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Abstract Catalytic computation, defined by Buhrman, Cleve, Koucký, Loff and
Speelman (STOC 2014), is a space-bounded computation where in addition to our
working memory we have an exponentially larger auxiliary memory which is full; the
auxiliary memory may be used throughout the computation, but it must be restored
to its initial content by the end of the computation. Motivated by the surprising
power of this model, we set out to study the non-deterministic version of catalytic
computation. We establish that non-deterministic catalytic log-space is contained in
ZPP, which is the same bound known for its deterministic counterpart, and we prove
that non-deterministic catalytic space is closed under complement (under a stan-
dard derandomization assumption). Furthermore, we establish hierarchy theorems for
non-deterministic and deterministic catalytic computation.
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1 Introduction

Buhrman et al. [3] define the notion of catalytic computation, a space-bounded model
of computation in which the usual Turing machine has, in addition to its work tape,
access to a large auxiliary memory which is full. The auxiliary memory can be used
during the computation, but its starting contents must be restored by the end of the
computation. The space usage that is counted is the amount of work space s used;
the auxiliary memory is for free. In a reasonable setting, the auxiliary memory is
of size at most 2s . One can think of the auxiliary memory as a hard disk full of
data. The difficulty in using the auxiliary memory is that it may contain arbitrary
content, possibly incompressible, which has to be preserved in some way during the
computation. It is not obvious whether such auxiliary memory can be useful at all.
Buhrman et al. [3] have shown that, surprisingly, there is a non-trivial way of using
the full memory; that it is possible to compute in work space O(log n) (catalytic
log-space, CL) functions not known to be computable in the usual logarithmic space
(log-space, L) without the auxiliary memory. Indeed, all of TC1, which includes NL
and LOGCFL, is contained in CL.

This motivated us to explore further: What other problems can be solved in cat-
alytic log-space? Buhrman et al. show CL ⊆ ZPP, so CL is unlikely to contain the
whole of PSPACE (even though this is the case relative to some oracle). The fact
that NL ⊆ CL suggests an obvious question: what about non-deterministic catalytic
log-space? Could it be that non-deterministic computation equipped with auxiliary
tape has the same power as deterministic catalytic computation? Non-deterministic
catalytic computation could possibly allow us to identify further problems that can
benefit from having full memory. The previous work also raises a host of further
question about the catalytic model such as: Is there a space hierarchy? Does some
kind of Savitch’s theorem hold for catalytic log-space? Is non-deterministic cat-
alytic space closed under complement? etc. This paper sheds light on some of these
questions.

We will show that non-deterministic catalytic space is closed under complement
under a widely accepted derandomization assumption. We also establish hierarchy
theorems for catalytic computation in the deterministic and non-deterministic set-
tings. For our non-deterministic catalytic log-space we can also establish the same
ZPP upper bound that was known for CL. Hence there seems to be a closeness
between determinism and non-determinism for catalytic computation. Despite that
we are unable to establish an equivalent of Savitch’s theorem.

We prove the closure under complement using the inductive counting technique
of Immerman and Szelepcsényi [4, 10]. However, we had to overcome several dif-
ficulties. One challenge is that we might be faced with an exponential-size graph of
reachable configurations. We show how to use a pseudorandom generator to avoid
such a situation. Another issue is that for inductive counting we need to be able to
remember and reason about different configurations. However, the full description of
a configuration is exponentially bigger than our work space, so we cannot possibly
store it in full. This is one of the hurdles that prevents us from carrying out Savitch’s
algorithm for catalytic computation. For the inductive counting we resolve this issue
by using fingerprints for various configurations.
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Proving an analogue of Savitch’s theorem for catalytic computation remains an
open problem, which has resisted proof attempts from various parties, including the
authors. Intuitively, we fail to see how non-determinism could be given any use-
ful purpose, given that NL ⊂ CL already, and given that a catalytic computation
cannot remember more than a logarithmic amount of information about previous
non-deterministic guesses. But we had a similar intuition about the original prospect
of computing with a full memory — we thought that no use could be made of this
extra memory if its contents were incompressible — and this intuition turned out to
be completely false. So it could well be that non-deterministic catalytic space is more
powerful than its deterministic counterpart, i.e., that no analogue of Savitch’s theo-
rem can be proven. We put this problem forward as an intriguing challenge which we
would like to see resolved.

Our hierarchy theorems are proven in the setting of computation with advice. The
catalytic model is a semantic restriction. It is an easy exercise to show that it is algo-
rithmically undecidable whether a machine will restore the full memory on every
input to its original content. For semantic models of computation, like bounded-
error randomized computation, the only hierarchy theorems that we know of are
in the setting with advice. The reason is that essentially all known hierarchy theo-
rems are proven by diagonalization, which requires the ability to enumerate exactly
all machines of a given type. We do not know any such enumeration for catalytic
machines so we have to settle for the weaker result. The advice is used only to tell the
diagonalizing machine whether it is safe to diagonalize against a particular machine.
The hierarchy theorems follow from the work of Kinne and Van Melkebeek, and Van
Melkebeek and Pervyshev [8, 11]. For some settings of parameters we provide more
accurate separations that were not explicitly calculated before.

The layout of the paper is as follows. Section 2 contains some preliminaries. In
Section 3 we define non-deterministic catalytic computation, and prove that the cor-
responding log-space class CNL is contained in ZPP. Section 4 is devoted to proving
that CNL is closed under complement, and in Section 5 we show hierarchy theorems
for catalytic computation.

