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Abstract
Differential mobility spectrometry (DMS) has been gaining popularity in small molecule analysis over the last few years due to its
selectivity towards a variety of isomeric compounds. While DMS has been utilized in targeted liquid chromatography-mass
spectrometry (LC-MS), its use in untargeted discovery workflows has not been systematically explored. In this contribution, we
propose a novel workflow for untargeted metabolomics based solely on DMS separation in a clinically relevant chronic kidney
disease (CKD) patient population. We analyzed ten plasma samples from early- and late-stage CKD patients. Peak finding,
alignment, and filtering steps performed on the DMS-MS data yielded a list of 881metabolic features (uniquemass-to-charge and
migration time combinations). Differential analysis by CKD patient group revealed three main features of interest. One of them
was putatively identified as bilirubin based on high-accuracy MS data and comparison of its optimum compensation voltage
(COV) with that of an authentic standard. The DMS-MS analysis was four times faster than a typical HPLC-MS run, which
suggests a potential for the utilization of this technique in screening studies. However, its lower separation efficiency and reduced
signal intensity make it less suitable for low-abundant features. Fewer features were detected by the DMS-based platform
compared with an HPLC-MS-based approach, but importantly, the two approaches resulted in different features. This indicates
a high degree of orthogonality between HPLC- and DMS-based approaches and demonstrates the need for larger studies
comparing the two techniques. The workflow described here can be adapted for other areas of metabolomics and has a value
as a prescreening method to develop semi-targeted workflows and as a faster alternative to HPLC in large biomedical studies.
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UPCR Urinary protein-to-creatinine ratio
VIP Variable importance in projection (PLS-DA)
XIC Extracted ion chromatogram

Introduction

In this contribution, we propose a workflow for fast
metabolomic biomarker screening by differential mobility
spectrometry coupled to mass spectrometry (DMS-MS). It is
based on the hypothesis that DMS-MS has the potential to
significantly reduce analysis time and provide an orthogonal
method for the detection of differential features.

Metabolomics has emerged as a valuable tool to identify
metabolic perturbations in diabetes [1–4], cardiovascular dis-
ease [5–7], cancer [8], and chronic kidney disease (CKD)
[9–11]. The latter is a major risk factor for cardiovascular
mortality as well as a risk for progression to end-stage renal
disease (ESRD). Life expectancy becomes progressively
shorter with greater severity of CKD in all age groups. The
prevalence of CKD in the US adult general population is 15%
(United States Renal Data System, Annual Report 2018,
accessed via https://www.usrds.org/ on February 2, 2019).

As just a fraction of the total costs of kidney disease care,
Medicare expenditures for ESRD exceeded $31.8 billion in
2014, accounting for 7.2% of the overall Medicare paid claims
costs. Additionally, Medicare spending for beneficiaries aged
65+ who have CKD exceeded $50 billion in 2014,
representing 20% of all Medicare spending in this age group.
Although interventions can help to delay the progression of
CKD, no single intervention or group of interventions has
been found effective in reducing the rate of CKD progression
to ESRD. Since 2011, the incidence of CKD has begun rising
again and the number of prevalent ESRD cases is rising by >
20,000 cases per year (United States Renal Data System,
Annual Report 2018, accessed viahttps://www.usrds.org/ on
February 2, 2019).

Effectively addressing the public health concern of CKD
necessitates improving the prognostic and diagnostic value of
currently used clinical markers for CKD diagnosis and
prognosis.

MS-based, untargeted metabolomics is playing a major
role in the efforts to identify suitable biomarkers. In CKD,
rather than individual biomarkers, panels of metabolites could
be used to increase the accuracy and precision of CKD diag-
nosis and prediction [12]. With this approach, the incremental
changes in metabolite levels reflecting CKD onset and pro-
gression require large patient cohorts to achieve the necessary
statistical power. Fast analytical methods are desirable to
achieve the necessary throughput and minimize instrumental
drift.

DMS is a newly emerging separation technique that has
enriched targeted metabolomics analyses for a wide range of

target compounds, among them drug metabolites [13–15] or,
more recently, biomarkers of radiation exposure and creati-
nine [16]. The benefits of DMS include a fast separation
mechanism and an easily tunable selectivity that is often com-
plementary to high-performance liquid chromatography
(HPLC)–based separations [17]. Furthermore, DMS can be
coupled to MS in a straightforward fashion [18]. However,
there are no prior reports of an LC-free DMS-MS platform
being used in an untargeted metabolomics study.

We recently showed that using isopropanol (iPrOH) as the
modifier, DMS-MS facilitates the detection of a wide range of
metabolites with very short analysis times [17]. Based on this
finding, we envisioned a DMS-MS-based screening platform
capable of identifying metabolic features associated with the
progression of CKD in biological samples derived from CKD
patients.

