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Abstract

Electrochemical biosensing continues to advance tirelessly, overcoming barriers that have kept it from leaving research
laboratories for many years. Among them, its compromised performance in complex biological matrices due to fouling or
receptor stability issues, the limitations in determining toxic and small analytes, and its use, conditioned to the commercial
availability of commercial receptors and the exploration of natural molecular interactions, deserved to be highlighted. To
address these challenges, in addition to the intrinsic properties of electrochemical biosensing, its coupling with biomimetic
materials has played a fundamental role, among which bioinspired phage and peptide probes stand out. The versatility in
design and employment of these probes has opened an unimaginable plethora of possibilities for electrochemical biosensing,
improving their performance far beyond the development of highly sensitive and selective devices. The state of the art offers
robust electroanalytical biotools, capable of operating in complex samples and with exciting opportunities to discover and
determine targets regardless of their toxicity and size, the commercial availability of bioreceptors, and prior knowledge of
molecular interactions. With all this in mind, this review offers a panoramic, novel, and updated vision of both the tremendous
advances and opportunities offered by the combination of electrochemical biosensors with bioinspired phage and peptide
probes and the challenges and research efforts that are envisioned in the immediate future.
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Introduction

We are particularly excited to prepare this review and espe-
cially grateful to the Guest editors of this Topical Collection
(Dr. Elena Benito-Pefia and Prof. Guillermo Orellana) in
Published in the topical collection Optical Biosensors and honor of Prof. M* Cruz Moreno-Bondi, who we consider
Biomimetic Sensors for Chemical Analysis with guest editors Dr. a great University Professor and an outstanding researcher.
Elena Benito-Pefia and Prof. Guillermo Orellana. She was our co-worker in the Analytical Chemistry Depart-
In honor of Professor Maria Cruz Moreno Bondi, a dedicated and ment .(Chemlstry Facultyf Universidad Comp lutense. de
motivated scientist in Analytical and (Bio)analytical Chemistry, a Madrid), but also a great friend. We thought we could high-
committed Professor, and a great friend, who will be greatly missed light a minimal part of her recent work showing her inter-
by many. est in the analytical applications of biomimetic recognition
elements [1, 2], of bacteriophages in sensors development
[3], or in phage display-based selection of recognition ele-
ments for biosensors [4], and even also describing a mimo-
Departamento de Quimica Analitica, Facultad de CC. tope-based competitive immunoassay for the determination
Quimicas, Universidad Complutense de Madrid, Pza. de las of a fungal toxin [5]. To do that, we have reviewed recent
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approaches using biomimetic functional materials in our

field of work, electrochemical biosensing.

Biosensors and electrochemical biosensing continue to
advance relentlessly overcoming barriers that were once

P4 Susana Campuzano
susanacr @quim.ucm.es

Chronic Disease Programme, UFIEC, Instituto de Salud
Carlos III, Majadahonda, Madrid 28220, Spain

3 CIBER of Frailty and Healthy Aging (CIBERFES), Madrid,
Spain

Published online: 19 April 2024 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00216-024-05294-w&domain=pdf
http://orcid.org/0000-0002-9928-6613

Campuzano S. et al.

perceived as obstacles to their transition from the research
laboratory to the market. In these achievements, in addi-
tion to their intrinsic properties, their coupling with bio-
mimicking materials has played a fundamental role. In this
context, the opportunities imparted by bioinspired peptide
and phage probes deserve to be highlighted. The versatility
of these materials to be designed and employed has opened
an unimaginable and exciting plethora of possibilities for
electrochemical sensing and biosensing, improving its
performance far beyond the development of sensitive and
selective devices, allowing their evolution towards antibi-
ofouling, trustworthy, robust, and easy-to-use devices able
to provide easy-to-interpret results. These evolved devices
show potential not only to determine targets independent
of their toxicity and size, but also to discover new targets

Fig.1 Schematic of the recent
advances reviewed in this
manuscript regarding the dif-
ferent applications of electro-
chemical biosensing involving
peptide and phage probes.
Different methods developed

in the last 2 years involving pep-
tide bioprobes (see Table 1) or
phage bioprobes (see Table 2)
are discussed in the manuscript.
The versatility, pros and cons of
peptide, and phage bioprobes in
electrochemical biosensing are
also discussed (see Table 3)
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beyond commercial bioreceptors and natural and known
molecular interactions.

With all this in mind, this review aims to draw the cur-
rent scenario outlined by the progress in the last 2 years
in electrochemical biosensing involving peptide and phage
probes (see Fig. 1). First, the intrinsic advantages of bio-
mimetic receptors and electrochemical sensors and bio-
sensors are briefly introduced, followed by a panoramic,
novel, and updated view of the tremendous advances and
opportunities provided by the combination of electrochem-
ical biosensors with bioinspired phage and peptide probes
to end with a somewhat more personal perspective on the
message to keep and the challenges and research endeavors
in the immediate future.
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Biomimetic probes

The term “biomimetic,” derived from the Greek word
biomimesis, composed of bios (life) and mimesis (imi-
tate), was coined by Otto Schmitt in 1957 to designate
design, adaptation, or derivation from Nature. It is used
to name materials that do not occur naturally, which can
be designed and synthesized by humans in the laboratory
by imitating and/or overcoming the limitations of their
biological counterparts [1, 2, 6].