2 Preliminaries

We assume the reader is familiar with basic computational complexity; a good refer-
ence is [2]. The complexity class L denotes the problems solvable in log-space, while
PSPACE is the class of those problems that can be solved using a polynomial amount
of space. The class NL contains the problems that can be solved non-deterministically
in log-space, and LOGCFL is the class of problems that are log-space many-one
reducible to context-free languages.

The problems in ZPP (zero-error probabilistic polynomial time) are the ones com-
putable by a probabilistic Turing machine that halts in expected polynomial time,
while always outputting the correct answer for any input.

We mention the circuit class TC1, which is the class of boolean functions com-
putable by polynomial-size circuits of depth O(log n) composed of AND gates, OR
gates and MAJ gates, all with unbounded fan-in — a MAJ gate outputs 1 if and only
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if most of its input bits are 1. We use SIZE(s) to denote the class of problems that can
be solved by circuits of size O(s).

The formal definition of catalytic computation [3] is the following:

Definition 1 Let M be a deterministic Turing machine with four tapes: one input
and one output tape, one work-tape, and one auxiliary tape (or aux-tape).

M is said to be a catalytic Turing machine using workspace s(n) and auxiliary
space sa(n) if for all inputs x ∈ {0, 1}n and auxiliary tape contents w ∈ {0, 1}sa(n),
the following three properties hold.

1. Space bound. The machine M(x, w) uses space s(n) on its work tape and space
sa(n) on its auxiliary tape.

2. Catalytic condition.M(x, w) halts with w on its auxiliary tape.
3. Consistency. The outcome of the computation M(x, w) is consistent among all

initial aux-tape contents w.1

From this we obtain an analogue of the usual space-bounded complexity classes:

Definition 2 CSPACE(s(n), sa(n)) is the class of decision problems solvable by a
catalytic Turing machine using workspace s(n) and auxiliary space sa(n). The nota-
tional shorthand CSPACE(s(n)) is defined as CSPACE(s(n), 2s(n)). The class CL is
CSPACE(O(log n)).

In the paper [3], it was shown that, surprisingly, CL can make non-trivial use of the
auxiliary tape. Indeed, the paper shows that TC1 ⊆ CL, but it is generally believed
that TC1 �⊆ L.

In Section 5 of this paper we will prove a space-hierarchy theorem for catalytic
computations. This hierarchy theorem holds for catalytic Turing machines with an
advice string.

We define advice added to a catalytic computation in the same way as in the recent
line of research that proves hierarchies for certain classes of semantic models, see
for example [8, 11]. In our case that means that a computation needs to satisfy the
catalytic condition and consistency properties on the correct advice, and is allowed
to (for example) fail to restore the contents of the aux-tape for other values of the
advice. This notion of advice is a variation on the one defined by Karp and Lipton [7],
who required that the algorithm should fulfil the model’s promise under all possible
values of the advice string. Proving the same hierarchy theorem using the Karp–
Lipton definition would be harder, and would indeed imply a hierarchy theorem that
also holds without any advice [8].

Given a non-decreasing function a : N → N, CSPACE(s(n), sa(n))/a is the class
of decision problems solvable by a deterministic Turing machine M using workspace
s(n) and auxiliary space sa(n), with the help of some advice α(n) ∈ {0, 1}a(n)

1What this means depends on what we are trying to do. For instance, when solving a decision problem,
M(x,w) should either accept for all choices of w — in which case we say M accepts x — or it rejects
for all possible w — M rejects x.
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of length a(n); the computation M(x, α(|x|), w) must obey the three conditions
space bound, catalytic condition and consistency described above, but this is not
required to be the case for the computation M(x, a′, w) whenever a′ �= α(|x|).
We will define non-deterministic catalytic-space computations in Section 3, and the
analogous advice classes are defined in a similar way.

In Section 4 we will prove an analogue of the Immerman–Szelepcsényi theorem.
The definition of the non-deterministic version of CL, denoted CNL, will be left for
Section 3. Then CNL = coCNL will hold under the same assumption as the following
standard derandomization result, whose proof is now standard.2

Lemma 1 If there exists a constant ε > 0 such that DSPACE(n) �⊆ SIZE(2εn) then
for all constants c there exists a constant c′ and a function G : {0, 1}c′ log n → {0, 1}n
computable in O(log n) space, such that for any circuit C of size nc

∣
∣
∣
∣
∣

Pr
r∈{0,1}n[C(r) = 1] − Pr

s∈{0,1}c′ log n

[C(G(s)) = 1]
∣
∣
∣
∣
∣
<

1

n
.

It should be noted 3SAT can be solved in linear space, and hence the hardness
assumption used in the above lemma is weaker than the well-known and widely used
Exponential-Time Hypothesis (ETH) of Impagliazzo and Paturi [5].

We will also need a hash family with nice properties.

Lemma 2 For every n, there exists a family of hash functions {hk}n3

k=1, with each hk

a function {0, 1}n → {0, 1}4 log n, such that the following properties hold. Firstly, hk

is computable in space O(log n) for every k, and secondly, for every set S ⊂ {0, 1}n
with |S| ≤ n there is a hash function in the family that is injective on S.