For our pilot study, we selected plasma samples of CKD
patients from an existing cohort [19]. We utilized the unique
selectivity and speed of DMS together with high-accuracyMS
detection to extract differentially expressed features in patients
with early- compared with late-stage CKD. The simple ana-
lytical workflow is based on direct infusion of plasma extracts
into the DMS cell, followed by separation of the metabolic
features and sequential transfer to the MS. This is achieved by
ramping the compensation voltage (COV) over a
predetermined range and collecting an MS spectrum at every
COV step [17]. Differential analysis of the high-accuracy
DMS-MS data by unsupervised and univariate methods re-
vealed features of interest (FOIs) having different intensities
in patients with early-stage compared with advanced CKD.
Selected FOIs were tentatively identified based on accurate
mass and observed optimum COV. This preliminary identifi-
cation must be further corroborated by targeted LC-MS/MS
analysis (outside the scope of this study). Conceptually, our
study is a proof-of-concept in a small patient population and
does not have diagnostic or predictive power. However, it has
broader applicability for studies in (clinical) metabolomics
across a spectrum of disorders that ranges from metabolic
diseases to cancer to cardiovascular disease.

Experimental section

ChemicalsHPLC-MS-grade water and acetonitrile (ACN) and
HPLC-grade isopropanol (iPrOH) were purchased from
Fisher Scientific (Hampton, NH). Ammonium acetate
(NH4OAc) was purchased from Sigma-Aldrich (St. Louis,
MO).

Human plasma samples Pooled plasma (PP) from healthy
volunteers, used in preliminary experiments and for
confirming intra-batch consistency in the main experiment,
was obtained from the American Red Cross. Ten plasma
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samples of CKD patients were obtained from the
University of Michigan’s Clinical Phenotyping Resource
and Biobank Core (CPROBE) [9]. Established under the
George O’Brien Kidney Center at the University of
Michigan, CPROBE is a multicenter cohort of 1235
adult individuals with CKD. Biologic specimens and
clinical data have been collected for translational re-
search. The inclusion criteria were patients from all
stages of CKD balanced by sex and race. We selected
five patients each from stages 2 and 5. Baseline clinical
and laboratory data as well as stored plasma samples
were gathered cross-sectionally at the time of enrollment.
We used the CKD Epidemiology Collaboration equation
for eGFR calculation [20]. Key patient demographics are
summarized in Electronic Supplementary Material (ESM)
Table S1. All biological samples were stored at − 80 °C
until processing.

Sample preparation 200 microliters of an ice-cooled, 1:1:1
(v/v/v) mixture of methanol, acetone, and acetonitrile were
used to precipitate proteins and extract metabolites from
50 μL of plasma. After incubation at + 4 °C (30 min) and −
20 °C (60 min) and centrifugation (+ 4 °C, 10 min,
10,000 rpm), the supernatant was transferred to autosampler
vials, dried under nitrogen, and re-dissolved in ACN/H2O
(80:20, v/v). Samples were kept at 4 °C in the autosampler
until analysis. The samples were analyzed in a block-
randomized sequence together with solvent blanks and pooled
plasma samples.

Instrumentation HPLC and DMS-MS experiments were car-
ried out on a 5600+ Triple TOF quadrupole time-of-flight
instrument (Sciex, Framingham, MA) coupled to a
Shimadzu Nexera X2 UHPLC system with degasser, binary
pump, and thermostated autosampler via a Turbo V ion
source. A SelexION differential mobility cell (Sciex) was
installed in the atmospheric pressure region of the MS instru-
ment for the DMS experiments.

Experimental setup The reversed-phase column used in the
LC runs was a Waters Acquity HSS T3 C-18 (1.7 μm particle
size, 2.1 × 100 mm inner diameter) equipped with a 5-mm
precolumn. The mobile phase consisted of a mixture of water
(A) andmethanol (B) with 0.1% formic acid. Injection volume
was 5 μL. The conditions were as follows: flow rate 0.3 mL/
min; temperature 55 °C; gradient 0–1.5 min: 5% B, 23 min:
75% B, 26 min: 98% B, 34.5 min: 98%B, 34.6 min: 5% B;
equilibration time 10 min; total run time 45 min. MS/MS data
were collected using a data-independent acquisition (IDA)
approach.

For the DMS experiments, a zero-dead volume stainless
steel union replaced the column. The carrier solvent was
75% ACN and 25% H2O (50 mM NH4OAc), and the solvent

flow was 20 μL/min. The DMS separation voltage (SV) was
3.8 kV. Each DMS measurement was followed by a 2-min
washing step at 200 μL/min.

The BCOV cycling^ experiments for selecting metabolite
features from pooled plasma are described in the ESM (BCOV
cycling approach for feature finding (preliminary study)^).
The BCOV ramping^ experiments for feature discovery in
CPROBE samples were carried out by infusing 40 μL of
plasma extract into the DMS cell. The COV range (−40 to +
20 V) was covered in 0.2-V steps. All measurements were
carried out in positive mode and the m/z range was 100–
1200 (MS cycle time 1 s). The run time was 5 min per sample,
not including a 30 second wait time between injection and
initiation of the COV ramping.

Data processing and statistical analysis For visualization, in-
dividual ion traces were extracted with a width of 0.075 Da.
First-pass data evaluation, peak picking, and alignment were
performed with PeakView 2.2 and MarkerView 1.3.1 (Sciex),
respectively. Parameter settings are summarized in the ESM
(BAdditional information on data analysis workflow^).