The synthesis and application of biomimicking
materials are in constant evolution fueled by advances
in different areas (computational chemistry, combina-
torial chemistry, phage display, etc.). Such materials
include, among others, engineered proteins, cells and
phages, peptides, carbohydrates, molecularly imprinted
polymers (MIPs), supramolecular receptors, aptamers,
recombinant antibodies, nanozymes, peptides, and oligo-
nucleotides (locked nucleic acids, LNAs, peptide nucleic
acids, PNAs, molecular beacons, DNAzymes, etc.). They
are characterized by excellent physicochemical stability,
durability, ease of storage, and affordability, compared
to their natural counterparts and can be tailored to play
different roles in a wide range of applications [1, 2].

One of the fields that has benefited greatly from these
attractive and versatile materials is biosensing, an area
in which they can function as recognition, signaling,
and response amplification elements, antifouling materi-
als, bionanomaterials, nanoscaffolds, artificial enzymes,
enzyme substrates, etc.

Among all biomimetic materials, peptide and phage
probes are considered nowadays star biomimetic func-
tional materials capable of imparting tremendous oppor-
tunities in biosensing and particularly in electrochemical
biosensing, helping to overcome some of the barriers that
hindered the translation of this type of biosensing and/or
devices to the real world.

Modern electrochemical biosensing
strategies

Biosensing and, in particular, electrochemical biosensing
continue to consolidate as promising bioanalytical tools,
at the forefront of modern detection techniques to satisfy
the demands imposed by modern analysis in terms of
realization by any user and in any environment, in a non-
destructive, fast, and sustainable manner and with the aim
of providing the most complete snapshot possible consid-
ering the large number of variables. Decisive for this has
been the unique mix of attributes, intrinsic or acquired by

alliances with other materials, strategies, and technologies,
that accredit electrochemical biosensing: high selectivity
and sensitivity, ease of use and low cost, fast response,
suitability to analyze complex, turbid, and/or colored sam-
ples both at the multiplexed and multiomics level and its
compatibility with simple and inexpensive instrumentation
suitable for in-field and point-of-care readout devices that
can be handled by any user in any environment, including
remote and resource-limited settings [7].

The great advances demonstrated by electrochemical bio-
sensors in recent years have gone hand in hand, among many
other things, with the development of new electrochemical
substrates, attractive surface chemistries, bioassay formats
and amplification strategies, and the production and exploi-
tation of new (nano)materials and bioreceptors [7, 8].

Although electrochemical biosensing technology can
boast about having developed and/or having the potential to
develop devices capable of facing pioneering applications
of great relevance in different fields, there are still many
and complex challenges to face to unfold its full potential
and facilitate their presence outside the research environ-
ments. Among them, we can mention the improvement in
sensitivity, reproducibility, and stability of the resulting
biodevices, the simplification of their manufacturing and
handling (reagentless [9], wash and calibration-free [10],
one-pot and one-step operation [11], continuous real-time
response [12] approaches), the discovery of new markers,
the determination of toxic and small analytes, and the pos-
sibility to perform continuous analysis in fouling matrices.
Fortunately, the developments derived from the coupling of
electrochemical biosensing technology with the advances
of biomimetic functional peptide and phage probes make us
think that we are on the right track to successfully overcome
some of the biggest challenges.

Enlightened by the above, this review article aims to
offer the reader a critical overview of the latest advances
and opportunities provided by bioinspired peptide and phage
probes in electrochemical biosensing, with the purpose of
giving the scientific community knowledge and arguments
for trust more and more in this technology that, due to its
brave and collaborative nature, continues to overcome barri-
ers, considered tremendously challenging in biosensing (not
only electrochemical), and stomping on new horizons.

Although the relevance, attractiveness, and topicality
explain that other authors have also set their eyes on this
topic and contributed with good review works on peptide-
based [13-16], or bacteriophage-based [17-20] electro-
chemical biosensors, as far as we know there is no review
that presents the state of the art and compares the exploi-
tation of peptide and phage probes in electrochemical
biosensing, which we consider very interesting due to the
relevance of both types of probes and their complementa-
rity and/or compatibility. This is addressed in this article
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by comprehensively presenting and discussing a selection
of representative works from the last 2 years. At the end,
critical and objective opinions are also provided on the chal-
lenges that must be faced, some more personal comparative
reflections, and the promising perspectives of the topic.

Breaking barriers in electrochemical
biosensing with bioinspired phage
and peptide probes

In this section, a timely and thorough coverage of the ver-
satility and opportunities provided by peptide and phage
probes in electrochemical biosensing based on selected
reports mainly from the last 2 years is accomplished.