The proof will use the well-known:

Chinese Remainder Theorem Let p1, . . . , pm be a list of relatively prime inte-
gers. Any positive integer x is uniquely specified by the list of remainders a1 = x

mod p1, a2 = x mod p2, . . . , am = x mod pm, provided that x <
∏m

i=1 pi .

Proof of Lemma 2 For a natural number k, let pk be the k-th prime number. For
every k = 1, . . . , n3 define the hash function hk(x) = x mod pk . We will show that
for any set S ⊂ {0, 1}n of size n, there exists a number k∗ ∈ {1, . . . , n3} such that the
function hk∗ is injective on S. Here we interpret binary strings as natural numbers in
the usual way, and hence we can upper bound any element of S by 2n.

For all x, y ∈ S, where x �= y, define Bx,y = {pk | x mod pk = y mod pk, 1 ≤
k ≤ n3} to be the set of primes for which x and y hash to the same value. Then
B = ⋃

x,y∈S,x �=y Bx,y is the set of all primes which give a hash collision on the set S.
For any pair x, y it now holds that |Bx,y | ≤ n. Indeed, assume for a contradiction

that the set contains a subset of n + 1 primes for which x and y have the same

2For instance, the pseudo-random generator of [6] has the right properties. Or see Appendix C of [9] and
Theorem 19 of [1].
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remainders. Noting that the product of these n + 1 primes is at least 2n, larger than
both x and y, and that prime numbers are relatively prime, we find an immediate
contradiction with the Chinese Remainder Theorem.

We can bound the number of primes that give a collision by

|B| ≤
∑

x,y∈S,x �=y

|Bx,y | ≤
(

n

2

)

n ,

which is strictly less than n3 for n > 1. Therefore there exists a prime pk with
1 ≤ k ≤ n3 such that pk �∈ B, and therefore x mod pk is unique for all x ∈ S.

Left is to show this algorithm can be executed in logarithmic space. First note that
using the prime number theorem we can (imprecisely) bound pk ≤ n4, for 1 ≤ k ≤
n3. Since every number p ≤ n4 we try as modulus can be stored using 4 log n bits,
checking primality is also readily seen to be in space O(log n), just by checking all
possible factors. To hash a value x ∈ {0, 1}n we can, for example, sum 2i mod p

for all i such that xi = 1. The value 2i mod p can easily be computed in space
O(log n) by repeated multiplication by 2, i.e., a bit shift, followed by subtraction of
p whenever the intermediate value becomes too large.

Remarks on notation For two binary strings x, y of equal length, we use x ⊕ y for
the bitwise XOR of x and y. The function log always stands for the logarithm of base
2. For simplicity, all Turing machines are assumed to use a binary alphabet — all
definitions and proofs would easily generalize to larger alphabet sizes, at the cost of
introducing notational clutter.

3 Non-deterministic Catalytic Computation

The model for catalytic computation is defined in terms of deterministic Turing
machines. This gives rise to the question: What would the power of a non-
deterministic version of CL be? In this section we extend the definitions of catalytic-
space computation to the non-deterministic case, and prove basic results about this
model.

Definition 3 Let M be a non-deterministic Turing machine with four tapes: one
input and one output tape, one work-tape, and one auxiliary tape.

Let x ∈ {0, 1}n be an input, and w ∈ {0, 1}sa(n) be the initial contents of the
auxiliary tape. We say that M(x, w) accepts x if there exists a sequence of nonde-
terministic choices that makes the machine accept. If for all possible sequences of
nondeterministic choices M(x, w) does not accept, the machine rejects x.

Then M is said to be a catalytic non-deterministic Turing machine using
workspace s(n) and auxiliary space sa(n) if for all inputs, the following three
properties hold.

1. Space bound. The machine M(x, w) uses space s(n) on its work tape and space
sa(n) on its auxiliary tape.
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2. Catalytic condition. M(x, w) halts with w on its auxiliary tape, irrespective of
its nondeterministic choices.

3. Consistency. The outcome of the computation M(x, w) is consistent among all
initial aux-tape contents w.

This means that for any given input x, M(x,w) should always accept (for
some non-deterministic choice), or always reject (for every non-deterministic
choice), regardless of w; however: if M accepts x, the specific nondeterministic
choices that make each M(x, w) accept may depend on w.

Definition 4 CNSPACE(s(n), sa(n)) is the class of decision problems solvable by a
catalytic Turing machine using workspace s(n) and auxiliary space sa(n), CNSPACE
(s(n)) is CNSPACE(s(n), 2s(n)), and the class CNL is CNSPACE(O(log n)).

We now have an analogue of non-deterministic space-bounded complexity. There
are multiple possible ways to add non-determinism to a catalytic Turing machine.
For instance, we require the machine to restore the contents of the auxiliary tape
for any given sequence of non-deterministic bits; but at a first glance, it seems
we could make this requirement only for those non-deterministic guesses which
result in accepting states. However, defining the model in this way is less natu-
ral for several reasons. For one, we can not run two machines sequentially and
accept if one of them accepts: if one of the two machines would reject, the whole
computation needs to reject, because the auxiliary tape may have been irreversibly
changed; so the class would not be closed under union. This would also pre-
vent amplification of success probability in a probabilistic class defined using such
machines. Philosophically speaking, it seems to go against the spirit of the model
having a catalytic machine which ‘sometimes’ destroys all data it has promised to
preserve.