Peak picking and alignment were conducted after the
transformation of the ionograms from the voltage (COV)
into the time (min) domain. Eight hundred eighty-one fea-
tures, characterized by a unique combination of m/z and
migration time (m/z_tM), were identified from 17 samples
(five per group for early- and late-stage CKD and seven
technical replicates of PP). Using the online platform
MetaboAnalyst [21], 225 features with over 50% missing
values were removed and no missing values remained.
Feature filtering was based on the group median. The fea-
ture intensity was normalized by the sample median, log-
transformed, and auto-scaled.

Statistical tests were based on assumption of normal distri-
bution and a probability cutoff of 0.05 was employed unless
otherwise noted.

METLIN database search TheMETLIN database was searched
for the accurate mass of FOIs allowing for proton, sodium,
and ammonium adducts with 30-ppm mass accuracy. Results
shown in BTowards feature identification by accurate m/z and
COV^ (Table 1) represent a subset of the matches.

Patient protection All human studies were approved by the
Institutional Review Board (IRB) for the University of
Michigan and the CPROBE ancillary studies committee.
The samples were de-identified, and no personal information
was included in the patient data provided by the CPROBE
coordinators for this study. As such, the use of human samples
in this study did not require separate approval by an IRB or
renewal of informed consent. Information on the CPROBE
study is available at https://clinicaltrials.gov/ct2/show/
NCT01016613.
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The pooled plasma samples used as experimental controls
were obtained from the American Red Cross and were not
subject to IRB approval or informed consent.

Results

Patient selection

This study was conducted using plasma samples of patients
with early- and late-stage CKD (N = 5 per group) from the
CPROBE cohort. ESM Table S1 summarizes the key demo-
graphic data of CKD patients in this study.

The patient samples were selected based on CKD stage, and
the groups were matched for sex, race, and incidence of diabetes.
In accordance with the clinical phenotype, the first group includ-
ed early-stage CKD (stage 2; estimated glomerular filtration rate
(eGFR) 60–90) and the second group included late-stage CKD
(stage 5; eGFR < 15) patients. Stage 5 patients were older
(p < 0.05) and, as expected by design, had reduced kidney func-
tion. Clinically, this is manifested in their lower eGFR and higher
serum creatinine comparedwith stage 2CKDpatients (p < 0.01).

Due to the limited amounts of patient sample available,
pooled plasma from healthy controls was employed for the
preliminary studies described in the ESM Sections 1.1 and
1.2 and to determine the separation performance in the main
experiment (see BSeparation performance of DMS^).
Technical replicates of the pooled plasma extract were

processed along with patient samples and analyzed during
system equilibration and in between CKD patient samples.

Separation performance of DMS

Data acquisition In DMS analysis, a given combination of
separation voltage (SV) and compensation voltage (COV) fa-
cilitates the transfer of compounds of a specific molecular
mass, charge, and shape through the DMS cell and into the
MS. Molecules having different properties collide with the
DMS electrodes and are eliminated.

BCOV ramping^ increases the COV in a stepwise fashion
to cover the analytical range of interest for metabolites and
transfer them to the MS in a sequential fashion. By collecting
an MS spectrum at every COV, ramping experiments provide
ionograms, plots of MS signal intensity versus COV analo-
gous to chromatograms (Fig. 1, inset). Individual ion traces
(XICs) can be extracted from ionograms to determine the op-
timum COV for a given m/z from the apex of the correspond-
ing peak (Fig. 1, main panel). A detailed description of the
COV cycling mode, an alternative DMS operation mode, can
be found in ESM Sections 1.1 and 1.2.

Separation characteristics The analytical performance of the
DMS was determined based on seven technical replicates of
PP extract analyzed along with the patient samples. The XICs
of metabolic features known to be present in the PP samples
(see ESM Section 1.1) were used to determine that the average
peak width in the main experiment was 1.5 V. In combination

Table 1 Primary features. Average compensation voltage (COV) and relative standard deviation (RSD) are based on 10 samples from the CPROBE
cohort

Feature Stage 5 m/z tM/min COV METLIN hits (selection) (number of hits [adduct], mass accuracy)