Peptide probes

Peptides, short chain-like polymers containing less than
50 amino acids in length connected by peptide bonds, are
star probes which have experienced an unstoppable boom
in the development of electrochemical biosensing strategies
with improved performance [7, 13-16, 20, 21]. Their use
as probes in electrochemical biosensing is advantageous
due to their small size, high affinity, stability, structural and
sequence diversity, biocompatibility, facile processability,
and lower immunogenicity compared with antibodies. They
can be easily obtained with high yield and affordable cost as
well as modified with specific functional groups for immobi-
lization or signaling through automated chemical synthesis,
avoiding the need for laborious in vivo procedures and ani-
mal immunization to reduce the use of laboratory animals
and follow the EU recommendations on animal protection
and replacement of animal-derived antibodies by non-
animal-derived ones [22], and displaying higher chemical
stability than antibodies [13, 23-25]. On the other hand,
compared with nucleic acid aptamers, peptides have smaller
binding regions and variable surface charges and are feasible
for protease-based assays as natural substrates. Moreover,
peptides provide a varied cross-linking methodology with
the biosensing interface. For example, they can be immo-
bilized on a gold surface through Au-S bonding using the
cysteine thiol group, or they can be covalently immobilized
by binding to carboxyl/amino group-functionalized inter-
faces through carbodiimide/succinimide chemistry [15, 16,
26].

Due to their versatility of modification and use, flexible
variability, tuneable properties, and multifunctionality, pep-
tides and their derivatives (complexes [27, 28], hydrogels
[29, 30], nanotubes [15], nanoparticles [26], etc.) have been
used in electrochemical biosensing as [7, 13—-16, 31]:

@ Springer

— Interfacial materials (electrode modifiers) or self-assem-
bled units/nanostructures (to immobilize other receptors
in a suitable arrangement) to impart particular proper-
ties (antibiofouling, biocompatibility) and/or improve the
biosensing performances;

— Recognition ligands to interrogate a wide variety of ana-
lytes;

— Enzymatic substrates (e.g., proteases and kinases);

— Enzyme mimics; and

— Signaling elements/carriers.

Due to their distinguished properties, antibiofouling,
multifunctional, multimeric, and switching, peptides have
gained special importance in recent years in electrochemical
biosensing. Table 1 summarizes representative examples of
methods developed during the last 2 years.

As can be deduced from Table 1, peptides have been
exploited primarily as recognition elements [32, 33, 35, 37,
41], electrode modifiers [24, 26, 30, 39, 40], modifiers of
other probes [34, 43], enzymatic substrates [36], mimicked
enzymes [27, 28], and tracers [38, 42] for the electrochemi-
cal biosensing of a wide variety of targets including food-
borne pathogens [32], immunoglobulins [33, 39], viral anti-
gens [24, 38], cells [35], tumor markers [26, 27, 30, 34, 36,
37,42, 43], pesticides [28], and antibiotics [40, 41].

In general, although the affinity of avidin/streptavidin
for biotin has also been used for their attachment [34, 36],
peptides have been immobilized on gold or nanostructured
with AuNPs electrode surfaces through their self-assembly
profiting the gold-thiol chemistry [24, 30, 33, 35, 37, 39, 40,
42]. In the photoelectrochemical (PEC) platform reported by
Yin et al. [32], an antimicrobial peptide was immobilized on
a flexible paper substrate modified with core-shell-structured
upconversion nanophosphors ((UCNPs)@SiO,@Ag) and
carbon self-doped graphitic carbon nitride (C-g-C;N,). A
different approach has recently been described by Chen et al.
[43], who fabricated a ternary photoelectrode by modify-
ing a hydrogen-bonded organic framework (HOF-101) and
polydopamine (PDA) onto a ZnO array electrode where a
branched zwitterionic peptide (BZP) linked to complemen-
tary DNA (cDNA) through a click reaction was anchored.

Particularly relevant is the use of peptides as electrode
modifiers [24, 26, 30, 39, 40], conjugated with other rec-
ognizing probes [34, 43], or as multifunctional biorecep-
tors [33, 35, 41] to implement fouling-free electrochemical
biosensing strategies.

Peptides have been used as electrode modifiers in the
development of affinity biosensors [24], immunosensors
[30, 39], and aptasensors [26, 40, 43] with antifouling
properties which have been applied to the determination
of SARS-CoV-2 receptor-binding domain (RBD), IgM,
PSA, TC, mucin-1 (MUCI1), and carcinoembryonic antigen
(CEA) in milk, blood, and serum samples. Among these
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Breaking barriers in electrochemical biosensing using bioinspired peptide and phage probes

peptides, zwitterionic peptides [26, 30, 40, 43], those involv-
ing D-amino acids [39], and cyclic peptides [24] stand out,
the last two types showing an outstanding proteolytic resist-
ance, thus overcoming one of the main complications faced
by the proper functioning of peptide biosensors in complex
environments [39]. For example, Han et al. [24] recently
proposed a biosensor for the determination of the RBD of
the SARS-CoV-2 spike glycoprotein by modifying a GCE/
PEDOT/AuNPs with a cyclic peptide to impart self-fouling
properties to the surface, and angiotensin-converting enzyme
2 (ACE2) as a target recognition element (Fig. 2). Due to
the stable structure of the designed cyclic peptide and the
absence of any N- or C-terminal amino acids, this biosensor
exhibited noticeable resistance to biofouling and enzymatic
hydrolysis even in human blood, thus enabling the accurate
determination of the target in this complex matrix.

