s, and in DTMWC we are also allowed to delete terminals (which is
essentially the same as restricting terminals to be degree one).

Interestingly, Cygan et al. [3] claim a polynomial-time reduction from MULTIWAY

CUT to SUBSET FVS that does not change the parameter value and, hence, implies that
SUBSET FVS is at least as hard as MULTIWAY CUT regarding existence of polynomial
kernels.1 However, the construction given in [3, Section 5] works only as a reduction
of DELETABLE TERMINAL MULTIWAY CUT to SUBSET FVS because it is not guar-
anteed that from a solution to the SUBSET FVS instance one obtains a solution with k

deleted non-terminal vertices. Since there is presently no such reduction from MUL-
TIWAY CUT to SUBSET FVS, a polynomial kernel for the latter does not imply one for
the former. Thus, itmakes sense to study kernels for SUBSET FVS beforeMULTIWAY CUT.

1The reduction builds upon a previous one by Even et al. [6] who reduce MULTIWAY CUT to WEIGHTED

SUBSET FVS using a single vertex in S that has infinite weight.

Theory Comput Syst (2018) 62:63–92 65

Our work We apply the matroid-based tools of Kratsch and Wahlström [12] and
develop a randomized polynomial kernelization that reduces instances (G, S, k) of
SUBSET FVS to equivalent instances with at most O(k9) vertices; this is our main
result. Similarly to Cygan et al. [3] we also work on EDGE SUBSET FVS where S is
a set of edges of G and X needs to intersect all cycles that contain at least one edge
of S; since there are polynomial-time reductions between these two problems that
do not change the solution size k, they are equivalent when it comes to kernelization
complexity [3]. The result is obtained in two parts.

In the first part (Section 3) we establish a randomized polynomial kerneliza-
tion for EDGE SUBSET FVS parameterized by |S| + k that reduces to equivalent
instances with at most O(|S|2k) vertices. Note that nontrivial instances have k < |S|
since one could otherwise remove S by deleting one endpoint of each edge in S.
Thus, parameterization by |S| suffices, but O(|S|2k) gives a tighter overall bound
than O(|S|3).

At high level, this part is similar to the polynomial kernel for DELETABLE TER-
MINAL MULTIWAY CUT. We show that certain solutions X, later called dominant
solutions, allow particular path packings in the underlying graph G. For DELETABLE

TERMINAL MULTIWAY CUT this is achieved by a fairly simple replacement argument
for solutions X that are not sufficiently well connected to connected components
of G − X. For EDGE SUBSET FVS the endpoints T = V (S) of edges in S can be
regarded as terminals, but this gives a different separation property: A solution X

of DELETABLE TERMINAL MULTIWAY CUT generates many connected components,
because every connected component inG−X contains at most one terminal. Whereas
a solution X of EDGE SUBSET FVS does not need to generate many connected com-
ponents in G − X since only S-cycles need to be prevented, and thus connected
components of G − X may contain many vertices of T . Rather, in G − X there must
be a tree-like (or forest-like) structure with components without S-edges playing the
role of nodes and with edges given by S. Nevertheless, using the tree-like structure,
a replacement argument can be found, implying that dominant solutions must create
many components in (G − X) − S containing vertices of T and be well connected to
them. This allows to set up a gammoid on G−S with sources T and apply, as in [12],
a result of Lovász [14] (made algorithmic by Marx [16]) on representative sets in
(linear) matroids that is then guaranteed to generate a superset of X. Randomization
is only needed to generate a matrix representation for the gammoid.

In the second part (Section 4) we give a (deterministic) polynomial-time prepro-
cessing that, given an instance (G, S, k) of EDGE SUBSET FVS, returns an equivalent
instance (G′, S′, k′) with k′ ≤ k and |S′| ∈ O(k4). Together with the randomized
kernelization from the first part this implies the claimed randomized kernelization to
O(k9) vertices.

A reduction of the number of S-edges is also a crucial ingredient in the FPT algo-
rithm for EDGE SUBSET FVS by Cygan et al. [3]. They achieve |S| ∈ O(k3), but it is
in a slightly more favorable setting: Using iterative compression, it suffices to solve
the task of finding a solution X′ of size k when given a solution X of size k+1. (This
is well known in parameterized complexity, and we prefer not to repeat it here [19].)
Considering some unknown solution X′ of size k, one can guess the intersection D

of X′ with X, by trying all O(2k+1) possibilities. For the correct guess D = X′ ∩ X,

66 Theory Comput Syst (2018) 62:63–92

the remaining problem is to find for (G − D, S \ D, k − |D|) a solution Z′ of size
at most k − |D| that is disjoint from Z = X \ D, since Z′ = X′ \ D would be such
a solution; here S \ D denotes the set of edges in S with no endpoint in D. Cygan et
al. make the nice observation that the guessing also allows to assume that there is no
other solution X′ with an even larger intersection with X.

In contrast, we cannot afford to run iterative compression for a kernelization to
get a starting solution of size k + 1 and, as is common, we have to start with an
approximate solution Z, which can be assumed to be of size at most 8k using an 8-
approximation algorithm of Even et al. [7]. The idea of guessing the intersection of an
optimal solution with Z is infeasible regarding both time and the number of created
instances. Thus, while several structures like z-flowers or disjoint x, y-paths contain-
ing S-edges appear in both approaches, many things have to be handled differently.
For example, having k+2 disjoint x, y-paths containing S-edges for x, y ∈ Z implies
that one of x and y must be in every solution of size k; Cygan et al. can stop here
because the solution would not be disjoint from Z; we need to instead store the infor-
mation about x and y to later detect S-edges that can be safely removed. Like Cygan
et al., we also use Gallai’s A-path Theorem but we avoid the 2-expansion lemma by
using the properties of a blocking set of size at most 2k differently. (Such a blocking
set can be found if certain flowers of order k + 1 do not exist, using Gallai’s A-path
Theorem.) Cygan et al. compute a blocking set B of size at most 3k to find an F -
flower of order |X| (with F ⊆ V outer-abundant; see [3, Definition 3.4]) under the
assumption that certain F -flowers of order k+1 do not exist and they show that there
exists a solution that contains X (under the assumption that there exists a solution
that is disjoint from F). We cannot assume that our solution is disjoint from F and
we have to take another approach. Moreover, we observe that z-flowers can be found
via matroid parity on an appropriate gammoid.2

2 Preliminaries

We use standard graph notation, mostly following Diestel [5]. All graphs are undi-
rected and may contain multi-edges and loops; accordingly, they may contain cycles
of length one and two (formed by loops and multi-edges, respectively). An edge
e ∈ E is called a bridge if (V , E \ {e}) has more connected components than G. For
a set X ⊆ V , let G[X] denote the subgraph of G induced by X and let NG(X) denote
the neighborhood of X in G, i.e., NG(X) = {v ∈ V \ X | ∃u ∈ X : {u, v} ∈ E}.
Given two disjoint sets X, Y ⊆ V , by E(X, Y) we denote the set of edges that have
one endpoint in X and one endpoint in Y . For a set E′ ⊆ E of edges let V (E′) be the
set of vertices that are incident with at least one edge in E′. For X ⊆ V and F ⊆ E

we shorthand G − X for G[V \ X] and G − F for (V (G), E(G) \ F); if X = {x}
then we may also write G − x instead of G − {x}. Note that the graph (G − X) − F

is the same graph as the graph (G − F) − X and we will drop the parentheses.

2The latter is deterministic by applying a specialized matroid parity algorithm due to Tong et al. [22].

Theory Comput Syst (2018) 62:63–92 67

For A ⊆ V a path with endpoints in A and internal vertices not in A is called an
A-path. The following theorem about A-paths was already used by Cygan et al. [3]
for SUBSET FVS and in the quadratic kernelization for FEEDBACK VERTEX SET by
Thomassé [21].

Theorem 1 (Gallai [9]) Let A ⊆ V and k ∈ N. If the maximum number of vertex-
disjoint A-paths is strictly less than k + 1, then there exists a set B ⊆ V of at most
2k vertices that intersect every A-path.

In particular it is possible to find either (k + 1)-disjoint A-paths or a set B that
intersects all A-paths in polynomial time. This follows from Schrijver’s proof of
Gallai’s theorem [20].

Let (G, S, k) be an instance of the EDGE SUBSET FVS problem. We call a cycle
C an S-cycle, if at least one edge of S is contained in C. Let x be a vertex of V . A
set {C1, C2, . . . , Ct } of S-cycles that contain x is called an x-flower of order t , if the
sets of vertices Ci \ {x} are pairwise disjoint. Note that if there exists an x-flower of
order at least k + 1, then the vertex x must be in every solution for (G, S, k), if one
exists. A set B ⊆ V \ {x} of size t is called an x-blocker of size t , if each S-cycle
through x also contains at least one vertex of the set B.

Parameterized complexity A parameterized problem is a language Q ⊆ �∗ ×
N, where � is any finite set. The second component of an instance (x, k) is called
the parameter. We say that a parameterized problem Q is fixed-parameter tractable
(FPT) if there exists a computable function f : N → N and an algorithm A that on
input of (x, k) ∈ Q × �∗ takes time at most f (k) · |x|O(1) and correctly decides
whether (x, k) ∈ Q. A kernelization of a parameterized problem Q is an algorithm
K that on input of (x, k) ∈ �∗ × N takes time polynomial in |x| + k and returns an
equivalent instance (x′, k′) ∈ �∗ × k with |x′| + k′ ≤ h(k), where h is a computable
function. The function h is called the size of the kernel. We say thatK is a polynomial
kernelization if h(k) ∈ O(kc) for some constant c. The polynomial kernelization
obtained in this paper is randomized, which means that there is a small chance for the
reduced instance to not be equivalent to the input. The error probability can be made
exponentially small in the input size without increasing the size of the kernelization.
Similarly to previous work [12], the only source for error is the need to compute
a matrix representation for a particular matroid (preliminaries on matroids follow
below).

Matroids, gammoids, and representative sets A matroid M = (U, I) consists of
a finite set U and a family I of subsets of U , called independent sets, fulfilling the
following properties: (i) ∅ ∈ I; (ii) if X ⊆ Y and Y ∈ I then also X ∈ I; and (iii)
if X, Y ∈ I with |X| < |Y | then there exists y ∈ Y \ X such that X ∪ {y} ∈ I. The
rank of of a matroid M , denoted by r(M), is the size of the largest independent set
of the matroid M .

Let A be a matrix over an arbitrary field F . Let U be the set of columns of A and
let I be the family of all sets X ⊆ U of columns that are linearly independent over
F . Then M = (U, I) is a matroid, called the linear matroid or vector matroid of A,

68 Theory Comput Syst (2018) 62:63–92

and we say that A represents M . We say that a matroid M is representable over a
field F , if there exists a matrix A over field F that represents M . If M = (U, I) is
representable over some field, then it is also representable by an r(M) × |U | matrix;
by Gaussian elimination we can always reduce a representing matrix for M to one
with r(M) many rows (cf. [16]). Let M1 = (U1, I1) and M2 = (U2, I2) be two
matroids with U1 ∩U2 = ∅. The direct sum M1 ⊕M2 is a matroid over U = U1 ∪U2
with independent sets I = {X ⊆ U | X ∩ U1 ∈ I1, X ∩ U2 ∈ I2}. If A1 and A2
represent the two matroids over the same field F , then matrix A = diag(A1, A2) :=(

A1 0
0 A2

)
represents M1 ⊕ M2.