Another possible variation would be to require that the accepting sequence of
non-deterministic choices is independent of the initial contents of the auxiliary tape,
which would give a weaker model. Indeed, this would not look very strange in a
certificate definition, effectively requiring that there exists a read-once certificate,
independent of the initial contents of the aux-tape, which can be verified by a deter-
ministic log-space catalytic Turing machine. Even so, when describing the model
with non-deterministic Turing machines it seems unnatural to have this restriction.
Furthermore, the model is weaker, so if we expect to make some use of non-
determinism, it should be easier if we define it in the current way. Hence we have
also ruled out this alternative definition.

For the reader’s convenience, let us present an equivalent definition of CNL with
all the conditions unfolded.

Definition 5 A decision problem L ⊆ {0, 1}∗ is in CNL if there exists a constant c

and a deterministic Turing machine M, with a read-only input tape, a uni-directional
certificate tape, a work tape of size c log n and an auxiliary tape of size nc, such that
for all n-bit strings x and for all w ∈ {0, 1}nc

it holds that

x ∈ L ⇐⇒ ∃u ∈ {0, 1}2nc

M(x, u, w) accepts
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and
∀u ∈ {0, 1}2nc

M(x, u, w) halts with w on its aux-tape.

The string x appears on the input tape, u represents the contents of the uni-directional
certificate tape, and w is the starting contents of the auxiliary tape.

In [3], we proved that CL ⊆ ZPP; we now generalize this to CNL ⊆ ZPP.

Definition 6 Define the directed acyclic graph GM,x,w to be the configuration graph
of a catalytic non-deterministic Turing machine M on input x and auxiliary tape
starting contents w. That is, GM,x,w has a node for every configuration which is
reachable by non-deterministic choices when executing M(x, w).

We will use |GM,x,w| to denote the number of nodes of the configuration graph.

Lemma 3 Let M be a non-deterministic catalytic machine using space c log n and
let c′ = 2c + 2. Then for all x

Ew∈R{0,1}nc

[ |GM,x,w| ] ≤ O(nc′
) .

Proof Notice that, for any given x ∈ {0, 1}n, and for different auxiliary tape contents
w, w′, the set of configurations in GM,x,w and in GM,x,w′ have to be disjoint. For the
sake of contradiction, consider a configuration q that is reachable both by M(x, w)

and by M(x, w′). Then any halting configuration reachable by q will have the wrong
contents on its auxiliary tape for either the computation that started with w or with w′.

The number of bits needed to describe a configuration of M, excluding the
contents of the input tape, is bounded by

c log n + nc + log nc + log n + log (c log n) + O(1) ≤ (2c + 2) log n + nc + O(1),

where we do include the encoding of the location of the tape heads and the internal
state of the Turing Machine. Therefore the total number of reachable configurations,
counted over all possible starting auxiliary tape contents, is at most

∑

w∈{0,1}nc

|GM,x,w| ≤ 2c′ log n+nc+O(1) = O(nc′
)2nc

And thus:

1

2nc

∑

w∈{0,1}nc

|GM,x,w| = Ew∈R{0,1}nc

[ |GM,x,w| ] ≤ O(nc′
).

Now suppose we have CNL machine M, and let x ∈ {0, 1}n be the input string.
Consider an algorithm which flips a random string w and searches GM,x,w for a
path from the initial configuration to an accepting configuration. This takes time
polynomial in |GM,x,w|. By Lemma 3 this graph is polynomial-sized in expectation,
and therefore this procedure finishes in expected polynomial time. Thus we obtain:

Corollary 1 CNL ⊆ ZPP.
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4 An Analogue of the Immerman–Szelepcsényi Theorem

This section is devoted to proving that CNL is closed under complement. Our proof
strategy is based on the inductive-counting argument in the proof of the Immerman–
Szelepcsényi theorem. In order for the proof to work for catalytic computation, we
will need to carefully combine two new new ideas.

Suppose we are given a CNL machine M, and wish to construct a CNL-machine
M′ to compute the complement M, via an inductive-counting argument on the
configuration graph of M.

First of all, notice that whenever M′ wishes to simulate a run of M, it must
necessarily use its own aux-tape to simulate the aux-tape of M, because it is the only
read-write tape that is big enough.

Now, for some w (initial contents of the aux-tape), M may visit exponentially
many configurations. Then the inductive counting would be impossible to do with
only logarithmic space. So the first idea is to use the pseudo-random generator G of
Lemma 1 to avoid such bad w, by using the binary XOR w⊕G(s) for different seeds
s. Lemma 4 below explains why this works.

Notice also that we must be careful that M′, when simulating a run of M, can
always restore the initial contents of its aux-tape. We can make sure this happens
correctly by using the catalytic condition applied to M: whenever we need to restore
the initial contents of the aux-tape, it will be enough to run the simulation of M to
an arbitrary halting configuration.

Finally, recall that the inductive-counting argument involves storing and compar-
ing configurations of M; but the configurations of M include the aux-tape, and are
too big for M′ to store on its work tape. So the second idea is to use the family of
hash functions of Lemma 2, and do inductive-counting by storing and comparing the
hashes of configurations instead of the configurations themselves.

Putting these two ideas together, however, is rather delicate, because our pseudo-
random generator will still give us bad seeds — meaning w ⊕ G(s) might visit too
many configurations. Furthermore, even if we pick a good seed, we may still happen
to pick a bad hash function — meaning a hash function which is not collision-free on
the set of reachable configurations. So the algorithm needs to be able to handle bad
seeds and bad hash functions.