It is worth drawing attention to the low fouling and highly
sensitive electrochemical biosensor reported by Chen et al.
[34] for the determination of CA125 involving antifouling
peptide-DNA conjugates formed through a reagent-free click
reaction (Fig. 3). The biosensor was able to analyze CA125
in undiluted human serum and provided a universal strategy
to prepare antifouling biosensors through the conjugation
of the antifouling peptides with the specific DNA probes.
In addition, a new PEC aptasensor was developed recently
and applied to the analysis of MUCI in human serum [43].

Multifunctional peptides (or “all-in-one” peptides) have
different domains with different functions and have been
exploited in electrochemical biosensing as electrode modifi-
ers (Fig. 4a) [40, 41], bioreceptors (Fig. 4b) [33, 35], enzyme
substrates [36], and elements for signal amplification [42].

Among the methods using multifunctional peptides, it
is worth mentioning the peptide reported by Li et al. [33]
which, in addition to anchoring and antifouling domains,
possessed two recognizing branches to improve the target
recognition efficiency and sensitivity (Fig 4b). Moreover,
Yuan et al. [42] have employed multifunctional amphiphilic
peptides in a sandwich assay to determine the melanoma
circulating biomarker S100B. As can be seen in Fig. 5, the
designed multifunctional amphiphilic peptides (C,4-Pep-Fc)
featured both a recognition region for the target and an
aggregation (self-assembly) region for the formation, under
mild conditions, of peptide nanomicelles in which the C g4
tails were encapsulated within the hydrophobic core of the
aggregates, and the relatively hydrophilic recognition frag-
ment Pep and ferrocene (Fc) tag were exposed on the outer
surface for S100B recognition and signal output. According
to the authors, this aggregation-induced signal amplifica-
tion (AISA) strategy provided a remarkable accumulation of
electroactive Fc moieties achieving a LOD 10 times lower
than the un-amplified approach.

Strategies, such as that described by Hui et al. [36],
used multifunctional peptides as enzyme substrates in

connection with signal amplification involving methylene
blue (MB)/DNA/gold nanorods (AuNRs). In the presence
of the target analyte (PSA), the multifunctional peptide
is cleaved, releasing the MB/DNA/AuNRs immobilized
on its terminal thiol group (Fig. 6). Monitoring the MB
response by differential pulse voltammetry (DPV), the
peptide-based biosensor achieved an LOD of 0.035 pg
mL~! and was employed for the analysis of undiluted
serum.

Song et al. [26] designed a peptide with hydrophobic,
linker, and antifouling differentiated regions that were
self-assembled to peptide nanoparticles and applied in the
construction of an electrochemical aptasensor. These pep-
tide nanoparticles stood out not only for their antifouling
capabilities but also for their enhanced stability in complex
biological media.

Another less-used strategy for electrochemical biosensing
involves peptide switching, designed to bind reversibly to the
binding pocket of antibodies (IgG) by interacting with frame
regions (FRs). Exploiting the use of these peptides, Park
et al. [38] prepared a one-step immunosensor for the deter-
mination of human hepatitis B surface antigen (hHBsAg)
which released the Fc-labeled switching peptide from the
antibody in the presence of the target antigen and monitored
the Fc response by DPV (Fig. 7).

The use of metal-peptide complexes with mimicked enzy-
matic activity in both immunoassays and peptide bioassays
should also be highlighted. For example, a sandwich immu-
nosensor has been developed using AuNPs/peptide-Cu?*
conjugates as non-enzymatic tracers for the determination
of PSA profiting the electrocatalytic reduction of oxygen
by peptide-Cu’* complexes monitored by DPV (Fig. 8a)
[27]. Moreover, Yang et al. [28] profited the highly efficient
metalloenzyme mimics of Zn>*-bonding peptides covalently
immobilized on a NiCo,0,-PAMAM composite used as a
modifier of a GCE for the determination of organophospho-
rus pesticides (OPs) monitored through SWYV of p-nitrophe-
nol (PNP) generated after their hydrolysis (Fig. 8b).

Phage probes

Recently, we have witnessed the exploitation of intact bac-
teriophages (or phages), phage proteins (phage-encoded
proteins or receptor-binding proteins, RBPs), and their
derivatives (phage display peptides, affibodies, single-chain
fragment variable (scFv) antibodies, variable heavy homodi-
mer (VHH), or mimotopes) as attractive alternative bio-
probes for electrochemical biosensing [18, 44—46]. Table 2
summarizes the rationale and relevant characteristics of rep-
resentative examples of electroanalytical methods reported
in the last two years involving the use of bacteriophage-
based bioprobes.