Let G = (V , E) be a graph that may have both directed and undirected edges and
let S ⊆ V . A set T ⊆ V is linked to S if there exist |T | vertex-disjoint paths from
S to T . Thus every vertex in T is endpoint of a different path from S. It holds that
M = (U, I), where U ⊆ V and I contains all sets T ⊆ U that are linked to S in
G, is a matroid [18]. The matroid M is also called the gammoid on G with sources
S and ground set U ; if U = V then M is also called a strict gammoid. Marx [16]
gave a randomized (Monte Carlo) polynomial-time procedure for finding a matrix
representation of a strict gammoid. The error probability can be made exponentially
small in the size of the graph. (This is the only source of randomness and error in our
kernelization.) A matrix representation for a gammoid for graph G = (V , E) with
ground set U � V and sources S can be obtained from the strict gammoid for G and
S by simply deleting columns corresponding to elements of V \ U .

Let A, B be independent sets in a matroid. We say that A extends B if A ∩ B = ∅
and A ∪ B is again an independent set. Note that from the independence of A ∪ B

follows the independence of A and B due to the second matroid property.

Definition 1 Let M = (U, I) be a matroid, let A ⊆ I, and let q ∈ N. A set A′ ⊆ A
is q-representative for A if for every independent set B of size at most q there is a
set A ∈ A that extends B if and only if there is also a set A′ ∈ A′ that extends B.

Observe that if A′ is q-representative for A and there exists a set A ∈ A that
uniquely extends some given independent set I of size at most q, then this implies
that A ∈ A′.

The following theorem of Lovász [14] proves that for any linear matroid there exist
small representative sets. It was made algorithmic by Marx [16] and, thus, permits to
find representative sets in polynomial time when given a matrix representation of the
matroid. A faster algorithm for this task was developed recently by Fomin et al. [8].

Lemma 1 (Lovász [14], Marx [16]) Let M be a linear matroid of rank q + p,
and let T = {I1, I2, . . . , It } be a collection of independent sets, each of size p.
If |T | >

(
q+p

p

)
, then there is a set I ∈ T such that T \ {I } is q-representative

for T . Furthermore, given a representation A of M , we can find such a set I in
f (q, p) · (‖A‖t)O(1) time, where f (q, p) is a polynomial in (p + q)p.

Given a gammoid M we can compute in randomized polynomial-time a represen-
tation of the gammoid. Together with Theorem 1 it follows that given a gammoid M

Theory Comput Syst (2018) 62:63–92 69

and a collection T = {I1, . . . , It } of independent sets, each of constant size p, we
can find in randomized polynomial time a set T ′ ⊆ T of size at most

(
q+p

p

)
that is

q-representative for T .

3 Randomized polynomial kernelization for parameter |S| + k

In this section we present a randomized polynomial kernelization for EDGE SUBSET

FVS parameterized by |S| + k. Because deletion of one endpoint of each edge in S

always constitutes a feasible solution, nontrivial instances have |S| > k. Thus, our
kernelization also works for parameter |S| alone. However, to achieve a better bound
for EDGE SUBSET FVS parameterized by k only it is beneficial to give the kernel size
in terms of |S| and k rather than |S| alone.

We use representative sets of independent sets of matroids to obtain a kernel of
size O(|S|2k). Our approach is similar to the kernelization of DELETABLE TERMI-
NAL MULTIWAY CUT(k) [12]. As in that paper we construct path packings such that
certain vertices can be shown to be in a representative set. Note that, unlike for multi-
way cut-type problems, a solution X ⊆ V will not necessarily create many connected
components. Rather, as used also in the FPT algorithm of Cygan et al. [3], it creates a
particular tree-like structure in G−X. Nevertheless, endpoints of edges in S, denoted
T := V (S), will play the role of terminals that need to be separated in a certain way;
hence a vertex x in T is called a terminal. We will focus on the graph G−S, i.e., with
edges of S deleted, in which a solution X creates a grouping of (not deleted) termi-
nals into connected components. The structure of these components will be crucial
for a replacement argument (Lemma 3) that leads to the required path packing; this
constitutes one of the key arguments for our result.

The kernelization consists of four steps. In the first step we show that if an instance
is a yes-instance then there exists a solution X with a certain path packing from T to
X. Then we define an appropriate gammoid to find in a next step a representative set
of size O(|S|2k) which is (essentially) a superset of X using Lemma 1. Finally we
explain how to reduce the graph G, using the superset of the last step, to obtain an
equivalent instance of EDGE SUBSET FVS.

Analyzing solutions. Let (G, S, k) be a yes-instance of EDGE SUBSET FVS(k +
|S|). We say that a solution X for (G, S, k) is dominant, if it has minimum size and
contains a maximal number of vertices from T among solutions of minimum size.
The vertices in X ∩ T correspond to endpoints of edges in S that we delete and the
vertices in X0 = X \ T block all x-y paths with {x, y} ∈ S0 = {e ∈ S | e ∩ X = ∅},
except the one that consists of the edge {x, y}. We show that X is linked to T in a
strong sense, with vertices of X0 playing a special role.

Lemma 2 Let X be a dominant solution for (G, S, k) and x any vertex in the set
X0 = X \ T . There exist |X| + 2 paths from T to X in G − S that are vertex-disjoint
except for three paths ending in vertex x. Moreover, the paths can be chosen in such a
way that each connected component of G−X −S is intersected by at most one path.

70 Theory Comput Syst (2018) 62:63–92

We use Hall’s Theorem and the lemma below to prove this. For this purpose we
consider the two graphs G − X and G − X − S which simplify the analysis of a
dominant solution. We call a connected component K of G − X − S interesting if it
contains a terminal, i.e., if T ∩V (K) = (T \X)∩V (K) �= ∅, and we say that x ∈ X0
sees a connected component K if x is adjacent to a vertex of K in G. We extend this
definition by saying that Y ⊆ X0 sees a component K if at least one vertex y ∈ Y

sees K .

Lemma 3 Let X be a dominant solution and let X0 = X \ T . Every nonempty set
Y ⊆ X0 sees at least |Y | + 2 interesting components of G − X − S.

Proof Assume for contradiction that there exists a nonempty set Y ⊆ X0 that sees at
most |Y |+1 interesting components of G−X −S. Let C denote the set of connected
components ofG−X−S, let Ci ⊆ C denote the set of interesting components seen by
Y , and let Co ⊆ C denote the other components seen by Y . We will show that there is
an alternative solution X′ = (X \Y)∪Y ′ that is smaller than X or that contains more
vertices of T , contradicting the choice of X as a dominant solution. To construct X′
or, more precisely, to construct Y ′ we consider the graphs G − X and G − (X \ Y).

We study the structure of G − (X \ Y) to find a set Y ′ that intersects all S-cycles
in G − (X \ Y). Accordingly, we are interested in the structure that is induced by the
S-edges in G − (X \ Y) and want to compare it to the structure that is induced by the
S-edges in G − X.

To this end, we define, for any subgraphG−Z ofGwithZ ⊆ V , the S-component
graph HZ that has a vertex for each connected component of G−Z−S and for every
S-edge e an edge between two (not necessary different) vertices which correspond
to the connected components that contain the endpoints of e; note that HZ can have
parallel edges and loops. We say that G − Z is an S-forest if the S-component graph
HZ is a forest. Observe that a set Z is a solution if and only if G − Z is an S-forest.
Note that vertices that correspond to components without terminals in G − Z are
isolated in HZ because they are not incident with S-edges; e.g., this is true in HX for
non-interesting components of G − X − S.

Now, we compare the S-component graphs of G−X and G− (X \Y) to construct
an alternative solution X′ (Fig. 1); let C′ denote the set of connected components of

Fig. 1 The left picture shows the connected component C+, where the ellipse-shaped bubbles represent
the connected components of C+ − S − Y . Here C∗

i = B,C,D,E, F,G and CinC0 | C ⊆ C+ = A. The
right picture shows the graph F′. The dashed edges (in both pictures) belong to the edges in S

Theory Comput Syst (2018) 62:63–92 71

G − (X \ Y) − S. The connected components of G − X − S that are seen by Y are
not connected components in G − (X \ Y), because we do not delete Y . Therefore, a
connected component in C′ either contains some vertices of Y and some components
in Ci ∪ Co or is equal to a component in C \ (Ci ∪ Co). Thus, the consequence of
not deleting Y is that we merge some connected components in Ci ∪ Co. However,
the S-component graphs HX and HX\Y have the same number of edges, because
the sets X and X \ Y intersect the same set of S-edges. This follows from the fact
that Y ⊆ X0 = X \ T and hence that there are no additional vertices of T , i.e.,
T \ X = T \ (X \ Y). In general, G − (X \ Y) will not be an S-forest: The merging
of vertices may lead to loops (from S-edges with both ends in the same component)
and longer cycles in HX\Y .

We will show that deleting at most |Y | edges of S, i.e., deleting a set Y ′ of at most
|Y | endpoints of S-edges, will suffice for G−((X\Y)∪Y ′) to be an S-forest, making
(X \ Y) ∪ Y ′ a valid solution.

Let C+ be an arbitrary connected component in G− (X \Y) whose corresponding
connected component in HX\Y is not cycle-free. Note that C+ is a union of con-
nected components in C′ that are connected by S-edges. Therefore C+ must contain
connected components in C that are seen by Y . Let C∗

i = {C ∈ Ci | C ⊆ C+} be the
set of interesting components seen by Y that are contained in C+, let a = |C∗

i |, and
let b = |{C ∈ Co | C ⊆ C+}| be the number of non-interesting components seen by
Y that are contained in C+.

In G − X the connected component C+ may decompose into several separate
connected components because we additionally delete the vertices of Y . Since Y sees
only components in Ci ∪ Co the set C+ decomposes into at most a + b separate
components by deleting Y . Recall that components in Co are isolated in G − X and
contain no vertices of T and, thus, they do not contribute any S-edges to C+. It
remains to consider the a components of C∗

i .
Every connected component in C∗

i corresponds to a vertex in the forest HX. Let
F be the subforest of HX that contains all connected components of HX that con-
tain at least one connected component of C∗

i as a vertex. Not deleting Y corresponds
to merging a vertices in this forest into d ≥ 1 new vertices; let F ′ be the con-
nected subgraph in HX\Y that results from F by this operation. If the subforest F

consists of c vertices and, thus, at most c − 1 S-edges then we obtain c − a + d

vertices that are connected by at most c − 1 edges for the subforest F ′. It there-
fore suffices to delete at most (c − 1) − ((c − a + d) − 1) = a − d ≤ a − 1
S-edges, i.e., to delete one endpoint of each of at most a − 1 S-edges, to obtain a
forest-structure in F ′. (We cannot delete just any a − 1 edges but we can keep any
c−a+d −1 S-edges spanning the c−a+d components and delete the at most a−1
remaining S-edges.)

Overall, we get that a connected component C+ in G− (X \Y) that fully contains
a interesting components from Ci requires at most a−1 vertex deletions of endpoints
of S-edges to obtain an S-forest. Since Y sees at most |Y | + 1 such components, the
worst case is achieved by a single component C+ containing all |Y | + 1 interesting
components in Ci ; this still costs at most (|Y | + 1) − 1 = |Y | vertex deletions, as
claimed.