It will happen that a bad seed may lead us to falsely certifying that the accepting
configuration is unreachable, when in fact it is reachable. This is solved simply by
trying all seeds and doing a majority vote.

For good seeds, the number of reachable configurations, call it c, is bounded by
nO(1), but it may still happen that the hash collisions of a bad hash function will
lead us to falsely believe that there are fewer reachable configurations than the actual
number i.e. to falsely believe that c is smaller than it actually is. This mistake may
happen because configurations with the same hash are only counted once. But for-
tunately, good hash functions will give us the correct c, and bad hash functions will
always give us a smaller value. So we overcome this problem by remembering, for
all hash function we try, the largest claimed number of reachable configurations —
this will be the true c.

Let us start by showing how to avoid bad w’s.
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Lemma 4 Assume the derandomization condition of Lemma 1, and let G be as given
therein. Let M be a non-deterministic catalytic Turing machine using workspace
c log n. Then, for every input x and aux-tape contents w, at least half of the seeds
s ∈ {0, 1}O(log n) will cause the non-deterministic computation M(x, G(s) ⊕ w) to
reach at most n2c+3 many different configurations.

Proof Let M be a CNL machine using workspace c log n and auxiliary space nc. Let
x ∈ {0, 1}n, w ∈ {0, 1}nc

be given.
Let Cx,w be a boolean circuit which, on input r ∈ {0, 1}nc

, does a breadth-first
traversal of GM,x,r⊕w

3, starting on the initial configuration, until either:

i. More than n2c+3 nodes have been found, in which case it outputs 0; or
ii. The graph has been fully traversed, in which case it outputs 1.

The size of Cx,w can be bounded by a polynomial, say nd . The circuit Cx,w outputs
1 on input r if and only if |GM,x,r⊕w| ≤ n2c+3. Therefore, for large enough n, for all
x ∈ {0, 1}n and all w ∈ {0, 1}nc

,

Pr
r∈R{0,1}nc

[Cx,w(r) = 0] = Pr
r∈R{0,1}nc

[

|GM,x,r⊕w| ≥ n2c+3
]

= Pr
r∈R{0,1}nc

[

|GM,x,r | ≥ n2c+3
]

≤ 1

n2c+3
Er∈R{0,1}nc

[ |GM,x,r |
]

≤ O

(
1

n

)

.

Here we have used the fact that, for a fixed w, r and r ⊕ w are equidistributed. The
last inequality follows from Markov’s inequality and Lemma 3.

Now Lemma 1 provides us with a log-space computable function G :
{0, 1}O(log n) → {0, 1}nc

such that, for all x ∈ {0, 1}n and w ∈ {0, 1}nc
,

∣
∣
∣
∣
∣

Pr
r∈{0,1}nc

[Cx,w(r) = 0] − Pr
s∈{0,1}O(log n)

[Cx,w(G(s)) = 0]
∣
∣
∣
∣
∣
≤ 1

n
.

In particular, for all sufficiently large n we get the rough bound:

Pr
s∈{0,1}O(log n)

[Cw(x, G(s)) = 0] ≤ 1

n
+ O

(
1

n

)

<
1

2
.

Therefore, for any x and w, at least half of the seeds s will ensure that the
configuration graph GM,x,G(s)⊕w has at most n2c+3 nodes.

3Recall that GM,x,r⊕w is the configuration graph of M, for input x and aux-tape contents given by the
bit-wise XOR of r and w.
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Our goal is now to use an inductive counting argument on GM,x,G(s)⊕w. Like we
mentioned earlier, inductive counting requires us to write down configurations in the
work tape, but the tape is not big enough. To circumvent this, we will instead write
down the hash values of the configurations, via the hash family of Lemma 2. The
proof below puts it all together.

Theorem 1 (Immerman–Szelepcsényi for catalytic computation) If there exists a
constant ε > 0 such that DSPACE(n) �⊆ SIZE(2εn) then CNL = coCNL.

Proof Let M be a nondeterministic Turing machine that uses d log n work space,
and has an auxiliary tape of size nd . We wish to construct a nondeterministic catalytic
Turing machine M′, using workspace O(log n), such that for any n and any input
x ∈ {0, 1}n our computation accepts x if M rejects x, and vice-versa.

Without loss of generality, assume that for any given w ∈ {0, 1}nd
, M(x, w) has

a unique accepting configuration accw. Let startw be the initial configuration of
M(x, w) and let e = 2d + 3.

By the consistency property, either there exists a path from startw to accw for all
w, or it is impossible to reach accw from startw, for any w. We prove Theorem 1 by
describing a way of certifying that there exists no path between startw and accw in
GM,x,w.

Fix some input x, and let w′ denote the initial contents of the aux-tape of M′. By
Lemma 4, we know that for at least half of the possible seeds s ∈ {0, 1}O(log n), we
have

|GM,x,G(s)⊕w′ | ≤ ne . (1)

If (1) holds, we say s is a good seed.
Lemma 2 gives us a family of hash functions {hk}n3e

k=1, with the property that, for
every good seed s, there is at least one hash function in the family which is one-to-one
on the nodes of GM,x,w.

In page 12, we give the pseudo-code for M′’s algorithm. Let us now do a guided
reading of this code. We begin by breaking the code into three sections, for the lines
2–6, 7–26, and 27–32.