@ Springer
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Phages and phage receptor-binding proteins

Phages are extraordinarily robust and stable virus particles
that lack their own metabolic machinery and specifically
target and infect bacteria for their replication [18, 44, 53]. In
addition to their high specificity, phages only replicate in liv-
ing cells and are environmentally ubiquitous, ecological, and
safe to use since they do not infect humans. Moreover, they
can be genetically and chemically modified, making their
properties controllable [65]. They specifically attach to the
host bacteria via tail fibers and insert their genome (RNA or
DNA) into the bacterial genetic material to initiate the rep-
lication of prophages, resulting in the production of mature
virion particles. Multiplication and propagation of virions
within bacteria proceed in two ways, namely, lytic cycle and
lysogenic cycle [18]. Phage structure exhibits a broad range
of variations, which can be categorized into a few stand-
ard forms (Fig. 9). A limited set of phage morphologies is
overrepresented in the literature regarding phage immobi-
lization as bioprobes. They include long contractile-tailed
phages (Myoviridae, i.e., T4), long noncontractile-tailed
phages (Siphoviridae), short-tailed phages (Podoviridae, i.e.,
T7 or P68), and filamentous phages (Inoviridae, i.e., M13
and fd). Phage families without tails, such as Tectiviridae
(which includes non-tailed icosahedral phages like PRD1)
and Cystoviridae (which features an outer lipid membrane
and lacks a tail, such as phage phi6), are less commonly
found in phage immobilization literature.

Phages are composed of a protein coat composed of dif-
ferent proteins that encapsulate their RNA or DNA genome,
which includes four to hundreds of genes. Phage coat pro-
teins can be conjugated or genetically modified to display
peptides [23, 67], proteins, or antibody fragments targeting
a wide variety of molecules, including biopolymers, toxins,
proteins, or foodborne pathogens [3, 65, 68]. In comparison
with other biological recognition elements such as antibod-
ies or aptamers, phages are cheaper, very specific and easy to
produce (they do not require inoculation or animal sacrifice),
and more resistant to external factors (temperature, pH, ionic
strength, organic/inorganic solvents, and proteases) [3, 4, 17,
18,47, 49, 51, 52, 65, 69, 70].

Phages can be classified into three different categories
according to their morphology, life cycle, and way of propa-
gation [3, 4]:

— Lytic or productive phages (T3, T4, T7, and MS2) only
capable of replicating their genome, assembling phage
structured components, and releasing from bacteria after
synthesis and cell death.

— Temperate or lysogenic phages (\), which can multiply
via a lytic cycle, as productive phages, or can incorporate
their genome into the bacterial chromosome producing a
quiescent state (prophage).

@ Springer

— Filamentous phages (f1, fd, or M13), which are lysogenic
phages, characterized by their long rodlike shape, that do
not lyse their host cell but secrete the newly assembled
virions and continue the process.

It is precisely the natural affinity of phages for their host
bacteria and their conserved structures that has allowed their
widespread exploitation as bioreceptors in the development of
electrochemical biosensing platforms for bacteria [51]. Lytic
phages that cause the lysis of bacterial cells releasing endog-
enous components that act as analytes for detection have also
been used [51]. Another promising approach is the use of
reporter phages, genetically engineered to possess a reporter
gene that encodes the expression of exogenous enzymes in the
phage genome, such as lux and lacZ [48], activated when the
phage interacts with the target bacteria [18, 19].

As shown in Table 2, phages have recently been used as
recognition elements in electrochemical biosensing mainly
to detect specific bacteria, mostly Escherichia coli (E. coli)
[48-51], due to the ease, speed, and cheap production of its
phages [3], but also Salmonella [47]. Although much more
rarely, phage-based biosensors have been used for the deter-
mination of carcinogenic markers [52]. These bioplatforms
involve the covalent [47, 50, 51] or non-covalent (Fig. 10a)
[49] immobilization of the corresponding phages on conven-
tional or screen-printed electrode (SPE) surfaces nanostruc-
tured with different nanomaterials, and the monitoring of
the affinity reaction using label-free strategies. The reported
bacterial bioplatforms achieve LODs for E. coli or Salmo-
nella between 1 and 36 CFU mL~! and were utilized for their
analysis in a wide variety of inoculated food samples. The
bioplatform for the determination of the carcinogenic marker
(c-Met) allows its detection at the pg mL~! level and was
successfully applied to the analysis of serum samples from
CRC patients. Particularly relevant works are the biosensor
developed by Abdelhamied et al. that uses lytic bacteriophage
[51], and the method reported by EI-Moghazy using a geneti-
cally engineered bacteriophage T7 encoding with phoA gene
that can trigger alkaline phosphatase (ALP) overexpression in
the presence of the target bacteria. The enzymatic hydrolysis
of 1-NP was monitored by DPV (Fig. 10b) [48].