72 Theory Comput Syst (2018) 62:63–92

Let Y ′ contain all the endpoints of S-edges that we delete to get an S-forest. We
know that |Y ′| ≤ |Y | and thus |(X \ Y) ∪ Y ′| ≤ |X|. Moreover, by the initial con-
siderations, we know that X′ = (X \ Y) ∪ Y ′ is a feasible solution as G − X′ is an
S-forest. If |Y ′| < |Y |, including the case that Y ′ = ∅, then |X′| < |X| as Y �= ∅; this
contradicts optimality of X (required for being a dominant solution). If |Y ′| = |Y |
then Y ′ �= ∅ and X′ is an optimal solution that contains more vertices of T ⊇ Y ′,
contradicting the choice of X as a dominant solution. Thus, every nonempty set Y

must see at least |Y | + 2 interesting connected components, as claimed.

Now we are ready to give the proof of Lemma 2. The argument relies on Hall’s
Theorem and is similar to the one for DELETABLE TERMINAL MULTIWAY CUT [12].

Proof of Lemma 2 We know that every nonempty set Y ⊆ X0 sees at least |Y | + 2
interesting components of G − X − S by Lemma 3. To prove the existence of the
required path packing we construct a bipartite graph where one side consists of the
interesting components and the other side consists of the set X0 and two copies x′, x′′
of the vertex x ∈ X0. We connect v ∈ X0 with an interesting component K if v

sees K and we connect x′ and x′′ with the same interesting components as x. For
this bipartite graph it holds that for all sets Y ⊆ X0 ∪ {x′, x′′}, the size of N(Y)

is at least |Y |: This holds trivially for Y = ∅; assume there exists a nonempty set
Y ⊆ X0 ∪ {x′, x′′} such that |N(Y)| < |Y |. But then we have |N(Y \ {x ′, x′′})| ≤
|N(Y)| < |Y | ≤ |Y \ {x ′, x′′}| + 2, which is a contradiction to Lemma 3.

Since Hall’s condition is satisfied there exists a matching M that covers X0 ∪
{x′, x′′}. This matching gives rise to a path packing from T to X where exactly three
paths end in x and no other vertices occur in more than one path: For each v ∈ X ∩T

pick the path of length zero that consists only of v. For each edge {K, v} in the
matching M , where v ∈ X0 ∪ {x′, x′′}, pick an arbitrary path from a terminal t ∈
V (K) ∩ (T \ X) to v that uses only vertices from V (K) ∪ {v}. (For v ∈ {x ′, x′′} let
the path end in x and use only vertices in V (K) ∪ {x}.) Because K is an interesting
component a terminal t ∈ V (K)∩ (T \X) must exist, and because K is a component
of G − X − S the path contains no other vertices of X. Similarly, the path cannot
contain S-edges between vertices of K , and its final edge to v cannot be in S because
v ∈ X0 = X \ T , i.e., because v is not endpoint of any S-edge. Moreover, since
each interesting component is matched to a single vertex v ∈ X0 ∪ {x′, x′′}, all the
paths are vertex-disjoint except for the three paths that share their endpoint x. This
path packing, including the trivial paths from X ∩ T to X ∩ T , contains |X| + 2
paths from T to X in G − S that are vertex-disjoint except for the three paths sharing
endpoint x. By construction, there is at most one path to any vertex of X0 starting
in any interesting component K of G − X − S, because the components are used
according to the matching M . All further paths are of length zero, consisting of only
a vertex in X ∩ T and are, thus, not contained in components of G − X − S.

Setting up the gammoid. The gammoid M that we use is the direct sum of two
gammoids M1 and M2. To construct gammoid M1 we define a graph G1 = (V1, E1)

that is obtained from G − S by adding two so called sink-only copies v′ and v′′ for
every vertex v ∈ V . A sink-only copy of a vertex v is a vertex v′ (or v′′) that has

Theory Comput Syst (2018) 62:63–92 73

a directed edge (u, v′) for each edge {u, v} in G − S; these were already used in
previous work [12]. Note that adding sink-only copies of vertices does not affect the
possible path packings to other vertices since they can only be endpoints of paths;
however, they are convenient to capture multiple vertex-disjoint paths that, intuitively,
end in the same vertex. The matroid M1 is defined as the gammoid on G1 with
sources T = V (S) and ground set V1 = {v, v′, v′′ | v ∈ V }; note that the sink-
only copies of vertices in T are not sources of M1. The rank of matroid M1 is |T |,
because the set of all trivial paths is independent and at most |T | vertices can be
linked to T .

Matroid M2 is the gammoid on the directed graph G2 = Kk,n = (S2∪̇V̂ , E2) with
sources S2 and ground set V̂ = {v̂ | v ∈ V }; the edges in E2 are directed from S2
to V̂ . In other words, gammoid M2 is a uniform matroid and a (deterministic) matrix
representation could also be obtained by using a Vandermonde matrix. The rank of
M2 is k = |S2| because no more than |S2| vertices can be linked to S2 and every set
of at most k vertices of V̂ is linked to S2.

For the application of Lemma 1 we will use the matroid M = M1 ⊕ M2, which
has rank |T | + k. (Matroid M can also be seen as a gammoid on the graph G1∪̇G2
with appropriate sources and ground set but we prefer the explicit direct sum and the
implied block-diagonal representation obtained below.) Representations A1 and A2
for both M1 and M2 can be computed by a randomized polynomial-time algorithm
with exponentially small error chance [16]; hence we get a representation for M by
diag(A1, A2), i.e., the block-diagonal matrix with blocks A1 and A2. We may assume
that A1 has |T | rows and A2 has k rows since this could be achieved by Gaussian
elimination (cf. [16]).

Applying the representative set lemma Let T := {{v′, v′′, v̂} | v ∈ V }. For clarity,
by the above notation, this means that v′, v′′ ∈ V1 and v̂ ∈ V̂ for each v ∈ V .
Using Lemma 1 we will prove that we can compute in randomized polynomial time a
(|T |+k−3)-representative subset T ′ of T that contains for all x ∈ X0 = X\T the set
{x′, x′′, x̂}, where X is any dominant solution for (G, S, k). Lemma 1 guarantees that
|T ′| ∈ O((|T | + k)3) = O(|S|3), since we can compute a matrix representation of
M in randomized polynomial-time as described above. We will see later that we can
find a (|T | + k − 3)-representative set of size O(|S|2k) by a careful look at the proof
of Lemma 1, using the fact that the matroid M is the direct sum of two gammoids and
that all sets {v′, v′′, v̂} in T have two elements from the first and one element from
the second gammoid; a similar argument for getting a smaller representative set was
already used by Kratsch and Wahlström [12].

To ensure that all sets {x′, x′′, x̂} with x ∈ X0 are in T ′ we have to show that for
each such set {x′, x′′, x̂} there exists an independent set I of size at most |T | + k − 3
such that {x′, x′′, x̂} uniquely extends I among triplets in T . This directly implies
that {x′, x′′, x̂} must be in every (|T | + k − 3)-representative set T ′ of T .

Lemma 4 Let X be a dominant solution for (G, S, k) and let T = V (S). For all
x ∈ X0 = X \ T there exists an independent set I of size at most |T | + k − 3 in M

such that {x′, x′′, x̂} uniquely extends I .

74 Theory Comput Syst (2018) 62:63–92

Proof Let x be an arbitrary vertex of X0. In a first step we define an independent set
I and show in a second step that {x′, x′′, x̂} uniquely extends I . Applying Lemma 2
implies the existence of a path packing P of |X| + 2 paths from T to X in G− S that
are vertex-disjoint except for three paths ending in x and such that each connected
component of G−X−S is intersected by at most one path of P . This directly implies
a path packing P1 in G1 from T to X ∪ {x′, x′′} that is (fully) vertex-disjoint. We
retain the property that at most one path intersects the vertex set of any component
of G − X − S, but note that we do not get exactly the same property for G1 − X

because of the still present sink-only copies of vertices in X. (The latter point will be
no problem and should mainly explain why we need to talk about G − X − S and
not only G1. Note that G − S and G1 by construction share the vertex set V to be
able to refer to connected components of G − X − S and the graph G1 underlying
the gammoid M1.)

While we do not know the paths in P1 entirely, we know for sure that no vertex of
X∪{x′, x′′} can be an internal vertex of any path in P1 because there is a path ending
in each of those vertices. Similarly, we may assume that no vertex of T is internal
to any path of P1: If not then any path P ∈ P1 with internal vertex from T can be
shortened to start in that vertex; this argument cannot be repeated indefinitely (as the
paths get shorter each time). There is still at most one path intersecting the vertex set
of any component of G − X − S.

Now, define T ′ ⊆ T as those vertices of T in which no path of P1 starts; there
must be exactly |T | − |P| = |T | − (|X| + 2) of them since no vertex of T is internal.
Moreover, for each component K of G − X − S, the set T ′ contains all but at most
one vertex of T ∩V (K): At most one path of P1 can start in T ∩V (K) and no vertex
can be internal. This will be important for proving the claim below.

Clearly, the set T ′ ∪X∪{x′, x′′} is independent in M1 because an appropriate path
packing P ′ can be obtained from P1 by adding length zero paths for each v ∈ T ′.
The set X̂ = {x̂ | x ∈ X} ⊆ V̂ is clearly independent in M2 since it has size at most
k. Thus, the set I ′ = T ′ ∪ X ∪ {x′, x′′} ∪ X̂ is independent in M = M1 ⊕ M2. Define
I as I ′ \ {x′, x′′, x̂}, i.e., I = T ′ ∪ X ∪ (X̂ \ {x̂}). The size of I is at most

|T ′|+|X|+(|X̂|−1) = |T |−(|X|+2)+|X|+|X|−1 = |T |+|X|−3 ≤ |T |+k−3.

Clearly, {x ′, x′′, x̂} extends I , as I ′ = {x′, x′′, x̂} ∪ I is independent and both are
disjoint by choice of I . We show that no other {v′, v′′, v̂} ∈ T extends I .

Claim If {v′, v′′, v̂} ∈ T extends I then v = x.

Proof Suppose that {v′, v′′, v̂} extends I . Clearly, this implies that v /∈ X \ {x}
because otherwise {v′, v′′, v̂} would not be disjoint from X̂ \ {x̂} ⊆ I . Thus,
v ∈ V \ (X \ {x}).

Assume, for contradiction, that v ∈ V \ X, i.e., that v �= x. We know that
{v′, v′′, v̂}∪I is independent in M , so I1 := I ∩V1 must be independent in M1. Thus,
there exists a collection P ′′ of |I1| vertex-disjoint paths from T to I1 in G1. Because
X ⊆ I1, the paths, say Pv′ and Pv′′ , from T to {v′, v′′} cannot have internal vertices

Theory Comput Syst (2018) 62:63–92 75

from the set X. Furthermore, they cannot have other sink-only copies as internal ver-
tices. Since v ∈ V \ X, this implies that Pv′ and Pv′′ are entirely contained in some
component K1 of G1 − (X ∪ {x′, x′′ | x ∈ X}). (Component K1 corresponds to a
component K of G − X − S but also has sink-only copies of each vertex.) Recall
now that in T ′ we have all but at most one vertex of T ∩ V (K) for each connected
component of G−X −S and this is also true for T ∩V (K1) as V (K1)∩V = V (K).
Thus, in P ′′ there is a path w of length zero for each vertex w in T ′ ∩V (K1), leaving
at most one vertex of T to start paths to {v′, v′′}. This is a contradiction because Pv′
and Pv′′ are entirely contained in K1 and fully vertex-disjoint.

Thus, if v ∈ V \X then {v′, v′′}∪I1 is not independent inM1 and, hence, {v′, v′′, v̂}
does not extend I in M . Together with the first paragraph this implies that v = x, as
claimed.

The set I fulfills the required properties which completes the proof.