In lines 2–6, we initialize a variable N to 0 (line 2), cycle through every seed
s (line 3), XOR the contents of the aux-tape with G(s) (line 4), and initialize two
variables g and � to 0 (lines 5 and 6).

Then, in lines 7–26, we have an inner loop that cycles through every hash function
(line 7). Below we will prove:

Property I. If the seed s is good, then (I.a) some sequence of non-deterministic
bits will cause the inner loop to exit normally at line 27, with the promise that
g = |GM,x,w|, and that h� is one-to-one on GM,x,w; and (I.b) any sequence of
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non-deterministic bits that fails this promise will exit the inner loop by jumping
directly to line 30.

At line 27, we use the value of g and � we have obtained to try and certify that
accw is not reachable. If we succeed to do so, we increment N (line 28). Below we
will also prove:

Property II. If the seed s is good, g = |GM,x,w|, and h� is one-to-one on GM,x,w,
then some sequence of non-deterministic bits will cause us to successfully certify
that accw is not reachable if and only if M(x, w) rejects.4

Before we move on to the next seed, we first restore the initial contents of the
aux-tape, by once again XORing them with G(s) (line 30).

Finally, the procedure accepts if and only if N > S/2 in line 32. Let us prove that,
assuming Properties I and II, the procedure accepts if and only if M(x,w) rejects.
Lemma 4 ensures that more than half the seeds are good, and hence:

1. If M(x,w) rejects: Property I ensures that, for each good seed s, some non-
deterministic guess will cause us to reach line 27 with g = |GM,x,w| and h�

one-to-one on GM,x,w; then Property II ensures that some further guess will
result in N being incremented; hence some overall non-deterministic guess will
give N > S/2, and the procedure will accept in line 32.

2. If M(x,w) accepts: Property I ensures that, for each good seed s, if we reach
line 27, then g = |GM,x,w| and h� one-to-one on GM,x,w, and thus, by Prop-
erty II, N will not be incremented in line 28. If some non-deterministic guess
fails to get us to line 27, then Property I tells us that the execution jumped
directly to line 30, so N was again not incremented. Because no good seed will
ever cause N to be incremented, N < S/2 and the procedure rejects in line
32.

So all we need to do is prove properties I and II. We first need to specify the
CANREACH and CANNOTREACH subroutines. Their correctness is easy to see from
the description and pseudo-code.

The CANREACH(v, i, hk) subroutine (see page 12) checks whether there is a node
w in GM,xw, reachable within i steps, with hk(w) = v.

Behavior of the CANREACH subroutine If such a w exists, then some non-
deterministic guess will cause the procedure to return TRUE, and, otherwise, every
non-deterministic guess will return FALSE.

CANREACH non-deterministically works as follows: we guess a length L ≤ i, and
simulate M for L steps. After this, we hash the configuration M is currently in, and

4But if s, g or h� are not as assumed, we might get a false-positive, claiming that accw is not reachable
when in fact it is.
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compare it to v. We will then return TRUE if and only if the two hashes are the same,
but before we return, we finish the simulation of M until we reach a halting state, in
order to restore the contents of the aux-tape.
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The CANNOTREACH(v, i, c, hk) subroutine (see page 13) checks that there is no
node in GM,x,w hashing to v and reachable within i steps, as long as c and hk fulfill
the promise that there are exactly c nodes in GM,x,w that are reachable within i − 1
steps, and that hk is one-to-one on GM,x,w.

Behavior of the CANNOTREACH subroutine If the hash v is unreachable within i

steps and the given c, hk obey the promise, then some non-deterministic guess will
cause the procedure to return TRUE. If v is reachable and c, hk obey the promise,
every guess will return FALSE. Furthermore, if the hash v is unreachable within i

steps, and c is smaller than the number of nodes in GM,x,w that are reachable within
i −1 steps, then there is a non-deterministic guess that causes the procedure to return
TRUE, even if hk is not one-to-one.

The CANNOTREACH subroutine visits c different nodes of GM,x,w in order of
ascending hash value, and for each of them checks that none of their neighbors hash
to v. Since a single step of a computation only makes a local change, it is possible
to remember this step and revert it afterwards, to continue with the next neighbor.
If one of the neighbors hashes to v or if a wrong non-deterministic guess has been
made somewhere, we restore the aux-tape and return FALSE. Otherwise finish the
simulation of M until a halting configuration is reached, to restore the orginal value
of w. If we have visited c distinct nodes without finding v as a neighbor, then we
return TRUE.

Property II follows easily from the correctness of the CANNOTREACH subroutine:
indeed, if M(x,w) rejects, then accw is not reachable, and hence with the promise
made on g and h�, some guess will cause CANNOTREACH(h�(accw), M + 1, g, h�)

to return TRUE.
We now complete the proof of the theorem by proving Property I. Let us focus

on the k-loop (lines 7–26) which goes through every hash function hk . For each hk a
value c is computed (see lines 8, 10, 13 and 20).
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It might happen that the k-loop is aborted (in line 17), but if this never happens,
then c will be compared to g (line 22), so that by the time the k-loop terminates, g

will hold the maximum c produced for any value of k (line 23), and � will hold the
first value of k which produced this maximum (line 24).

Now we make the following two claims:

(i) If s is good, and hk is one-to-one on GM,x,w, the i-loop (lines 9–21) will either
abort, or set c = |GM,x,w|. Furthermore, some non-deterministic choice within
the i-loop will not abort.