Since most phages interact with receptors on the bacterial
cell surface through RBPs in their tails, such as tail fiber
proteins, tail spike proteins, and baseplate proteins, RBPs
have been used as bioreceptors [53]. RBPs are highly vari-
able trimeric structures responsible for recognizing bacterial
surface-specific receptors such as lipopolysaccharides and
outer membrane proteins. They exhibit advantages due to
their high sensitivity and specificity, small size, high stabil-
ity to extreme pH and temperature, insensitivity to proteases
and anionic detergents, and ease of recombinant overexpres-
sion. Indeed, the use of phage proteins instead of whole-
phage bioprobes avoids the drawback of using the relatively
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Campuzano S. et al.

Fig.2 Biosensor for the deter-
mination of RBD of SARS-
CoV-2 spike glycoprotein
exploiting the use of a cyclic E
peptide as an electrode modifier.
Reproduced from [24] with per-
mission from the Royal Society
of Chemistry

&> PEDOT/GCE
) AuNP

° Cyclic peptide

"' Biofoulin,
Y 2

@ Hydrolase

EDC /NHS

Fig.3 Electrochemical biosen-
sor developed for the determi-
nation of CA125 involving the
use of antifouling peptide-DNA
conjugates. Reprinted from [34]
with permission from Elsevier

large size whole-phage particles and their basal lytic activity
(unless they are inactivated) that may destroy target bacteria
[71]. The biosensor reported by Ding et al. exploited RBP 41
for the determination of Salmonella (Fig. 11) [53].

Phage display receptors
Phage display technology, developed by G. P. Smith in 1985

and reviewed by himself and V. A. Petrenko in 1997, allows

@ Springer

genetically modifying bacteriophages so that they insert for-
eign DNA into the genes that encode their coat proteins [72,
73]. In this way, phages are released from the host cell and
can express on their surface hybrid fusion proteins capable
of containing receptors such as peptides, proteins, and anti-
body fragments (single-chain variable fragment, scFv and
variable domain antibodies, VHH). The presence of these
receptors simplifies the screening, identification, and ampli-
fication of the phages of interest in the complex population
generated (phage display libraries, assemblies of about 10
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Fig.4 Examples of electro-
chemical biosensors involving

multifunctional peptides as
a electrode modifiers and b
bioreceptors. Reprinted from a

g Z-peptide

[40] and b [33] with permission
from Elsevier
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billion of phage clones each harboring a different variant of
the displayed entity) that are subsequently enriched infecting
E. coli in a process that is globally known as biopanning [4,
65, 68, 73, 74]. Thus, phages have been largely used in the
last years for phage display to identify peptide, proteins, or
antibodies specifically as receptors for binding to the target
of interest (Fig. 12). The M13 filamentous phage is the most
widely used for peptide, proteins, or antibody phage display
[68, 73].

In this way, phage display receptors consist of two mod-
ules of interest in bioanalytical applications, the one used

o

L of Human IgG

4 recognizing \

I—A—\

antifouling

linking
3 7
N anchoring J

~ s

for target recognition and the phage shell, with numerous
protein copies and inherent functional groups for chemical
modifications [73], which can be used as a carrier for the
massive enrichment of signal molecules, making them very
attractive tracers for signal amplification in high-sensitivity
biosensors [54, 55].

Phage display is a constantly evolving flexible technology
due to discoveries and innovations in chemical and molecu-
lar engineering and offers a new mean to discover recogni-
tion elements, even beyond natural and known biomolecular
interaction.
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Fig.5 Use of multifunctional amphiphilic peptides in an AISA strategy for the preparation of a peptide-based biosensor for the determination of
S100B. Reprinted from [42] with permission from Elsevier

Fig.6 Electrochemical biosen-
sor developed for the determi-
nation of PSA using a multi-
functional peptide as enzyme
substrate and a signal amplifica-
tion strategy with MB/DNA/
AuNRs. Reprinted from [36]
with permission from Elsevier
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Fig.7 Immunosensor using an
Fc-labeled switching peptide for
the determination of hHBsAg.
Reprinted with permission from
[38]. Copyright 2022 American
Chemical Society

Fig.8 Use of peptide-cation
complexes with a oxidase and b
metalloenzyme mimicked activ-
ity as non-enzymatic tracers in
a a sandwich-type immunosen-
sor for the determination of
PSA and b a peptide biosensor
for the determination of OPs.
Reproduced from a) [27] and
b) [28] with permission from
Elsevier

As shown in Table 2, phage display peptides, affibodies,
scFv, and VHH have been recently employed in the develop-
ment of electrochemical bioplatforms for the determination
of targets of very different nature including cytotoxins, herbi-
cides, cancer markers, allergens, and animal immunoglobu-
lins. These methods are all based on label-free bioassay, where
phage display receptors have been used as capture or detection
elements conjugated with multiple tag molecules to amplify
the electrochemical response.