We know now that for every vertex x ∈ V \ T that is a vertex in a dominant
solution the set {x′, x′′, x̂} is in every (|T |+k−3)-representative set T ′. If we define
V (T ′) = {v | {v′, v′′, v̂} ∈ T ′} then this implies that X0 ⊆ V (T ′) for each dominant
solution X. Thus, every dominant solution X is contained in V (T ′) ∪ T .

Shrinking the input graph to |V (T ′) ∪ T | vertices In the previous parts we have
shown that if there exists a solution for (G, S, k), then there exists a solution that is
completely contained in W := V (T ′) ∪ T . Using this we can make all vertices in
V \W undeletable. We achieve this by applying a variant of the torso operation to the
vertex set W in G. We construct a graph G′ as follows: the graph G′ has vertex set
W and is derived from G[W] by adding an edge between two vertices u, v ∈ W , if
there exists a u, v-path in G with internal vertices from V \ W and, if {u, v} is either
a non-edge in G[W] or an S-edge. To clarify, this allows double edges in G′ when
one edge is contained in S, but we never create loops. Furthermore, all edges of S are
preserved in G′ because T ⊆ W .

Lemma 5 (G′, S, k) has a solution if and only if (G, S, k) has a solution.

It follows from Lemma 5 that (G′, S, k) is an equivalent instance and the graph
of this instance contains at most |W | vertices. This completes the kernelization. The
correctness of Lemma 5 follows from the fact that the torso operation preserves the
separators that are contained in W (cf. [17]). For completeness we give a short proof
of the lemma.

Proof of Lemma 5 Let X be a solution for (G′, S, k). We prove that X is also a solu-
tion for (G, S, k) by contradiction. Assume that X is not a solution for (G, S, k).
Then there exists an S-cycle C = v1v2 . . . vl in G−X. Note that S ⊆ E(G′), because
T = V (S) ⊆ W and therefore at least two vertices of C are contained in W . Now we
modify C to obtain an S-cycle C′ in G′. Let vi, vj ∈ W ∩C two vertices of the cycle
with i < j such that {vi+1, . . . , vj−1} ⊆ V \ W . By definition there exists an edge

76 Theory Comput Syst (2018) 62:63–92

{vi, vj } in G′ and using these edges we obtain cycle C′. Note that C′ contains no ver-
tex of X and contains the same edges from S that C contains. Thus C is an S-cycle
in G′ − X which contradicts the assumption that X is a solution of (G′, S, k).

For the other direction we assume that (G, S, k) has a solution. Then there also
exists a dominant solution X for (G, S, k) and we know that X ⊆ W . Again we
prove that X is also a solution for (G′, S, k) by contradiction. Assume that X is not a
solution for (G′, S, k). Then there exists a path P between the endpoints of an edge
e = {x, y} ∈ S in G′ − X that does not use the edge e. We modify P ′ to obtain a
path P in G that does not contain the edge e. If P ′ uses an edge {u, v} that is not
contained in G, then there exists a u-v path in V \ W connecting u and v. Crucially,
V \W is disjoint from X so this replacement still yields a walk that avoids X. Overall
we get a walk from x to y in G that does not contain e as an edge and that avoids X.
This walk contains a path P from x to y and this path together with the edge e is an
S-cycle in G − X which is a contradiction to the assumption that X is a solution for
the instance (G, S, k).

So far we have a kernelization that creates an equivalent instance (G′, S, k) such
that G′ has |W | vertices. As mentioned above, Lemma 1 guarantees that |W | ∈
O(|S|3) and this implies a polynomial kernel for EDGE SUBSET FVS parameterized
by |S|. If we use the fact that the gammoid M is the direct sum of two gammoids M1
and M2, and that all sets {v′, v′′, v̂} ∈ T contain exactly two elements of M1 and one
element of M2, then we can prove that |W | ∈ O(|S|2k), which is an improvement for
all nontrivial instances with parameter k < |S|.

Lemma 6 Let M = M1 ⊕ M2 be the gammoid of rank |T | + k as defined above
and T = {I1, I2, . . . , It } be a subset of independent sets of M that we use for the
kernelization. Let A be represented by diag(A1, A2) as above. If |T | >

(|T |
2

) · (
k
1

)
,

then there exists a set I ∈ T such that T \ {I } is (|T | + k − 3)-representative for T .

The proof of Lemma 6 is similar to Marx [16, Lemma 4.2]. We additionally use
the fact that M is the direct sum of two gammoids to obtain that the vectors in the
exterior algebra which represent the sets in T span a space of smaller dimension.

Proof of Lemma 6 Let U be the ground set of the matroid M which equals the set of
columns of A. For each e ∈ U , let xe be the corresponding (|T | + k)-dimensional
column vector of A and let wi = ∧

e∈Ai
xe be a vector in the exterior algebra of the

linear space F |T |+k . Every wi is the wedge product of three vectors where exactly
two are from

(
A1
0

)
and one from

(0
A2

)
. The two vectors corresponding to

(
A1
0

)
can only

span a space of dimension
(|T |
2

)
and the vectors corresponding to

(0
A2

)
can only span

a space of dimension
(
k
1

)
. Thus, the wi’s span a space of dimension at most

(|T |
2

) · (k
1

)
.

If |T | >
(|T |
2

) · (k
1

)
, then the wi’s are not independent and there exists some vector wl

that can be expressed as a linear combination of the other vectors.
One can show analogously to Marx [16, Lemma 4.2] that T \ {Il} is (|T |+ k −3)-

representative for T . We replicate this proof for convenience of the reader. Assume

Theory Comput Syst (2018) 62:63–92 77

that there exists a set Y of size at most |T |+k−3 such that Il extends Y and no other
set Ii , i �= l extends Y . Let y = ∧

e∈Y xe. One property of the wedge product is that
the product of some vectors in F |T |+k is zero if and only if they are not independent.
Therefore it holds that wl ∧ y �= 0 and wi ∧ y = 0 for every i �= l. But wl is a linear
combination of other wi’s and by the multi-linearity of the wedge product we get that
wl ∧ y �= 0 is a linear combination of the values wi ∧ y = 0 for i �= l, which is a
contradiction.

As mentioned above, Marx [16] showed that one can find in randomized
polynomial-time a matrix with r(M) rows that represents a given gammoid M . We
can make this proof algorithmic in the same way Marx did [16, Lemma 4.2]. Com-
bined with Lemma 6 it follows directly that we can find a (|T |+k−3)-representative
subset T ′ of |T | whose size is at most

(|T |
2

) · (
k
1

) ∈ O(|S|2k). This leads to a poly-
nomial kernel with O(|S|2k) vertices for EDGE SUBSET FVS parameterized by |S|
and k.

4 Reducing the size of S

We have seen that EDGE SUBSET FVS parameterized by |S| and k has a polynomial
kernel. Now the goal is to reduce the size of the set S until |S| is polynomi-
ally bounded in k. This will lead to a polynomial kernel of EDGE SUBSET FVS

parameterized by k.
To begin, we do some initial modifications to ensure that we can always find a

solution of size at most k that contains no vertex of the set V (S), if one exists. For
this we first delete all vertices v ∈ V with the property that e = {v, v} ∈ S is a loop
in G; since the vertex v must be in any solution, we decrease the value k by one.
Next we delete all remaining loops, because these loops are not in S and cannot be
contained in any S-cycle. We also reduce the number of edges between two vertices
v,w ∈ V (G). If no edge that is incident with v and w is contained in the set S,
then we delete all except one edge. On the other hand, if at least one edge between
v and w is contained in S, then we delete all except two edges, so that one of these
edges is contained in S and the other not. In the next step we add for every edge
e = {v,w} ∈ S two new vertices ve, ue to the graph, subdivide the edge e into
three edges {v, ve}, {ve, we}, {we, w}, and edit S by replacing edge e by the edge
{ve, we} in S. If a solution X of EDGE SUBSET FVS contains a vertex xe ∈ V (S),
then we can instead add the vertex x to X and delete xe from X, because every
cycle that contains vertex xe also contains vertex x; hence we can always find an
optimal solution that is disjoint from V (S). After these modifications, we obtain a
graph where every endpoint of an S-edge has degree at most two and every vertex is
endpoint of at most one S-edge. Note that these two properties are sufficient to ensure
that we can always find a solution that is disjoint from V (S). All our reduction rules,
except Rule 1, will preserve these two properties, because we never add S-edges to
the graph or increase the degree of a vertex; we only delete edges from the set S (not
necessarily G) or vertices from G. Note that it is no problem that Rule 1 does not

78 Theory Comput Syst (2018) 62:63–92

preserve this property, because this rule returns a trivially false instance and ends the
kernelization.

Let (G, S, k) be an instance of EDGE SUBSET FVS, such that G is a graph with the
above properties. Analogous to the paper of Cygan et al. [3] we consider a solution Z

of the EDGE SUBSET FVS, with the difference that our solution is an 8-approximation
of the problem, to reduce the size of S. Even et al. [7] show that there exists an
8-approximation algorithm for SUBSET FVS. Since there are polynomial-time target-
value preserving reductions between SUBSET FVS and EDGE SUBSET FVS (cf. [3]),
we can compute in polynomial time an 8-approximation for EDGE SUBSET FVS and
we can assume that Z ∩ V (S) = ∅. If |Z| > 8k, then we can stop immediately
because no solution of size at most k can exist. On the other hand, if |Z| ≤ k, then Z

is a solution and we are done.
The set Z is a feasible solution to EDGE SUBSET FVS on (G, S, |Z|). This implies

that every edge e ∈ S is a bridge in G − Z. In a next step we also remove all edges
in S from G − Z. Every connected component in G − Z − S contains no edge from
S and, following Cygan et al. [3], we call such a component a bubble. We denote
the set of bubbles by DZ and define a graph HZ = (DZ, EDZ

) whose vertices are
bubbles and with bubbles I and J being adjacent, i.e., {I, J } ∈ EDZ

, if and only if
the components I and J are connected by an edge from S. The graph HZ is a forest,
becauseZ is a solution for (G, S, |Z|) and a cycle inHZ would give rise to an S-cycle
in G−Z. Similarly, no two bubbles can be connected by more than one edge of S. By
VI we denote the vertices that are contained in bubble I . Since |E(VI , VJ) ∩ S| ≤ 1
for all I, J ∈ DZ and equality holds if and only if {I, J } ∈ EDZ

, we can associate
an edge e = {I, J } ∈ EDZ

with the one edge eS = {vI , vJ } in E(VI , VJ) ∩ S. If we
add the vertex set Z and all edges {z, I } with the property that z ∈ Z, I ∈ DZ and
E(z, VI) �= ∅ to the graph HZ we obtain a graph H+

Z that contains S-cycles. Note
that every S-cycle must contain a vertex of the set Z. We partition the set of bubbles
according to the number of bubbles they are connected with.

Definition 2 A bubble I ∈ DZ is called (i) solitary, if degHZ
(I) = 0; (ii) leaf, if

degHZ
(I) = 1; and (iii) inner, if degHZ

(I) ≥ 2. By Ds
Z,Dl

Z,Di
Z we denote the

corresponding sets of of bubbles.

Let X ⊆ V \ V (S) be a superset of Z. We define the graphs HX, H
+
X as well as

the setsDX, EDX
analogously to the graphs HZ, H+

Z and the setsDZ, EDZ
. Observe

that the number of edges in S is equal to the number of edges in the graph HZ ,
because Z is a feasible solution to (G, S, |Z|) that is disjoint from V (S) and because
two bubbles I , J in the forest HZ are only connected when there exists an S-edge in
E(VI , VJ). SinceHZ is a forest the number of edges inHZ is bounded by the number
of non-isolated vertices. Thus, the number of edges in S is at most |DZ \ Ds

Z|.
So far our setup is essentially the same as the one used by Cygan et al. [3].