Average/V RSD/%

A Down 266.85 1.84 − 24.9 − 1.1 No hits

B Down 586.30 3.06 − 10.74 − 0.9 9 hits

C28H39N7O7 ([M+H], 10 ppm)—peptide, e.g., Phe Arg Tyr Tyr

C28H44N2O8S ([M+NH4], 18 ppm)—leukotriene F4

C34H36N2O6 ([M+NH4], 23 ppm): y-morphine

C Down 602.28 3.14 − 9.87 − 5.9 7 hits

C29H39N5O9 ([M+H], 4 ppm): peptide, e.g., Gly Lys Tyr Tyr

C33H36N4O6 ([M+NH4], 29 ppm): bilirubin

C26H32N8O8 ([M+NH4], 19 ppm): Asp His Trp Gln

D Up 232.98 2.39 − 18.18 − 2.6 No hits

E Up 386.70 2.1 − 22.1 − 0.6 No hits

F Up 842.59 3.78 − 1.1 − 56.0 18 hits [M+H]+, 30 hits [M+NH4]
+, 40 hits [M+Na]+

C49H80NO8P ([M+H], 25 ppm): PE_44:9

C46H84NO10P ([M+H], 0 ppm: PS_40:3

C46H81O10P ([M+NH4], 0 ppm): PG_40:5

C47H83NO8P ([M+Na], 27 ppm): PC 39:6 or PC_O-18:0/22:6
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with the experimental COV range of 60 V, the DMS platform
had a peak capacity of 20. This is at least an order of magni-
tude lower than a typical HPLC separation and raises concerns
regarding the accurate quantification and identification ofmet-
abolic features in the presence of isobaric, co-migrating spe-
cies. The total peak capacity of the DMS-MS platform is sig-
nificantly larger and depends on the scan speed of the mass
spectrometer. Here, anm/z range of 1100 was covered in 1 s to
enhance signal intensity (see BExperimental^).

The analysis time in the DMS-MS experiments was 5 min
per sample, plus 2 min of cleaning after each run. This is
significantly faster than a typical HPLC separation and has
the potential to facilitate higher throughput and reduce issues
with instrumental drift.

In addition, the run-to-run reproducibility of the compen-
sation voltage was determined to be excellent, with RSDs for
COVs of reference features typically below 1% (ESM
Table S3). This is in line with a highly reproducible LC meth-
od. However, the relatively high peak area RSDs for some
species are indicative of ion suppression, a common and often
prohibitive issue in direct infusion MS analysis.

Data evaluation and processing

Generating the feature list A metabolic feature derived from
DMS-MS data is characterized by a uniquem/z and correspond-
ing COV or migration time (tM). In this experiment, feature
finding with open-access tools failed due to the low MS signal
intensity and efficiency of the DMS platform. Therefore, we

combined commercial and open-access software solutions to
generate peak lists and extract the differential features (Fig. 2).

The ionograms were transferred from the COV into the
migration time domain by importing the .wiff files into
MarkerView. Feature finding and peak alignment across sam-
ples were performed and 881 distinct m/z_tM features with
their corresponding intensities were obtained (see also ESM
Section 1.2, for details). Each feature is denoted asm/z@COV
before the transformation or as m/z_tM (after transformation).

The blanks and PP extracts were removed from the original
sample list before it was transposed and imported into
MetaboAnalyst for differential analysis [21]. Two hundred
fifty-five features were removed because they either showed
constant intensities across samples (non-relevant features for
differential analysis) or only appeared in a single sample (low-
confidence features likely to be artifacts). The feature intensi-
ties were then median-normalized, log-transformed, and auto-
scaled (ESM Fig. S2). Note that some features still showed
non-normal intensity distributions across samples. This is an
effect of the small sample size and large intensity differences
between CKD stages.

Selection of features of interest

Unsupervised methods BFeatures of interest^ (FOIs) are fea-
tures present at significantly different levels in samples from
early- versus late-stage CKD patients. To select those features,
we considered principal component analysis (PCA) and par-
tial least squares discriminant analysis (PLS-DA) [22].

Fig. 1 Extracted ion traces for selected features are distributed across the COV range in a representative plasma sample (main panel). Total ion current
(TIC) traces of plasma samples (colored lines) display similar peak profiles and are clearly distinct from those of blank samples (black traces)
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As shown in the ESM, two-dimensional PCA score plots
showed a significant overlap between early- and late-stage
patients (ESM Fig. S3a). Three components were required to
achieve the separation of the two groups (ESM Fig. S3b, cu-
mulative variance explained 34.2 + 18.2 + 12.0 = 64.4%).
PCA loading plots were therefore deemed unsuitable for the
selection of FOIs.

PLS-DA plots, on the other hand, showed a separation
of stage 2 and stage 5 CKD patients and, in addition, re-
vealed subclusters within each stage (ESM Fig. S3c). The
clustering pattern, which was corroborated by correlation
analysis (ESM Fig. S3d), was not linked to gender, race,
incidence of diabetes, or statin use (ESM Table S4) but

may be related to the run order. The pattern corresponded
to a decreasing signal intensity of reference features with
run order (not shown), which suggests that instrumental
drift may have influenced the experimental results. This
was an unexpected finding given the exceptionally short
run times.

A PLS-DA-based list of FOIs was created based on
the top 25 features by variable importance in projection
(VIP) score for the first five components. Figure 3 a
shows the top 15 features based on their VIP scores for
PLS-DA component 1. Removing redundant features
appearing in the top 25 more than once resulted in a
shortlist containing 17 features.

Fig. 2 The experimental workflow included extraction of the plasma metabolites with organic solvent, DMS-MS analysis, peak finding and alignment,
normalization, and statistical analysis

PLS-DA resultsa b Associated with CKD stage

VIP scores Correlation coefficients
Fig. 3 Metabolic features distinguishing early- and late-stage patients. a Top 15 features based on partial least squares discriminant analysis (PLS-DA)
variable importance in projection (VIP) scores for component 1. b Top 25 features by t tests
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Univariate analysis (t tests) To select FOIs for further investi-
gation, we also employed univariate analysis (comparing fea-
ture intensity differences within and between the CKD
groups) and correlation analysis (changes in feature intensities
from stage 2 to stage 5 CKD).