(ii) If s is good, but hk is not one-to-one on GM,x,w, the i-loop will either
abort, or set c to a value strictly smaller than |GM,x,w|. As above, some
non-deterministic choice within the i-loop will not abort.

From these, it follows that if s is good, then for every k there is a non-deterministic
guess which does not abort, and using any such non-aborting guess, g will be set
to |GM,x,w|, and � will be the smallest k for which hk is one-to-one. This gives us
Property I.
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Let us prove claim (4). Suppose that hk is one-to-one, and that the i-loop does not
abort. Then we may prove inductively that in every iteration of the i-loop, c is the
number of nodes in GM,x,w reachable by M(x, w) within i − 1 steps. Now, c and
hk satisfy the promise required by CANNOTREACH, and hence, for any non-aborting
guess, the v-loop will set c′ to the number of nodes in GM,x,w reachable within i

steps; this value is then copied to c (line 20) for the next iteration of the i-loop. When
the i-loop ends, c has been set to the number of nodes reachable within M steps,
which is exactly |GM,x,w|. The fact that there always exists such a non-aborting guess
follows from the behavior of the CANREACH procedure, and from the behavior of
the CANNOTREACH procedure in the case when c, hk fulfill the promise.

To prove claim (4), notice that the value of c′ is incremented in line 13, and is
thus bounded by the the size of image hk(GM,x,w). So if hk is not one-to-one, c′
will always be strictly less than |GM,x,w|. On the other hand, it is always possible
to find a non-deterministic guess which does not abort, even when hk is not one-to-
one. Whenever hash v is reachable in i steps, we can take the guess which makes
CANREACH in line 12 return TRUE; when hash v is not reachable in i steps, we
know from the behavior of CANNOTREACH, that we can find a guess that makes
CANNOTREACH return true, provided that the argument c given to CANNOTREACH

in iteration i is not more than the number of nodes reachable within i − 1 steps. This
follows from the fact that, in iteration i − 1, c′ is bounded by the number of such
nodes (because it is incremented only conditional on CANREACH of line 12).

5 Hierarchies for Catalytic Computation

In this section we prove space-hierarchy theorems for deterministic and non-
deterministic catalytic computation. Hierarchy theorems are usually proven using
diagonalization. Since catalytic computation is a semantic model we do not know
how to use diagonalization directly. Similarly to other semantic models (such as
bounded-error randomized computation) we have to settle for hierarchy theorems
with advice. This advice is used to tell the diagonalizing machine which machines
can be safely simulated and diagonalized against, and which should not be simulated
(so that the diagonalizing machine remains in the model).

The advice classes for catalytic space are defined as mentioned in the prelimi-
naries, where the promise conditions are only required to hold when the machine is
given the correct advice. For the sake of completeness, we write out the full definition
here.

Definition 7 Let a : N → N be a non-decreasing function. A decision problem L ⊆
{0, 1}∗ is in CSPACE(s(n), sa(n))/a if there exists a deterministic Turing machine
M — with a read-only input tape, a read-only advice tape, a work tape of size s(n)

and an auxiliary tape of size sa(n) — and an advice function α : N → {0, 1}∗ —
with |α(n)| ≤ a(n) for every n ∈ N — such that for all n-bit strings x and for all
w ∈ {0, 1}sa(n) it holds that

x ∈ L ⇐⇒ M(x, α(n), w) accepts
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and
M(x, α(n), w) halts with w on its aux-tape.

The string x appears on the input tape, α(n) appears on the advice tape, and w is the
starting contents of the auxiliary tape.

A decision problem L ⊆ {0, 1}∗ is in CNSPACE(s(n), sa(n))/a if there exists a
deterministic Turing machine M — with a read-only input tape, a read-only advice
tape, a uni-directional certificate tape, a work tape of size s(n) and an auxiliary tape
of size sa(n) — and an advice function α : N → {0, 1}∗ — with |α(n)| ≤ a(n) for
every n ∈ N — such that for all n-bit strings x and for all w ∈ {0, 1}sa(n) it holds that

x ∈ L ⇐⇒ ∃u ∈ {0, 1}∗ M(x, α(n), u, w) accepts

and
∀u ∈ {0, 1}∗M(x, α(n), u, w) halts with w on its aux-tape.

The string x appears on the input tape, α(n) appears on the advice tape, u represents
the contents of the uni-directional certificate tape, and w is the starting contents of
the auxiliary tape.5

The hierarchy theorem can be proven using the technique of Van Melkebeek and
Pervyshev [11], which is a sophisticated variation of Zak’s original hierarchy theorem
for non-deterministic time [12]. Separations for certain space bounds follow directly
from previous results on generic hierarchy theorems for semantic models of compu-
tation [8, 11]. For some ranges of parameters we provide a direct proof, mainly the
calculations justifying the correctness of the bounds. The theorem is:

Theorem 2 Let a ≥ 1 be an integer and s′(n) and s(n) be space-constructible func-
tions. There is a function in CNSPACE(s(n))/1 that is not in CNSPACE(s′(n))/a,
and there is a function in CSPACE(s(n))/1 that is not in CSPACE(s′(n))/a if any of
the following is satisfied:

1. s′(n) = O(log n) and s(n) = ω(log n).

2. s′(n) = O(logk′
n) and s(n) = �(2(log log n)k

′
), for some constant k′ > 1.