However, instead of an 8-approximate solution they use the framework of iterative
compression, which provides a solution Z of size k +1 and leaves them with the task
of reducing the number of S-edges for the problem of finding a solution Z∗ that is

Theory Comput Syst (2018) 62:63–92 79

disjoint from Z. Moreover, it suffices for them to consider the case that every feasi-
ble solution (if one exists) is disjoint from Z. In this setting they are able to reduce to
an equivalent instance (or find that some assumption was violated) with only O(k3)

edges in S.
Thus, while many relevant structures like z-flowers or parallel x-y paths contain-

ing S-edges are the same, many things have to be handled differently. In particular,
if we find that at least one out of two vertices x, y ∈ Z must be in the solution then
we cannot stop (like Cygan et al. [3]) but need to continue and use this information
in a more direct way. Cygan et al. [3] can stop whenever they find such a pair {x, y},
because they solve DISJOINT EDGE SUBSET FVS during the iterative compression
step and are only interested in so called maximal instances where every solution of
the instance is disjoint from Z.

During the reduction we detect certain pairs {x, y} of different vertices with the
property that each solution of size at most k must contain at least one of the vertices
(if one exists). We store this fact as a pair-constraint. We keep and enforce this infor-
mation in the final instance, unless we decide earlier to delete x or y. By P we denote
the set of pair-constraints that we have found so far. We can interpret this set as a set
of edges and by V (P) we denote all vertices that are contained in a pair-constraint.
Note that vertices from the set V (S) are never contained in a pair-constraint from P ,
because there always exists a solution that is disjoint from V (S). We need the set P
to detect edges in S that may be safely deleted. To this end, we generalize the EDGE

SUBSET FVS problem by adding a set of pair-constraints P to the input; we call this
problem PAIR-CONSTRAINED EDGE SUBSET FVS.

Clearly, instances (G, S, k) of EDGE SUBSET FVS and (G, S, ∅, k) of PAIR-
CONSTRAINED EDGE SUBSET FVS are equivalent. Our goal is to reduce the size of S

by detecting S-edges that we can delete from S without changing the outcome. This
leads to the following definition:

Definition 3 Let (G, S,P, k) be an instance of PAIR-CONSTRAINED EDGE SUBSET

FVS. We call an edge e ∈ S irrelevant, if X ⊆ V (G) is a solution for (G, S,P, k) if
and only if X is a solution for (G, S \ {e},P, k).

Note that if two different S-edges e and e′ are irrelevant in (G, S,P, k), then e′ is
not necessarily irrelevant in (G, S \ {e},P, k). In addition we do not expect to find
all irrelevant edges or pair-constraints.

80 Theory Comput Syst (2018) 62:63–92

The reduction rules We now present our reduction rules. Throughout we assume
that always the lowest numbered applicable rule is applied first. Correctness and
efficiency of the overall reduction process will be proved later.

Let (G, S,P = ∅, k) be an instance for PAIR-CONSTRAINED EDGE SUBSET FVS

and let Z be an 8-approximation of this problem with k < |Z| ≤ 8k that is disjoint
from V (S). In the following the graphs0 G−Z, G−Z −S, HZ , and H+

Z are always
defined with respect to the current instance (G, S,P, k) of PAIR-CONSTRAINED

EDGE SUBSET FVS. Note that Z ⊆ V and we delete a vertex from Z if we delete the
corresponding vertex in V . Furthermore, we delete a pair-constraint {x, y} from P if
we delete x or y from G.

Rule 1 If k < 0, or if k = 0 and there exists an S-cycle, then we reduce (G, S,P, k)

to some trivial false instance, i.e. G′ := ({x}, {e = {x, x}}), S′ := {e}, P ′ = ∅ and
k′ := 0.

Rule 2 Delete all bridges and all connected components in G not containing any
edge from S.

Rule 3 If there exists an edge e ∈ S such that e is a bridge in (V ,E \ (S \ {e})), then
we reduce to S′ = S \ {e}.

Note that, if Rule 3 deletes an edge e from S then this edge is still contained in G.
The Rules 2 and 3 ensure that each bubble I ∈ DZ is adjacent to a vertex in Z in the
graphH+

Z , i.e. for all I ∈ DZ we haveEH+
Z

(I, Z) �= ∅: Since Rule 2 is not applicable
every bubble I ∈ DZ must be adjacent to a bubble J ∈ DZ \ I , or a vertex in Z;
otherwise G[VI] would be a connected component of G that does not contain any
edge from S (VI was deleted in Rule 2). From Rule 3 follows that a bubble I ∈ DZ

must be adjacent to a vertex in Z; otherwise every edge e ∈ EG(VI , N(VI)) ∩ S

would be a bridge in (V ,E \ (S \ {e})).

Rule 4 If there exists a vertex v in the set V (P) that is contained in at least k + 1
pair-constraints of P , then we reduce to G′ = G − v and k′ = k − 1.

Rule 5 If |P| > k2 (and Rule 4 is not applicable), then we reduce (G, S,P, k) to
some trivial false instance.

Rule 6 If there exists a z-flower of order k + 1 in G for a vertex z ∈ Z, then we
reduce to G′ := G − z and k′ := k − 1.

For the next rules we need a maximal matching M in HZ that covers all inner
bubbles Di

Z in HZ . We will show later (Lemma 17) that such a matching exists.
Note that two adjacent leaf bubbles I1, I2 are not adjacent to an inner bubble and
form a K2 in HZ , hence the edge {I1, I2} ∈ EDZ

is contained in every maximal
matching in HZ . We use this matching to detect pair-constraints in Z. To this end
we introduce the following definition: Let e = {I, J } be an edge in the matching

Theory Comput Syst (2018) 62:63–92 81

M . We say e sees the pair {x, y} of different vertices x, y ∈ Z respectively the
vertex x ∈ Z, if {I, x}, {J, y} ∈ E(H+

Z) or {I, y}, {J, x} ∈ E(H+
Z) respectively

{I, x}, {J, x} ∈ E(H+
Z).

Rule 7 If at least (k + 2) edges in M see a pair {x, y} of different vertices in Z, then
we add {x, y} to the set of pair-constraints P .

Rule 8 If there exists an edge e ∈ M such that e sees no single vertex z ∈ Z and for
every pair {x, y} seen by e the pair {x, y} is a pair-constraint in P , then we remove
eS from S and e from M . (Recall: If e = {I, J } ∈ M ⊆ E(HZ), then eS is the unique
edge in E(VI , VJ) ∩ S.)

The matching M is always recomputed if, through application of rules, it does no
longer cover every inner bubble or is not maximal when testing whether Rules 7 or 8
apply (i.e., if the preceding rules do not apply). If M does cover all inner bubbles but
neither Rule 7 nor 8 applies then, as we will prove later, this implies |M| ∈ O(k3)

and, hence, that there are at most 2|M| ∈ O(k3) inner bubbles.
Let L = Dl

Z \V (M) be the set of leaf bubbles that are not covered by M . Because
the matching M covers at least all inner bubbles of HZ , we know that the number
of non-isolated vertices in the forest HZ is at most 2|M| + |L|. Since the number of
edges in a forest is bounded by the number of non-isolated vertices and |S| = |EHZ

|,
we get |S| ≤ 2|M| + |L|. Therefore we have to find a reduction rule that reduces the
number of leaf bubbles in L. Every leaf bubble in L is adjacent to an inner bubble in
HZ , because M covers all leaf bubbles that are not adjacent to an inner bubble. To
bound the number of leaf bubbles in L we define for each z ∈ Z a graph Gz with
the help of the following two sets. The first one, Lz = NH+

Z
(z) ∩ L, is the set of all

unmatched leaf bubbles I that are adjacent to z in H+
Z . The other V i

z = {v ∈ V |
∃J ∈ NHZ

(Lz) : v ∈ VJ } consists of all vertices that are contained in an inner bubble
that is adjacent to a leaf bubble in Lz (Fig. 2).

V (Gz) = {z} ∪ Lz ∪ V i
z

E(Gz) = EH+
Z

(z, Lz) ∪ (E(G[V i
z]) \ S)

∪{{I, w} | I ∈ Lz, w ∈ V i
z and ∃v ∈ VI : {v,w} ∈ S}

In the graph Gz each leaf bubble I ∈ Lz is a single vertex. We are not interested in
the internal structure of leaf bubbles in Lz, whereas we are interested in the structure
of the inner bubbles that are adjacent to the leaf bubbles in Lz. Thus we add the
connected component that corresponds to an inner bubble which is adjacent to a
bubble in Lz to Gz. In order to apply the concept of flowers and blocking sets in Gz,
we need to define which edges of Gz are S-edges: An edge e ∈ E(Gz) is an S-edge
if one endpoint of the edge e is contained in Lz and the other is contained in V i

z . Note
that e is an edge in Gz, because there exists an S-edge e′ = {v,w} in G with v ∈ VI

and w ∈ V i
z .

82 Theory Comput Syst (2018) 62:63–92

Lemma 7 If there exists no z-flower of order k + 1 in Gz for a vertex z ∈ Z, then we
can find a z-blocker Bz ⊆ V i

z \ V (S) of size at most 2k in Gz.

The lemma follows from Theorem 1 and the preprocessing as well as the
construction of Gz.

Proof of Lemma 7 The maximum number of vertex-disjoint Lz-paths in Gz − z is at
most k, otherwise the Lz-paths together with vertex z would correspond to a z-flower
of order k + 1 in Gz; this contradicts the assumption. From Theorem 1 it follows that
there exists a set Bz ⊆ V (Gz −z) = Lz ∪V i

z of size at most 2k intersecting every Lz-
path. Since every S-cycle through z in Gz must contain an Lz-path, Bz is a z-blocker
of size at most 2k in Gz.

It remains to show that there exists a z-blocker Bz ⊆ V i
z \ V (S). First we assume

that there exists a vertex I ∈ Bz ∩ Lz. From the construction of Gz it follows that
every leaf bubble has degree one in Gz − z. Thus instead of I we can choose the
unique vertex in NGz(I) ∩ V i

z for the z-blocker Bz to obtain that Bz ⊆ V i
z .

In the next step we take care that Bz is also disjoint from V (S). Assume that Bz

contains a vertex ve ∈ V (S) ∩ V i
z . From the preprocessing it follows that we can add

v ∈ V i
z \ V (S) to Bz and delete ve from Bz, because every cycle that contains ve also

contains v.
Note that we delete at least as many vertices from Bz as we add to Bz, hence Bz is

still of size at most 2k.

Since no previous rule is applicable and a z-flower of order k + 1 in Gz gives rise
to a z-flower of order k + 1 in G, we find a z-blocker of size at most 2k for every
vertex z ∈ Z. Let B = ⋃

z∈Z Bz be the union of all z-blockers Bz of size at most 2k.
The set L is the union of all sets Lz with z ∈ Z, because every leaf bubble is adjacent
to a vertex in Z due to Rule 2, hence L = ⋃

z∈Z Lz.
The following lemma provides three nice properties of the graph HZ∪B =

(DZ∪B, EDZ∪B
) which helps us to bound the number of leaf bubbles in L ⊆ Dl

Z . To
memorize: The set DZ∪B is the set of bubbles in G − (Z ∪ B) − S and two bubbles
I, J are adjacent in HZ∪B if and only if E(VI , VJ) ∩ S �= ∅.