According to fold change analysis, 157 features exceeded a
logarithmic intensity difference greater than 2 (ESM Fig. S4).
Of the top 25 features correlated to CKD stage, only six
showed increased intensities in stage 5 samples com-
pared with stage 2. The other 19 were upregulated in
stage 2 (Fig. 3b).

Figure 4 shows a heatmap based on relative signal intensi-
ties of the top 25 features by t tests (equal variance, parametric
tests). In this graph, each column represents a sample and each
row represents a feature. Color intensities correspond to rela-
tive signal intensity for each differentially regulated feature
across samples. The samples are arranged into the two CKD
patient groups (marked in red and green) by unsupervised
clustering.

After correcting for multiple testing using the false discov-
ery rate (FDR) method, three primary features of interest
emerged from our analysis (see Fig. 3): Features A (m/z_tM
266.8454_1.84), B (586.3048_3.06), and C (602.2796_3.14)

were all downregulated in the late-stage CKD samples. They
strongly correlated with each other (R2 > 0.9), and B and C
even co-migrated with average COVs of − 10.7 Vand − 9.9 V,
respectively (Table 1). Co-migration could be an indication of
chemical similarity, but the low separation power of the DMS
does not facilitate a definitive conclusion.

The three FOIs were also main drivers for the separation of
the groups in the PLS-DA analysis (Fig. 3a).

We also selected three additional FOIs for further investi-
gation based on the fact that they were elevated in stage 5
compared with stage 2. Features D (232.9825_2.39), E
(386.7021_2.1), and F (842.5905_3.78) had the highest VIP
scores in the PLS-DA analysis but did not pass the FDR-
corrected fold change analysis due to their relatively high
intra-group variability (boxplots not shown). Generally, the
raw intensity data showed considerable intra-group variability
with RSDs ranging from 26 to 89%. Data treatment including
normalization, log transformation, and auto-scaling, however,
successfully corrected these issues.

As observed previously for the reference features in PP
(ESM Table S2), the COV reproducibility for FOIs in
CPROBE samples was excellent with RSDs below 2% for
most features (Table 1). The notable example was FOI F with

785.6421_3.88

842.5902_3.78

232.9825_2.39

386.7021_2.10

844.5844_3.86

779.5899_3.95

192.9128_1.82

914.7122_4.12

869.5332_3.55

192.9595_1.65

752.498_3.78

628.3454_3.16

882.4886_3.36

878.5035_3.30

634.224_3.18

266.8454_1.84

268.8424_1.87

294.8603_2.22

586.3048_3.06

602.2796_3.14

2

1

0

-1

-2

Fig. 4 Heatmap showing samples in columns and top 20 distinguishing features by t tests in rows. Colors represent relative feature intensities across
samples. Samples are arranged by unsupervised clustering
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an exceptionally high RSD of 58%. The extracted ion traces for
this feature showed highly heterogeneous peak shapes ranging
fromGaussian in some samples to poorly resolved double peaks
in others with no apparent correlation to CKD group or available
demographic data. We suspected that Feature F contains multi-
ple, unresolved molecular species (see also BTowards feature
identification by accurate m/z and COV^) and performed a
HPLC-MS analysis of the same sample set (see below).

Comparison with HPLC-MS data For comparison, the CKD
patient samples were also analyzed using a generic RP-
HPLC-MS method on the same instrument with the DMS
cell removed. As expected, approximately three to four times
more features were detected with the latter method. After
removing low-abundance (I < 100 cps) and low-confidence
features (present in less than 4 samples per group), about
3000 features remained. In absolute numbers, the HPLC-
based platform detects more features than DMS-MS. This
is related to (a) the higher separation efficiency of the LC
compared with DMS, (b) the resulting, reduced ion suppres-
sion, and (c) the decreased ion path length in HPLC-MS.
However, relative to the run time (5 min for DMS, 20 min
for HPLC), the DMS performance can be viewed as compet-
itive with 170 features per minute compared with 150 fea-
tures per minute for HPLC-MS.

Comparison of the differential features extracted from
DMS and HPLC data showed that the two analyses were
highly complementary.

In the HPLC-MS dataset, 58 features were determined to
be significantly different between early- and late-stage CKD
samples based on normalized, log-transformed, and auto-
scaled data (t tests, unequal variance, FDR-adjusted p < 0.05,
ESM Table S6). There was no overlap between these 58 fea-
tures and the top 25 features from t tests on DMS data. This
result suggests that DMS screening might be orthogonal to
RP-based analysis. The potential for the expansion of the sep-
aration space in untargeted metabolomics may be best
exploited by coupling the two techniques.

We investigated the m/z traces of the DMS-derived FOIs in
the HPLC-based dataset for the presence of isobaric interfer-
ences.A,B,D, andE appeared as single peaks (XICs form/z ±
0.005 Da) with E showing very low intensity. The extracted
ion chromatograms of FOIs C and F showed multiple peaks,
which illustrates the limitations of the DMS separation.
However, it also demonstrates how DMS experiments can
trigger follow-up by HPLC-MS and inform the design of
targeted follow-up experiments.