3. s′(n) = O(nk′
) and s(n) = �(nk), where 0 < k′ < k/2 and k′ < 1/(1 + a).

4. s′(n) = O(nk′
) and s(n) = �(nk), where k, k′ > 0 are such that k ≥ 2a and

k ≥ �4ak′2�.

The following corollary follows by using a padding argument (see [11], §4.4).

Corollary 2 Let a ≥ 1 be an integer and k > k′ be positive reals. Then there is a
function in CNSPACE(nk)/a that is not in CNSPACE(nk′

)/a.

Proof of Theorem 2 The first part is immediate from Kinne and Van Melkebeek [8]
as catalytic computation satisfies the requirements on a reasonable semantic model
and allows complementation with linear-exponential overhead.

5It may be proven that |u| = O(2s(n)+sa (n)) suffices.
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Now we prove the third part using the technique of Van Melkebeek and Pervyshev
[11]. Fix a small enough ε > 0 and let’s consider the case when s′(n) = nk′+ε

and s(n) = nk . Let Mi be an enumeration of possibly catalytic machines working
in space s′(n) with catalytic tape of size 2s′(n). Assume without loss of generality
that each machine appears infinitely often in this enumeration. We will construct
a machine M and an advice sequence {bn}n>0 so that M/bn behaves catalyti-
cally on inputs of length n and uses space at most s(n) and catalytic space 2s(n).
No machine Mi will accept the same language as M/{bn} regardless of its a-bit
advice.

The proof diagonalizes against all machines Mi with all possible advice
sequences. We define a sequence of integers ni and n∗

i as follows:

n∗
0 = a, ni = n∗

i−1 + 1, andn∗
i = n

1+ani

i .

We will diagonalize against Mi with all possible advices on input of length
between ni and n∗

i . Let mi = log ni and for j = 0, . . . , mi define

ni,j = ni · (na
i )

2j

.

For w ∈ {0, 1}a(mi−j−1) and z ∈ {0, 1}a define ni,j,wz = ni,j + wz, where wz is the
integer represented by wz in binary. For y ∈ {0, 1}ni,j,wz define the function

f (y) = yz0ni,j+1,w−ni,j,wz−a.

Since all ni,j,wz are distinct, this is a well defined partial function. We are ready to
define the machine M which takes {bn}n>0 as its advice sequence.

1. On input x of length n do:
2. If bn = 0 then REJECT.
3. If n = ni,j,wz for some i, j, wz, where j ≤ mi , |w| = a(mi − j − 1) and

|z| = a then (nondeterministically) simulate Mi with advice z on input f (x) and
ACCEPT iff Mi accepts, and REJECT iff Mi rejects.

4. If n = n∗
i then find y such that f (f (· · · f (y) · · · )) = x, where f is applied mi-

times. If no such y is found (such a y is a prefix of x) then REJECT. Let z be
the first a bits of y. Using Savitch’s algorithm decide whether Mi with advice z

accepts y. If it accepts, REJECT, otherwise ACCEPT.

This defines the behavior of machine M . The advice {bn}n>0 is defined to be 1
of inputs of length ni,j,wz if and only if on all inputs of length ni,j+1,w machine Mi

with advice z behaves in a correct catalytic manner (hence it is safe to simulate).
Assuming that machine M can perform the simulations in the designated space, it

is easy to verify that it behaves catalytically and it diagonalizes against all machines
Mi and all their possible advice sequences infinitely often.

So we only need to argue about the used space. Let Mi with advice sequence
{zn}n>0 be a catalytic machine using work space s′(n) and catalytic space 2s′(n). On
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inputs of length ni,j,wzni,j+1,w
, M will simulate Mi on inputs of length ni,j+1,w with

advice zni,j+1,w
. By the choice of small enough ε, for all large enough ni

s′(ni,j+1,w) ≤ 2n
(1+2j+1a)(k′+ε)
i

≤ n
(1+2j a)k
i /n

k/2
i ≤ s(ni,j,wz)

n
k/2
i

.

Hence, M can successfully simulate Mi on these input lengths using its work space
and the catalytic space. It remains to verify that the space necessary for Savitch’s
algorithm on inputs of length n∗

i will fit into our work space. Savitch’s algorithm for
machine Mi on input y will require space at most O((log |y|+ log s′(|y|)+2s′(|y|)+
2s′(|y|))2), which is less than 23s′(|y|) for y (resp. ni) large enough. The length of y is
at most 2n1+a

i . Thus

s′(|y|) ≤ 2n
(1+a)(k′+ε)
i < 2ni

and

23s′(|y|) ≤ 26ni ≤ s(n∗
i ),

for ni large enough.
To prove the second part one uses the same argument as above but verifies that the

space needed by M for the simulations fits into its space bounds:

s′(ni,j+1,w) ≤
(

log 2n
(1+2j+1a)
i

)k′

=
(

1 + (1 + 2j+1a) · log ni

)k′

≤ o
(

2logk′ (
(1+2j a)·log ni

))

= o

(

2logk′
log n

(1+2j a)
i

)

= o(s(ni,j,wz)).

Similarly,

23s′(2n1+a
i ) ≤ o(s(n∗

i )) .

For the fourth part we set the parameters exactly like Van Melkebeek and Pervyshev

[8, 11]: a constant d = max(2a, �4ak′2�), n∗
i = n

nd
i

i and ni,j = ndj

i . With these
parameters there is sufficient space for M to simulate Mi’s.
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