Fig. 2 Graph Gz, where the dashed edges belong to the set S

Theory Comput Syst (2018) 62:63–92 83

Lemma 8 The graph HZ∪B has the following properties:

1. For each bubble I ∈ DZ∪B there exists a bubble J ∈ DZ , such that VI ⊆ VJ .
2. For each leaf bubble J ∈ DZ there exists a leaf bubble I ∈ DZ∪B , such that

VI = VJ .
3. Let I, J ∈ L and K ∈ Di

Z∪B , such that {I, K}, {J,K} ∈ EDZ∪B
. Then for all

z ∈ Z it holds that z /∈ NG(VI) or z /∈ NG(VJ).

Proof Property 1 holds because the set B only splits bubbles of G − Z − S further
(because we are now looking at deletingZ∪B fromG−S instead of deleting onlyZ)
and thus does not merge any two bubbles. Property 2 follows from the fact that the set
B is disjoint from the set of leaf bubbles. Next we show Property 3 by contradiction.
We assume that some vertex z ∈ Z is contained in NG(VI) and in NG(VJ). Then
I and J are both vertices of the graph Gz and hence both are contained in the set
Lz. The consequence is that there exists an Lz path from bubble I over bubble K to
bubble J inHZ∪B which can be extended to aLz path inGz not containing any vertex
in B; this contradicts the fact that Bz ⊆ B blocks all Lz-paths in the graph Gz.

From Lemma 8 it follows that L ⊆ Dl
Z∪B ; thus we can use HZ∪B to bound the

number of leaf bubbles in L. Let I = {J ∈ Di
Z∪B | E(L, J) �= ∅} be the set of

inner bubbles in HZ∪B that are adjacent to a leaf bubble in L. Clearly the number
of edges between I and L in HZ∪B equals the number |L|. Instead of again using a
matching to reduce this number we consider more carefully the properties of these
edges. For this we define the property of seeing a pair in a slightly different way.
Let e = {I, J } be an edge with I ∈ I and J ∈ L. We say that e = {I, J } with
I ∈ I and J ∈ L sees the pair {x, y} of different vertices x ∈ Z ∪ B and y ∈ Z, if
{I, x}, {J, y} ∈ E(H+

Z∪B). Observe that a bubble in L is never adjacent to a vertex in
B in the graph HZ∪B , because B ⊆ ⋃

z∈Z V i
z \ V (S).

Rule 9 If at least (k + 2) edges {I1, J1}, {I2, J2}, . . . {Il, Jl} with l ≥ k + 2, Ii ∈ I

and Ji ∈ L for 1 ≤ i ≤ l see a pair {x, y} of different vertices, such that x ∈ Z ∪ B

is adjacent to Ii , y ∈ Z is adjacent to Ji for all i ∈ {1, 2, . . . , l}, then we add {x, y}
to the set of pair-constraints P .

At first sight Rule 7 and 9 may seem somewhat similar, but on closer inspection
one can observe a decisive difference. Obviously, both Rules use the fact that if there
are k + 2 disjoint S-edges seeing a pair {x, y} of different vertices, then either x or
y must be in a solution of size at most k; hence it is safe to add the pair {x, y} to the
set of pair-constraints. But, we need different arguments to show that the k + 2 S-
edges are disjoint; it is clear in Rule 7, because M is a matching. This is not the case
in Rule 9, where we have to use a different argument which follows from Lemma 8
(see Lemma 9).

The difference of these two rules is that in Rule 9 we consider only edges between
the two disjoint sets I and L. For this reason we can require in Rule 9 that every
endpoint of the at least k+2 edges that is contained in I is adjacent to the vertex x and

84 Theory Comput Syst (2018) 62:63–92

every endpoint that is contained in L is adjacent to vertex y. This is not possible in
Rule 7, because an edge in the matching M can be between any type of non-isolated
bubbles.

Rule 10 If there exists an edge e = {I, J } with I ∈ I and J ∈ L such that e sees no
single vertex z ∈ Z and for every pair {x, y}, with x ∈ Z ∪ B, y ∈ Z, seen by e the
pair {x, y} is a pair-constraint in P , then we remove eS from S, delete J from L and
replace I by I ∪ J in I . (Recall: eS is the unique edge in E(VI ∩ VJ) ∩ S.)

Note that bubbles in L are never adjacent to vertices in B, hence the vertex z resp.
the vertex x cannot be contained in set B.

If we delete an edge eS ∈ E(VI ∩ VJ) ∩ S from S by applying Rule 10, then the
consequence is that bubbles I and J are now merged into a single bubble. Observe
that it is sufficient to continue with Rule 9, because M is still a matching that covers
all inner bubbles in the current graph HZ and B still has the properties of Lemma 8
with respect to the current graph HZ∪B . That the edge set M is still a matching in
HZ holds because we never delete an edge in M or an endpoint of an edge in M; we
only merge an endpoint of an edge in M with an unmatched leaf bubble in L. The
first two properties of Lemma 8 obviously hold with respect to the current graph HZ .
That Property 3 also holds follows from the fact that the leaf bubbles that are still in
L are the same as before and adjacent to the same inner bubbles as before.

The reduction rules are safe First we show that our reduction rules are safe, i.e.
that there exists a solution for (G, S,P, k) if and only if there exists a solution for
(G′, S′,P ′, k′). Note that Rules 1, 2, and 6 are obviously safe and Rule 3 is safe
because for every S-cycle through an edge e ∈ S that is a bridge in (V , E \ (S \ {e}))
there is another S-edge e′ on the cycle. Let us consider the set P of pair-constraints to
see that Rules 4 and 5 are safe. The set P naturally leads to the graph P = (V (P),P)

and has the property that we have to pick at least on vertex of each pair-constraint for
a solution for (G, S,P, k). Hence any solution for (G, S,P, k) must contain a vertex
cover of P . Thus, Rules 4 and 5 are direct analogs of classical reduction rules for the
VERTEX COVER problem, and hence safe. To show that the other rules are safe, we
first show a technical Lemma about a property of edges in HZ∪B .

Lemma 9 If two different edges {I1, J1} and {I2, J2} in HZ∪B with I1, I2 ∈ I ,
J1, J2 ∈ L see a vertex z ∈ Z, respectively a pair {x, y} with x ∈ Z ∪ B and
y ∈ Z such that {x, I1}, {x, I2}, {y, J1}, {y, J2} ∈ E(H+

Z∪B), then it holds that they
are disjoint, i.e. that I1 �= I2 and J1 �= J2.

Proof Note that if J1 = J2, then it holds that I1 = I2, because every leaf bubble in L

sees only one other bubble. Thus, to finish the proof it suffices to show that I1 �= I2.
Assume for contradiction that I1 = I2. This implies that J1 and J2 are leaf bubbles

in L which are adjacent to the same inner bubble I = I1 = I2 in HZ∪B . For J1 and

Theory Comput Syst (2018) 62:63–92 85

J2 it must hold that z ∈ NG(VJi
) respectively y ∈ NG(VJi

) for i = 1, 2. But this is a
contradiction to Property 3 of Lemma 8.

To show that Rules 7 and 9 are safe, we have to prove that we only add a pair {x, y}
of vertices to the set P of pair-constraints if either x or y must be in each solution of
size at most k. The (k+2) edges that see a pair {x, y} are pairwise disjoint, becauseM

is a matching respectively Lemma 9 holds. Hence we have at least (k + 2) internally
disjoint x-y paths in H+

Z respectively H+
Z∪B which we can extend to at least (k + 2)

internally disjoint x-y paths in G and each of these paths contains an S-edge. This is
the reason why at least one of x and y must be in any solution (otherwise we have to
delete at least k + 1 vertices, one of each path) and it is safe to add {x, y} to P as a
pair-constraint.

It remains to show that Rules 8 and 10 are safe. For this we prove that the edges
that we delete in these rules are irrelevant. First we prove the following lemma.

Lemma 10 Let Y ⊆ V \ V (S) be a superset of Z, hence G − Y contains no S-
cycle. If e = {I, J } ∈ HY sees no single vertex y ∈ Y and for every pair {x, y} with
x, y ∈ Y seen by e the pair {x, y} is a pair-constraint in P , then the unique edge eS

in E(VI , VJ) ∩ S is irrelevant for the instance (G, S,P, k).

Proof Let e = {I, J } ∈ HY be an edge with the properties of the lemma and let
eS = {vI , vJ } be the single edge in E(VI , VJ) ∩ S. To show that eS is irrelevant for
instance (G, S,P, k) we have to show that X ⊆ V (G) is a solution for (G, S,P, k)

if and only if X is a solution for (G, S \ {eS},P, k). Since every solution X for
(G, S,P, k) is also a solution for (G, S \ {eS},P, k), we only have to show the other
direction.

Let X be a solution for (G, S \ {eS},P, k). We assume for contradiction that there
exists an S-cycle C in G − X. This S-cycle C can only contain the S-edge eS ; oth-
erwise C would be an (S \ {eS})-cycle which contradicts the fact that X is a solution
for (G, S \ {eS},P, k).

Claim If an S-cycle C in G only contains the S-edge eS , then there exists either a
vertex y ∈ Y such that e sees the single vertex y and y is contained in cycle C or
two different vertices x, y ∈ Y such that e sees the pair {x, y} and cycle C contains
x and y.

Proof Let C be an S-cycle with the properties of the claim. Thus C must exit bubble
I and bubble J by edges that end in Y , because this is the only way to obtain a path
from vI to vJ that uses no edge from S. If these two edges share their endpoint y

in Y , then e sees the single vertex y and y is contained in C. On the other hand if
these two edges have different endpoints x, y in Y , then e sees the pair {x, y} and the
vertices x, y are contained in C.

Based on the claim, it follows that edge e = {I, J } must see a single vertex y ∈ Y

that is contained in C or a pair {x, y} with x, y ∈ Y such that x and y are contained in

86 Theory Comput Syst (2018) 62:63–92

C. However, edge e sees no single vertex and every pair {x, y} that is seen by e must
be contained in a pair-constraint (this follows from the properties of edge e according
to the requirements of the lemma).

Hence the edge e sees only pairs {x, y} with x, y ∈ Y that are contained in the
set P . Let {x, y} be the pair that is seen by e such that x, y are vertices of cycle C

(using the claim). But at least one vertex of the pair {x, y} must be in the solution
X for (G, S \ {eS},P, k). Since e sees only pairs that are contained in the set P of
pair-constraints, the cycle C is no cycle in G − X.

From Lemma 10 follows that we only delete an edge eS in Rule 8 and 10 when
eS is irrelevant for instance (G, S,P, k); this holds because Y = Z respectively
Y = Z ∪ B is a superset of Z.

Applying the Rules. First we show that if none of the rules can be applied, then the
size of S is bounded by O(k4). For this we prove two lemmas. One bounds the size
of M which helps us to bound the number of inner bubbles and the other bounds the
number of leaf bubbles in L.

Lemma 11 If the matching M covers all inner bubbles in HZ and we cannot apply
Rules 1 through 8, then the size of M is at most O(k3).