Towards feature identification by accurate m/z
and COV

The accurate mass and optimum COV data collected by the
DMS-MS platform can be utilized to assign tentative identities

to metabolite features. Accurate mass data facilitate database
searches, and the observed COV can be compared with that of
an authentic standard measured under identical conditions to
narrow down candidate identities.

We searched for the accurate m/z of FOIs A–F in the
METLIN online database. A 30 ppm window was chosen to
account for the potential instrumental drift in between calibra-
tion runs. Excluding drugs and toxicants, we found several
potential matches for FOIs B, C, and F but none for A, D,
and E. A selection of candidates is included in Table 1.

Most potential matches referred to peptides or lipid species
for which authentic standards were not readily available.
However, FOI C (m/z 602) matched the ammonium adduct
of bilirubin. As shown in Fig. 5, the optimumCOVof FOIC is
identical to that of the authentic bilirubin standard and the
ammonium adduct was indeed the main ion detected for bili-
rubin. It is important to note, while accurate mass and com-
pensation voltage matches can provide useful hints at a fea-
ture’s identity, MS/MS and retention time matches with an
authentic standard are still the gold standard for metabolite
identification. Thus, further experiments would be necessary
to unequivocally confirm the identity of FOI C.

Fig. 5 The COV of the unknown feature at m/z 602 matches that of an
authentic bilirubin standard measured under identical conditions
(separation voltage 3.8 kV, modifier isopropanol). Extracted ion
chromatogram at m/z 602.297 ± 0.025 Da
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FOI F first captured our attention because of its unusually
high COV variability (58% RSD compared with < 2% for all
others). We observed that it appeared as two poorly resolved
peaks in several samples, showed multiple peaks in the HPLC
analysis (ESM Fig. S5), and yielded a very high number of
METLIN hits. The suggestions represented phospholipids of
different classes, namely, phosphatidylethanolamines (PE),
phosphatidylglycerols (PG), phosphatidylcholines (PC), and
phosphatidylserines (PS). These findings suggested that FOI
F contains multiple molecular species, most likely members
of the phospholipid family. The results are consistent with the
RP-LC profile of isomeric phospholipids in plasma samples.
As for feature C, tandem MS data would be required to un-
equivocally establish its identity.

Discussion

Significance In this contribution, we discuss a workflow for
the extraction of dysregulated metabolite features from DMS-
MS screening data from biological samples. We used plasma
from CKD patients to demonstrate its utility for probing phe-
notypical differences between disease states and compare the
results to HPLC-MS/MS. Importantly, we show how DMS-
MS-generated data can be processed to extract differential
features and putatively identify metabolites. To the best of
our knowledge, this is the first report of the application of
DMS technology for untargeted metabolomics screening
(PubMed search, January 2019). Due to its novelty, some
issues remain unresolved in this contribution, and further
work is needed to make this approach suitable for large-
scale studies. An important limitation is the lack of (internal)
standards. Potentially, plasma background ions could serve as
reference in the absence of suitable standards. Another crucial
step would be the incorporation of MS/MS into the DMS-
based workflow. Furthermore, it appears that the quality and
biological relevance of features of interest discovered with this
approach would be greatly enhanced by sample de-salting and
preconcentration steps. Nonetheless, we believe that our work
is an important step towards the broader application of DMS
as a biomarker discovery tool across a variety of disorders in
clinical metabolomics due to its relative simplicity and poten-
tial for high throughput.

Experimental design We analyzed plasma extracts of CKD
patients selected from an existing patient cohort based on pre-
viously obtained clinical diagnosis. They corresponded to ear-
ly (stage 2) or advanced (stage 5) CKD groups. In accordance
with our fundamental understanding of CKD as a progressive
disease, the DMS-MS-based features detected in early- and
late-stage patients showed significant differences. The
distinguishing, dysregulated metabolite features were selected
using unsupervised clustering and fold change analysis.

Putative identification of individual features was facilitated
by a combination of high-accuracy MS data, which gave
access to the molecular composition, and the feature-
specific COVs, which can be matched with an authentic
standard and followed up on by HPLC-MS and tandem
MS analysis.

This work is intended proof of concept study illustrating
the data acquisition and analysis. Due to the small sample size,
the differential features do not have a diagnostic or prognostic
power in the context of CKD. Follow-up in a larger, appropri-
ately powered patient cohort representing all CKD stages is
required to achieve clinically relevant results.

DMS versus HPLC Compared with HPLC, DMS has advan-
tages in terms of easy method development, analysis speed
and throughput, and often complementary selectivity [17].
The former is the result of a faster separation mechanism on
the microsecond scale [18] and shorter regeneration and
cleaning time between runs. Our setup, in which 5 min of
analysis time were followed by a 2-min wash step, was com-
pared favorably with typical HPLC analysis times of 20–
30min per sample. The fast analysis time was the major driver
behind this work, as (pre-)clinical studies in CKD and other
clinical areas would greatly benefit from faster screening
procedures.