Ab,;-modified electrode

Pyrolyzed carbon electrode

o Fo
R LA AT
)
Afiaiste Fe* Current
N> (Signal)
“ o\l : Switching peptide
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= /L_/NH Fe . : Analyte
wO - i
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@ : BSAblocking

a)
e

Target

Ab,/AuNP/peptide-Cu?*

b)

;H G Peptide & zn**
5 ops G e

s fibrils of peptides

NiCo0204 nanosheet
functionalized with PAMAM

Tllustrative examples are sandwich immunoassay formats
that combine the advantages provided by antibody-coated
magnetic beads (MBs) [75] and phage display affibod-
ies labeled with multiple Ru(bpy)32+ tags for the sensitive
determination of abrin by electrochemiluminescence (ECL)
(Fig. 13) [54, 55].

Tocco et al. [58, 59] prepared immunosensors for the
determination of molinate using a phage display peptide
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Fig.9 Bacteriophage structures more frequently reported in the lit-
erature on phage functionalization. Reprinted with permission from
[66]. Copyright 2021 American Chemical Society

conjugated with CdS nanocrystals (NCs) for signal amplifi-
cation and monitoring of Cd>* ions by SWYV.

Integrated bioplatforms have been developed by cova-
lently immobilizing via EDC/NHS chemistry phage display
scFv, VHH, and peptides on gold electrodes modified with
self-assembled monolayers of alkanethiols [56, 57, 60, 61]
or biotinylated phage display peptides on nanostructured
gold electrodes modified with streptavidin [62]. These bio-
platforms involved direct affinity formats and transduction
by DPV or electrochemical impedance spectroscopy (EIS)
in the presence of [Fe(CN)6]3_/4_, for the determination of
feline IgG [56], vascular endothelial growth factor (VEGF)
and its different isoforms [57, 61], ovomucoid [60], and
cathepsin B [62]. They were applied to the analysis of sup-
plemented food samples and serum/plasma of patients with
cancer or Crohn’s disease.

Mimotopes

Mimotopes, or epitope mimics, are peptides or micropro-
teins that mimic antigenic epitopes and can specifically bind
to antibodies and compete with analytes for binding sites.
Peptide mimotopes are potential antigens for the develop-
ment of non-toxic and/or ecological assays and for the estab-
lishment of safe vaccination strategies [76]. To date, two
types of mimotopes have been mostly described: mimetic
peptides and antiidiotypic antibodies (Ab2) [74].

Mimetic peptides are produced by phage display technol-
ogy using a primary antibody as a target, while the latter,
which include monoclonal Ab2, polyclonal Ab2, and nano-
Ab2, can be obtained by immunization of animals with the
primary antibody. Generally, mimotopes are used for the
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determination of low molecular weight natural toxicants,
such as mycotoxins, which require competitive formats,
avoiding the problems derived from the preparation of com-
plete competing antigens that involves complex procedures,
long reaction periods, batch errors, significantly high costs,
decreased antibody affinity, instability problems, cross-
reactions, and potential safety threats to experimenters [5,
64,74, 77].

For their application in immunoassays, mimotopes are
functionalized, through chemical synthesis or molecular
fusion techniques, with transport proteins or signaling ele-
ments, and used as coating antigens, as standard surrogates,
or as competing tracers [74]. Although mimotopes have
shown significant benefits in certain immunoassays, they
still have some limitations. The preparation of both mimetic
peptides and antiidiotype antibodies is difficult. Biodisplay
of mimotopes from the phage display peptide library has
always high failure rates, while screening of antiidiotype
antibodies from immunized animals also presents great chal-
lenges. It is important to expand the diversity of the peptide
library and improve the technology for detecting positive
clones. Furthermore, to date, most mimotopes used in immu-
noassays have demonstrated similar or slightly superior per-
formance in the assay. It is also important to highlight that in
some cases the mimotopes have reduced affinity towards the
primary antibody and that the use of directed mutagenesis
could improve the characteristics of the mimotopes and the
performance of the immunoassays [74].

To date, mimotopes have been used for the determination
of mycotoxins [5, 64, 74, 78], cholera toxin [77], pesticides
[63], glycans [76], and infectious pathogens [79], among
others. As shown in Table 2, during the last 2 years, the use
of mimotopes has been exploited in immunosensors con-
structed on nanostructured electrodes for the determination
of pesticides [63] and mycotoxins (Fig. 14) [64]. These strat-
egies used direct [63] or indirect [64] competitive methods
and transduction with or without a label. They were success-
fully employed for the sensitive and selective determination
of the targets and applied in the analysis in supplemented
vegetables and fish samples.

Take-up message, challenges, and perspectives

In addition to the simplicity and versatility of manufacturing
and modification, and its greater stability compared to other
natural or artificial probes (e.g., antibodies and aptamers),
the exploitation of peptide and phage probes in electrochem-
ical biosensing is decisive in reducing the list of limitations
of this technology and increasing the opportunities for con-
tinually opening new and attractive horizons. Table 3 sum-
marizes the pros and cons of peptide and phage probes for
electrochemical biosensing.