Proof Each edge in M sees either a pair of vertices in Z that do not form a pair-
constraint or a single vertex in Z; otherwise we could apply Rule 2, Rule 3 or Rule 8.
Recall that Rule 2 and Rule 3 ensure that each bubble is adjacent to a vertex in Z and
that Rule 8 deletes an edge e from the matching M (resp. we delete the edge in S,
that corresponds to the matching edge, from the set S) when the edge e sees neither
a single vertex nor a pair {x, y} that is not contained in a pair constraint. The number
of pairs in Z is at most

(|Z|
2

) ≤ |Z|2. Therefore the number of pairs in Z that are not
in the set P of pair-constraints is at most |Z|2. Because we cannot apply Rule 7, at
most (k + 1) edges in M see any pair that is not in the set of pair-constraints. Thus
at most (k + 1)|Z|2 edges of M can see a pair of vertices in Z that is not in P . The
number of edges in M that see a single vertex in Z is at most k|Z|; otherwise we can
apply Rule 6, because at least one single vertex z in Z is seen by at least k + 1 edges
from M and these edges together with z are a z-flower of order k+1 in H+

Z which we
can expand to a z-flower of order k + 1 in G. Since we cannot apply Rules 6, 7 or 8,
this leads to at most (k + 1)|Z|2 + k|Z| ∈ O(k3) edges in M , because |Z| ≤ 8k.

From the lemma it follows that the number of inner bubbles in HZ is at most
2|M| ∈ O(k3).

Lemma 12 If we cannot apply Rules 1 through 10 then the size of L is bounded
by O(k4).

Theory Comput Syst (2018) 62:63–92 87

Proof We claim that the number of edges between bubbles in I and bubbles in L is
at most (k + 1)|Z|(|B| + |Z|) + k|Z|, if no rule is applicable. This implies that there
are at most O(k4) leaf bubbles in L, because |Z| ≤ 8k and |B| ≤ 2k|Z|.

By Rule 10, each edge between a bubble I in I and an unmatched leaf bubble
J in L sees a pair {x, y}, that is not contained in P , meaning that {x, I }, {y, J } ∈
E(H+

Z∪B) for x ∈ Z ∪ B, y ∈ Z, or sees a single vertex z in Z. The number of pairs
in Z × (Z ∪ B) is at most |Z|(|Z| + |B|).

Rule 9 adds {x, y} to P if at least (k + 2) edges {I1, J1}, {I2, J2}, . . . , {Il, Jl} with
l ≥ k + 2, Ii ∈ I and Ji ∈ L for 1 ≤ i ≤ l, see the pair {x, y} such that x ∈ Z ∪ B is
adjacent to Ii and y ∈ Z is adjacent to Ji for 1 ≤ i ≤ l. This bounds the number of
edges between vertices in I and L which see a pair, whose vertices are not a pair in
the set P of pair-constraints, by (k +1)|Z|(|Z|+ |B|). The number of edges between
vertices in I and L that see a certain vertex z ∈ Z is at most k, otherwise the at least
k + 1 edges between I and L that see vertex z together with vertex z form a z-flower
of order k+1 inH+

Z∪B , because Lemma 9 ensures that the edges are disjoint. But then
we can apply Rule 6 and delete vertex z. Hence at most k|Z| edges between vertices
I and L can see a vertex in Z. This leads to at most (k + 1)|Z|(|B| + |Z|) + k|Z|
edges between vertices in I and L, because we cannot apply Rules 6, 9 or 10; this
implies that |L| ∈ O(k4), because |Z| ≤ 8k and |B| ≤ 2k|Z| ≤ 16k2.

If we combine these two results, we know that |Di
Z| + |Dl

Z| ∈ O(k4). As men-
tioned above this is an upper bound for the number of edges in S, because HZ

is a forest, because there is at most one edge of S between any two bubbles, and
because V (S) ∩ Z = ∅.

Finally we have to prove that we can perform the reduction in polynomial time.
First we prove that each rule is applied a polynomial number of times and second
that every single rule application can be performed in polynomial time.

Lemma 13 Each reduction rule is applied at most a number of times that is
polynomially bounded in the input size.

Proof Note that we reduce in each rule, except Rules 7 and 9, the size of at least one
of the sets V , E, S, the value k or decide that no solution of size at most k exists.
Furthermore, we never increase the size of such sets or the parameter k. In Rules 7
and 9 we add pair-constraints to P , but if P contains more than k2 pair-constraints,
we either find a vertex z ∈ V (P) that we delete in Rule 4 and reduce k by one
or we decide in Rule 5 that no solution of size at most k exists. This bounds the
number of pair-constraints that we add to P during the reduction by k3 because we
can decrease k at most k times. Thus, each rule is applied at most a number of times
that is polynomial in the size of the input.

Next we show that each single rule application can be performed in polyno-
mial time. It is obvious that we can apply Rules 1 through 5 in polynomial time.
The following lemma addresses Rule 6 by solving a matroid parity problem on an
appropriate gammoid.

88 Theory Comput Syst (2018) 62:63–92

Lemma 14 LetG = (V , E), z ∈ V , and S ⊆ E. A z-flower of maximum order, i.e., a
maximum number of S-cycles that intersect only in z, can be found in (deterministic)
polynomial time.

Proof For simplicity, we assume that there are no edges of S incident with z and that
no two edges of S are incident with the same vertex of G. If this is not the case, then
we subdivide every S-edge e = {v, w} into three edges {v, ve}, {ve, vw}, {vw, w}. In
the set S we replace edge e by the edge {ve, we}. In the resulting graph no S-edge is
incident with an original vertex in the graph or to an other S-edge. Subdividing the
S-edges like this does not change the maximum order of z-flowers. Furthermore, the
set of z-flowers does not change and it is easy to transfer a z-flower in the original
graph to one in the new graph and vice versa.

Let {C1, . . . , Ct } be a z-flower of order t . Each Ci gives rise to a path Pi between
two different neighbors u and v of z; all these paths are fully vertex-disjoint. By
our above assumption, there are no S-edges incident with z, hence, each Pi must
contain two consecutive vertices, say si and ti , with {si, ti} ∈ S. In this way, each
path Pi can be split into two paths, Pi,s and Pi,t , from N(v) to {si, ti}; all these 2t
paths are pairwise vertex-disjoint and do not contain the vertex z. Thus, from any
z-flower of order t we get 2t vertex-disjoint paths in G − z from N(z) to T ⊆
V (S), i.e., endpoints of S-edges, such that T can be partitioned into t two-sets of
vertices that are also edges in S. In the language of gammoids this means that T is
an independent set in the gammoid on graph G − z, with sources N(z), and ground
set V (S).

Conversely, any independent set T in the mentioned gammoid implies the exis-
tence of |T | vertex-disjoint paths in G − z from N(z) to T . If, as above, T can be
partitioned into edges of S then this gives rise to a z-flower of order t = |T |/2:
Clearly, |T | must be even to allow for the partition into sets of size two. Moreover,
the paths are vertex-disjoint and, thus, two paths from N(z) ending in {si, ti} ∈ S can
be combined, using that {si, ti} must be an edge of G into a single path, say Pi , from
N(z) to N(z) that contains at least one edge of S. Note that, because si and ti are
ends of two paths in the packing they cannot occur in any other paths, so this com-
bination still yields vertex-disjoint paths in G − z. Finally, adding the vertex z, the
paths P1, . . . , Pt can be combined into t S-cycles that intersect only in z.

Thus, the task of finding a z-flower of maximum order reduces to that of solving
a matroid parity problem on a gammoid: The underlying graph is G − z, the source
set is NG(z), the ground set is V (S), and the pairs are given by S. Recall that pairs in
S are vertex-disjoint. Using the algorithm due to Lovász [15], one may find a maxi-
mum independent set composed of pairs in S in polynomial time, when provided with
a matrix representation for the gammoid. A small caveat would be that one would
need a randomized algorithm for finding said representation. Conveniently, special-
ized deterministic algorithms exist for subclasses of linear matroids; we can use a
deterministic algorithm due to Tong et al. [22] that solves the problem by reduction to
weighted matching on graphs. (Note that given a maximum independent set T com-
posed of pairs, the cycles of the z-flower can be found by computing vertex-disjoint
paths from N(z) to T in G − z via a vertex-capacitated flow computation.)

Theory Comput Syst (2018) 62:63–92 89

It remains to show that we can apply Rules 7 through 10 in polynomial time.

Lemma 15 We can apply Rule 7 and 8 in polynomial time.

Proof First of all we store for each edge e = {I, J } ∈ M all vertices z ∈ Z seen by
edge e and all pairs {x, y} with x, y ∈ Z seen by edge e. For each edge we need at
most O(|Z|2) time; we only have to test for each vertex z ∈ Z respectively each pair
{x, y} with x, y ∈ Z whether {I, z}, {J, z} ∈ E(HZ) respectively {I, x}, {J, y} ∈
E(HZ) or {I, y}, {J, x} ∈ E(HZ). Next we count how many edges see a pair {x, y}
with x, y ∈ Z and denote this value by c{x,y}. It takes at most O(|E||Z|2) time to
compute all values; we only have to count for how many edges we store a certain
pair. If a counter c{x,y} has value at least k + 2, then we add the pair {x, y} to the set
P of pair-constraints. We can check this for all counters in O(|Z|2) time. The above
computation corresponds to the computation we need for Rule 7. To apply Rule 8
we only have to look at all vertices and pairs that we stored for an edge e ∈ M . If
we have stored no single vertex and only pairs that are pair-constraints in P , then e

fulfills the conditions of an edge that we delete in Rule 8. To check this for one edge
takes at most O(|Z|2) time.

We prove that we can apply Rule 9 and 10 in polynomial time similar to how we
prove that we can apply Rule 7 and 8 in polynomial time. We only have to remember
which endpoint is adjacent to which vertex in a pair.

Lemma 16 We can apply Rule 9 and 10 in polynomial time.

Proof First of all we store for each edge e = {I, J } with I ∈ I , J ∈ L all vertices
z ∈ Z seen by edge e and all pairs (x, y) with x ∈ Z ∪ B adjacent to I , y ∈ Z

adjacent to J such that e sees the pair {x, y}. For each edge e = {I, J } with I ∈ I ,
J ∈ L we need at most O(|Z ∪ B||Z|) time; we only have to test for each vertex
z ∈ Z respectively each pair (x, y) with x ∈ Z ∪ B, y ∈ Z whether {I, z}, {J, z} ∈
E(HZ∪B) respectively {I, x}, {J, y} ∈ E(HZ∪B). Next we count for howmany edges
we stored the pair (x, y) with x ∈ Z ∪ B, y ∈ Z and denote this value by c(x,y). It
takes at most O(|E||Z ∪ B||Z|) time to compute all values; we only have to count
for how many edges we store a certain pair. If a counter c(x,y) has value at least
k + 2, then we add the pair {x, y} to the set P of pair-constraints. We can check this
for all counters in O(|Z ∪ B||Z|) time. The above computation corresponds to the
computation we need for Rule 9, because we only store the pair (x, y) for an edge if
the edge sees the pair {x, y}. To apply Rule 10 we only have to look at all vertices
and pairs that we stored for an edge e between bubbles in I and bubbles in L. If we
have stored no single vertex and only pairs (x, y) such that {x, y} is a pair-constraints
in P , then e fulfills the conditions of an edge that we delete in Rule 10. To check this
for one edge takes at most O(|Z ∪ B||Z|) time.

Finally, we show that we can compute the matchingM and the setB in polynomial
time.

90 Theory Comput Syst (2018) 62:63–92

Lemma 17 We can compute a maximal matching M in HZ that covers all inner
bubbles in polynomial time.

Proof The graph HZ is a forest where all inner bubbles have degree greater than one.
Thus, it is enough to show that every forest F has a maximal matching that covers all
vertices of degree greater that one. We will prove this by induction on the number of
edges.