On the other hand, important performance characteristics
of the DMS, such as efficiency, peak capacity, and absolute
signal intensity, are inferior to those of a typical HPLC sepa-
ration. The direct infusion approach is susceptible to ion sup-
pression, and further signal loss occurs in the DMS cell.
Therefore, low-abundant species and metabolites suffering
from competitive ionization are likely to be underrepresented
in DMS-based experiments. Co-migration of critical metabo-
lites, a result of the lower separation efficiency of the DMS,
can potentially cause erroneous quantitation in DMS-based
analysis. Studies utilizing well-characterized sets of metabo-
lite standards are required to improve our understanding of
these phenomena and to better quantify the differences be-
tween HPLC and DMS performances.

Ion suppression could be greatly reduced by implementing
a cleanup or desalting step such as solid-phase extraction or a
very short (5mm) LC column. Removing salts would enhance
metabolite identification by reducing the number of different
adducts for a single precursor. In addition, it would reduce
competitive ionization in the ESI source and neutralization
effects such as proton transfers in the DMS cell. We had not
included these approaches in our experimental design to keep
the workflow as simple as possible as it was a proof-of-
concept study. Based on our results, however, we recommend
that follow-up studies include measures to reduce the matrix
and ion load.

Some limitations of the DMS, such as the ion path length,
are not readily addressable by the end user. Instrumental
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developments are expected to improve ion transmission, facil-
itate higher signal intensity and improve the detection of low-
abundance species as well as reproducibility.

Data evaluationData evaluation and processing constituted
major bottlenecks in this study. No commercial tools or
common guidelines exist for performing automated peak
picking and alignment operations on DMS-generated data,
and the low DMS efficiency and signal intensity were
prohibitive to using open-access tools throughout the
whole process. To arrive at the peak picking and data
processing workflow reported here, we used a combina-
tion of commercial and open-access software. We went
through several iterations to optimize the parameters and
confirm consistent analysis results.

We also faced data analysis challenges related to the MS
detection. Specifically, a reduction in signal intensity over
time was noted for some features. Initial evaluation of the data
for 8 reference features suggested that instrumental drift might
influence the quantitative results. Decreasing mass accuracy
was suspected as a potential source of the issue. An MS cal-
ibration had been performed immediately prior to the sample
analysis where the average mass accuracy for m/z range 50–
1200 was found to be < 1 ppm and continuous internal cali-
bration was performed during runs. Thus, MS precision was
ruled out as the cause for declining peak intensity.

Since no column was used in the DMS-MS runs, low sys-
tem backpressure could have led to higher-than-expected run-
to-run variability compared with HPLC. UHPLC pumps de-
liver more constant flow at higher backpressures. Even though
we were operating within instrument specifications, small dif-
ferences in the flow rate could have affected the detected sig-
nal. However, this cause was also ruled out after confirming
that the TIC intensities were constant across all samples. It is
worth noting that increasing the length of PEEK tubing
connecting the injector to the ESI source or placing a short
column in the flow path would prevent pump stability con-
cerns altogether. We concluded that the most likely causes for
the observed variability were ion suppression and co-
migration of isobaric compounds. Studies involving multi-
analyte sets of known composition and concentration will
have to be investigated together with different biological ma-
trices in order to quantify these effects. As indicated in the
BDMS versus HPLC^ section, a sample cleanup step would
greatly reduce matrix effects and could improve signal inten-
sity. Suitable isotope-labeled standards or reference back-
ground ions should be employed in the future to facilitate
normalization across samples and batches. Before attempting
to draw biological conclusions from a study, the method
should be validated in larger cohorts. Further work needs to
focus on overcoming the pitfalls demonstrated in our pilot
study before DMS-MS can be used as a more routine appli-
cation for clinical biomarker discovery.

Differential analysis We performed partially redundant data
reduction and analysis steps to select the main FOIs from
the initial list of 881 unique m/z and COV (migration
time) pairs. In the absence of suitable reference signals
and internal standards, mean and median-based approaches
were used to filter and normalize feature intensities across
samples. Rigorous removal of low-confidence features
drastically reduced the initial list, and only the six most
influential features emerging from PLS-DA analysis were
carried forward.

The results of univariate analysis (t tests, corrected for mul-
tiple testing) confirmed 3 of the 6 FOIs. However, the validity
of p value cutoffs in this study is limited due to the small
sample size. The large discrepancy between the high number
of features and the small number of patients is typical for a
low-powered pilot study. It is important to keep in mind that
this study was designed as a proof-of-concept. In order to
obtain biologically relevant information and high-confidence
biomarker candidates, it must be repeated in a larger cohort
and, ideally, also include patients with intermediate-stage
CKD.

The goal of untargeted analysis is the identification of dif-
ferentiating features. With DMS-MS data, identification relies
on accurate mass and feature-specific COV. We performed
database searches based on the average m/z value determined
from 10MS scans with a relatively wide window of 30 ppm to
increase the chance of hits. Thus, multiple potential chemical
formulas and structure matches were obtained for 4 out of 8
FOIs. MS/MS data were not collected in this study, meaning
that identification was limited to the level of the chemical
composition.