Breaking barriers in electrochemical biosensing using bioinspired peptide and phage probes

1 g of spinach leaf inoculated
with E. coli BL21

o

@ L)

Enrichment at 37°C for 6 N

10 ml TSB

hours

Current (pA)

/ N\
// \
// \
Y/ AN
Yy N\

15 —==

01 02 03 04

Potential (V) \ / 10— ‘

®)

Resuspend 1-NP in DEA
buffer (pH 9.8)

it

CNF

[Fe(CN)eJ>"
>

E. coli spectroscopy (EIS)

Fig. 10 a Portable biosensor for the determination of E. coli based on
the electrostatic immobilization of a phage on a SPE decorated with
electrospun polyacrylonitrile (PAN)-based carbon nanofibers (CNFs)
via drop-casting. b Electrochemical biosensing strategy based on the

The latter advances have put on the table the potential of
using peptide probes to develop biosensing strategies with
notable resistance to biofouling and enzymatic hydrolysis
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use of a genetically engineered bacteriophage that can trigger ALP
overexpression in the presence of E. coli. Reprinted with permission
from a [48] and b [49] with permission from Elsevier

allowing continuous long-term monitoring even in human
blood (cyclic or D-based amino acid peptides); consid-
erably simplify its manufacturing (all-in-one peptides);
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Fig. 12 Scheme illustrating the phage display technology used to
identify specific binders against the target of interest. Phage display
involves a process called biopanning consisting of 3 or 4 cycles for
the selection of the specific targets using mainly the M13 phage. The
direct immobilization technique is depicted in the figure. Within bac-

improvements in sensitivity and selectivity (multimeric
peptides or peptides responsible for response amplifica-
tion strategies); and improvements in robustness under cer-
tain experimental conditions (metal-peptide complexes as
enzyme mimics).
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teria, the amplification of phages takes place, with each eluted phage
clone undergoing multiplication by a factor ranging between 10 and
100 times during each round of biopanning. Potential applications of
peptide and/or antibody phage display are also highlighted in the fig-
ure

On the other hand, phage probes have found their niche
in electrochemical biosensing to overcome the limitations
represented by the determination of toxic and small ana-
lytes, the exploration of molecular interactions beyond those
natural and known, the discovery of new molecular markers,
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Fig. 13 Sandwich electro-
chemical immunoassay for the
determination of abrin using
antibody-coated MBs and
phage display affibodies labeled
with Ru(bpy);>* and AuNPs@
Ru(bpy);>*. Reprinted from
[55] with permission
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Fig. 14 Indirect competitive immunosensor for the determination of tetrodotoxin (TTX) using a phage display mimotope. Reproduced from [64]

with permission from Elsevier

and the development of devices with improved sensitivity
and selectivity.

The reported works lead to suggest that certain oppor-
tunities should be better pursued with a certain type of
probe, for example, the antifouling and antihydrolysis
capabilities with peptides and the determination of toxic
targets and the exploration of other interactions beyond
natural and known with phages. However, the state of the
art with myriad of exciting possibilities invites us to think
that the two types of probes looked at in this review offer
multifunctional properties and tremendous opportunities
to continue exploring and improving the performance of
electrochemical biosensing.

This is why we personally would set our future sights
on multifunctional peptides (ideally also multimeric) and
on receptors displayed in phages that are also multifunc-
tional because they have both the recognition module and
the phage module. In fact, phage display peptides can be
considered an attractive hybrid that combines the advantages
of both types of probes.

However, it is important to highlight that although the sce-
nario is exciting, there is still a lot and very complex work to
do. This technology must continue to advance as it has until
now, through the design, preparation, and application of new
peptide and phage probes that provide new opportunities and
improved performance and stability. In addition, it must start
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interacting with other technologies on everyone’s mind these
days, such as artificial intelligence, which has a lot to offer in
this area, both in the modeling of probes with improved prop-
erties and in the processing of data to advance in universality
and robustness of the technology overcoming the matrix effect
and variability issues in complex samples, allowing recogni-
tion in real time. Enhance the multiplexed and/or multiomics
character allowed by electrochemical biosensing, proper evalu-
ation of reproducibility and long-term stability, test the devel-
oped bioplatforms robustness by applying to the analysis of
endogenous contents in a sufficient number of samples, by dif-
ferent users and in different environments, promoting the use
of sustainable electrode substrates (such as paper) and other
electrochemical techniques apart from voltammetry and EIS,
such as ECL and PEC, are other of the multiple tasks included
in the extensive and complex roadmap currently being drawn.
And all this with the purpose of transforming the correspond-
ing bioassays from analytical proof of concepts to commercial-
ized real-life solutions allowing that all of us, and other types
of biosensing detection apart from electrochemical, can benefit
from these important advances that occur uninterruptedly at
the research level. Something that obviously must be achieved
by making information flow, and through close and generous
large-scale multidisciplinary collaboration between research-
ers, producers, end users, and society in general.
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