If the forest F has no edges, then M = ∅ is a valid solution that covers all vertices
of degree greater that one. Otherwise, since F is a forest with at least one edge, there
exists at least one vertex v of degree one. By induction, F ′ = F − v has a maximal
matching M ′ that covers all vertices of degree greater than one. Now, if M ′ covers
the unique neighbor u of v, then M = M ′ is a matching that covers all vertices of
degree greater that one in the forest F . Otherwise, the matching M ′ = M ∪ {{u, v}}
is a matching that covers all vertices of degree greater that one in the forest F .

This argument can be easily converted into a recursive algorithm for computing
the desired matching in polynomial time.

It remains to show that we can find B in polynomial time. From Schrijver’s proof
of Theorem 1 [20] and the proof of Lemma 7 it follows that we can find in polynomial
time either a z-flower of order (k + 1) or a z-blocker of size at most 2k in Gz. Since
there exists no z-flower in Gz when we compute B, we compute for every z exactly
once the set Bz and since B is simply the union of all z-blockers we can compute B

in polynomial time.

Finding an equivalent instance for Edge Subset Feedback Vertex Set Up to now
we can only bound the number of edges in S for the PAIR-CONSTRAINED EDGE

SUBSET FVS problem. As mentioned above the instance (G, S,P = ∅, k) for PAIR-
CONSTRAINED EDGE SUBSET FVS is equivalent to the instance (G, S, k) of EDGE

SUBSET FVS. Therefore we only have to show that we can find in polynomial time an
instance of EDGE SUBSET FVS that is equivalent to the instance (G, S,P, k) of PAIR-
CONSTRAINED EDGE SUBSET FVS and has at most O(k4) S-edges. Let {x, y} ∈ P
be a pair-constraint. If there are two edges between x and y of which at least one is
contained in S, then x or y must be in any solution, because xy is an S-cycle. For
this reason, the instance (G′, S′ = S ∪ P, k) of EDGE SUBSET FVS is equivalent to
the instance (G, S,P, k) of PAIR-CONSTRAINED EDGE SUBSET FVS, where G′ is
created from G by adding one edge {x, y} between every two vertices x and y with
{x, y} ∈ P when {x, y} /∈ E and by adding an edge {x, y} between x and y that is
also contained in S′; hence there are two edges between x and y with {x, y} ∈ P in
graph G′ and we add exactly one edge between x and y to S′. Because we cannot
apply Rule 4 or 5 to (G, S,P, k), we know that |P| ≤ k2. This leads to a bound of
|S|+|P| ∈ O(k4) edges in S′ for the EDGE SUBSET FVS problem after the reduction.

Finally, we combine the results of Sections 3 and 4 to obtain a polynomial kernel
for EDGE SUBSET FVS parameterized by k. Let us first make some comments about
the reduction of the size of S and the kernelization: For the reduction of the size of
S we use the fact that we can always find a solution that is disjoint from T = V (S).

Theory Comput Syst (2018) 62:63–92 91

This only holds because we modified the graph accordingly. But since this is a cor-
rect reduction it holds that an input instance (G, S, k) of EDGE SUBSET FVS has a
solution if and only if the output instance (G′, S′, k′) of the reduction in Section 4
has a solution. Thus it is no problem that we consider dominant solutions for the
kernelization in Section 3 and that the kernelization only guarantees the preservation
of dominant solutions. Every instance (G′, S′, k′) has a dominant solution of size at
most k′ when a solution of size at most k′ exists; remember that X is a dominant
solution for (G′, S′, k′) if it has minimum size and contains a maximal number of
vertices from T ′ among solutions of minimum size. Hence if (G′, S′, k′) has a solu-
tion then it has a dominant solution X. Let (G′′, S′, k′) be the output instance of the
kernelization in Section 3. From Lemma 5 it follows that (G′, S′, k′) has a solution
if and only if (G′′, S′, k′) has a solution.

Summarized, the reduction of the number of edges in S to O(k4) edges together
with the kernelization to O(|S|2k) vertices for EDGE SUBSET FVS parameterized by
|S| and k, results in a kernelized instance with O(k9) vertices for EDGE SUBSET FVS

parameterized by k.

5 Conclusions

We have shown that the SUBSET FVS problem has a randomized polynomial ker-
nelization using the matroid-based tools of Kratsch and Wahlström [12], positively
answering the question of Cygan et al. [3]. As in previous work [12] the error-
probability can be made exponentially small without increasing the kernel size.
Nevertheless, it would of course be very interesting whether the use of randomiza-
tion and/or matroids can be avoided. Furthermore, there is quite a gap betweenO(k9)

vertices and a lower bound of size O(k2−ε) that is inherited from VERTEX COVER

[4], conditioned on non-collapse of the polynomial hierarchy.
Other open problems regarding existence of polynomial kernels, possibly

amenable to the matroid tools, are MULTIWAY CUT and DIRECTED FEEDBACK VER-
TEX SET (DFVS). There is also a directed version of SUBSET FVS, called DIRECTED

SUBSET FEEDBACK VERTEX SET, but it generalizes DFVS, whose kernel status has
remained open for quite some time now.

Acknowledgments We would like to thank the anonymous reviewers for several useful comments on
the presentation of our results.

References

1. Burrage, K., Estivill-Castro, V., Fellows, M.R., Langston, M.A., Mac, S., Rosamond, F.A.: The
undirected feedback vertex set problem has a poly(k) kernel. In: IWPEC 2006, LNCS, vol. 4169,
pp. 192–202. Springer (2006). https://doi.org/10.1007/11847250 18

2. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., Van Rooij, J.M.M., Wojtaszczyk, J.O.: Solv-
ing connectivity problems parameterized by treewidth in single exponential time. In: FOCS 2011,
pp. 150–159. IEEE Computer Society (2011). https://doi.org/10.1109/FOCS.2011.23

https://doi.org/10.1007/11847250_18
https://doi.org/10.1109/FOCS.2011.23

92 Theory Comput Syst (2018) 62:63–92

3. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Subset feedback ver-
tex set is fixed-parameter tractable. SIAM. J. Discrete Math. 27(1), 290–309 (2013).
https://doi.org/10.1137/110843071

4. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless the polynomial-
time hierarchy collapses. J. ACM 61(4), 23:1–23:27 (2014). https://doi.org/10.1145/2629620

5. Diestel, R.: Graph theory (graduate texts in mathematics) (2005)
6. Even, G., Naor, J., Schieber, B., Zosin, L.: Approximating minimum subset feedback sets

in undirected graphs with applications. SIAM J. Discrete Math. 13(2), 255–267 (2000).
https://doi.org/10.1137/S0895480195291874

7. Even, G., Naor, J., Zosin, L.: An 8-approximation algorithm for the subset feedback vertex set
problem. SIAM J. Comput. 30(4), 1231–1252 (2000). https://doi.org/10.1137/S0097539798340047

8. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Efficient computation of representative sets with appli-
cations in parameterized and exact algorithms. In: SODA 2014, pp. 142–151. SIAM (2014).
https://doi.org/10.1137/1.9781611973402.10

9. Gallai, T.: Maximum-minimum sätze und verallgemeinerte faktoren von graphen. Acta Math. Hung.
12(1-2), 131–173 (1961)

10. Kawarabayashi, K., Kobayashi, Y.: Fixed-parameter tractability for the subset feedback set prob-
lem and the S-cycle packing problem. J. Comb. Theory, Ser. B 102(4), 1020–1034 (2012).
https://doi.org/10.1016/j.jctb.2011.12.001

11. Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf. Process. Lett. 114(10),
556–560 (2014). https://doi.org/10.1016/j.ipl.2014.05.001

12. Kratsch, S., Wahlström, M.: Representative sets and irrelevant vertices: New tools for kernelization.
In: FOCS 2012, pp. 450–459. IEEE Computer Society (2012). https://doi.org/10.1109/FOCS.2012.46

13. Lokshtanov, D., Ramanujan, M.S., Saurabh, S.: Linear time parameterized algorithms for sub-
set feedback vertex set. In: ICALP 2015, LNCS, vol. 9134, pp. 935–946. Springer (2015).
https://doi.org/10.1007/978-3-662-47672-7 76

14. Lovász, L.: Flats in matroids and geometric graphs. In: Combinatorial surveys (Proc. Sixth British
Combinatorial Conf., Royal Holloway Coll., Egham, 1977), pp. 45–86. Academic Press, London
(1977)

15. Lovász, L.: Matroid matching and some applications. J. Comb. Theory, Ser. B 28(2), 208–236 (1980).
https://doi.org/10.1016/0095-8956(80)90066-0

16. Marx, D.: A parameterized view on matroid optimization problems. Theor. Comput. Sci. 410(44),
4471–4479 (2009). https://doi.org/10.1016/j.tcs.2009.07.027

17. Marx, D., O’Sullivan, B., Razgon, I.: Finding small separators in linear time via treewidth reduction.
ACM Trans. Algorithm. 9(4), 30 (2013). https://doi.org/10.1145/2500119

18. Perfect, H.: Applications of Menger’s graph theorem. J. Math. Anal. Appl. 22, 96–111 (1968)
19. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–301

(2004). https://doi.org/10.1016/j.orl.2003.10.009
20. Schrijver, A.: A short proof of Mader’s sigma-paths theorem. J. Comb. Theory, Ser. B 82(2), 319–321

(2001). https://doi.org/10.1006/jctb.2000.2029
21. Thomassé, S.: A 4k2 kernel for feedback vertex set. ACM Trans. Algorithm. 6(2), 32:1–32:8 (2010).

https://doi.org/10.1145/1721837.1721848
22. Tong, P., Lawler, E.L., Vazirani, V.V.: Solving the weighted parity problem for gammoids by reduction

to graphic matching. Computer Science Division University of California, USA (1982)
23. Wahlström, M.: Half-integrality, lp-branching and FPT algorithms. In: SODA 2014, pp. 1762–1781.

SIAM (2014). https://doi.org/10.1137/1.9781611973402.128

https://doi.org/10.1137/110843071
https://doi.org/10.1145/2629620
https://doi.org/10.1137/S0895480195291874
https://doi.org/10.1137/S0097539798340047
https://doi.org/10.1137/1.9781611973402.10
https://doi.org/10.1016/j.jctb.2011.12.001
https://doi.org/10.1016/j.ipl.2014.05.001
https://doi.org/10.1109/FOCS.2012.46
https://doi.org/10.1007/978-3-662-47672-7_76
https://doi.org/10.1016/0095-8956(80)90066-0
https://doi.org/10.1016/j.tcs.2009.07.027
https://doi.org/10.1145/2500119
https://doi.org/10.1016/j.orl.2003.10.009
https://doi.org/10.1006/jctb.2000.2029
https://doi.org/10.1145/1721837.1721848
https://doi.org/10.1137/1.9781611973402.128

	A Randomized Polynomial Kernel for Subset Feedback Vertex Set
	Abstract
	Introduction
	Our work

	Preliminaries
	Parameterized complexity
	Matroids, gammoids, and representative sets

	Randomized polynomial kernelization for parameter |S|+k
	Analyzing solutions.
	Setting up the gammoid.
	Applying the representative set lemma
	Shrinking the input graph to bold0mu mumu |V(T) T||V(T) T|dotted|V(T) T||V(T) T||V(T) T||V(T) T| vertices

	Reducing the size of S
	The reduction rules
	The reduction rules are safe
	Applying the Rules.
	Finding an equivalent instance for Edge Subset Feedback Vertex Set

	Conclusions
	Acknowledgments
	References