As a notable exception, FOI C was identified as bilirubin
based on its m/z and COVas well as an adduct match with the
authentic standard. The tentative identification of this feature
demonstrates that similar to the HPLC retention factor, the
COV reflects each feature’s molecular properties in a compos-
ite fashion. In the case of feature F, which showed exception-
ally high intra-group variability, we were able to gain useful
hints from a follow-up HPLC run. The unknown feature pro-
duced multiple, strongly retained peaks, suggesting a hydro-
phobic, structurally heterogeneous mixture. In combination
with the accurate mass, we classified FOI F as a phospholipid
isomer mixture. The latter, narrower classification shows that
DMS-MS can be a time- and cost-effective tool to guide bio-
marker discovery by HPLC.

Limitations of this study and future directions The small
sample size of N = 5 per group is an important limitation
of our study. While appropriate for a proof-of-concept, it
prevents any biological conclusions to be drawn or bio-
marker candidates be selected from the acquired data. In
addition, age was recognized as a potential confounder in
our patient population.

6306 Wernisch S., Pennathur S.



For clinically meaningful CKD research, a method valida-
tion must be undertaken and the study replicated in a larger
cohort that includes intermediate CKD stages. Nonetheless,
we expect our pilot study to pave the way for future, appro-
priately powered large-scale studies to follow up on this work.

Furthermore, we provided direct comparison with tradi-
tional, untargeted RP LC-MS in this small subset of patient
samples but did not investigate the effect the biological matrix
has on the detection of key analytes in direct infusion exper-
iments. In order to better understand the potential of DMS-MS
for non-targeted metabolites, we must conduct experiments
that clearly establish which metabolites can be reliably
targeted with this technique. In particular, we have to make
sure that ion suppression, co-migration of isobaric com-
pounds, and the formation of multiple adducts do not interfere
with quantitative analysis.

The lack of MS/MS data impeded the full identification
of unknown features. Efforts must be made to integrate
data dependent or data-independent tandem MS analysis,
into DMS-MS workflows. This is essential if DMS-MS is
to be used for larger-cohort studies as the elucidation of
the chemical identity of differentiating metabolites and
metabolite panels is the declared goal of untargeted meta-
bolomics. The lower signal intensity, rather than the fast
time scale of the separation, is the major challenge for
such endeavors, especially in data-independent MS/MS
workflows. Hopefully, instrumental developments will
help tackle this issue.

Finally, new concepts are needed to address the particular-
ities of DMS separation on the data analysis side. For exam-
ple, the state-of-the-art in data reduction for LC-MS-based,
untargeted metabolomics includes grouping of features and
adducts into compounds based on their identical elution times.
This approach may not be feasible for LC-free DMS-MS ex-
periments, as different adducts may have different migration
times in DMS separations [17, 23]. Our suggestion is to de-
velop workflows that favor the formation of single adducts by
careful choice of ionic additives or, if feasible, use LC reten-
tion time to align DMS-separated features. Both of these ap-
proaches may limit the application range of DMS for
untargeted metabolomics or at least counterbalance some of
the benefits we discussed here.

As outlined in BResults,^ the DMS-MS data did not align
as well as expected with RP-LC-MS results of the same sam-
ples. Since this is the first report of a DMS-based untargeted
metabolomics platform and large-scale studies using DMS are
scarce, we are unable to provide a definitive explanation for
our observations at this point. However, we were able to ex-
tract single ion traces for the DMS-generated FOIs from the
HPLC-MS data. This shows that the two platforms are partial-
ly Borthogonal^ and target overlapping, but not necessarily
identical, subsets of the metabolome. The extent of this over-
lap has important implications for the choice of applying

DMS as an alternative to HPLC, in exploratory studies
intended to yield targeted HPLC-MS/MS approaches, or as
an additional dimension in multi-dimensional metabolomics
platforms. More in-depth studies of DMS versus HPLC sepa-
rations are required to expand our understanding in this area.
We believe that this work provides a foundation for broader
application of this exciting and accessible separation
technique.

Conclusions and outlook

In this contribution, we propose a simple workflow for the
application of DMS as a separation technique for biomarker
screening in metabolomics. A total of 881 features, character-
ized by unique m/z and COV pairs, were detected in plasma
extracts of 10 CKD patients.

The DMS-MS platform facilitated the selection of fea-
tures of interest and putative identification based on
compensation voltage and accurate mass. In our small
test set, differential analysis of early- and late-stage
CKD patients led to three main features of interest. A
METLIN database search based on accurate mass pro-
duced several matches. For one feature, comparison of
the observed COV with an authentic standard pointed
at bilirubin. For another feature, follow-up HPLC-MS/
MS analysis confirmed the presence of multiple isobaric
species, possibly phospholipids.

Compared with HPLC-MS, the DMS-MS platform operat-
ed much faster but limitations arose from its lower separation
efficiency and sensitivity. Peak capacity and signal intensity
were an order of magnitude below HPLC, which resulted in
relatively high sample consumption and challenges regarding
data analysis (peak picking). The number of differential fea-
tures distinguishing early- and late-stage CKD patients was
significantly higher in HPLC-based experiments. In addition,
DMS-derived features of interest did not correspond well with
HPLC-MS results. This demonstrates the need for more, larg-
er, and more systematic comparative studies investigating the
selectivity overlap between the two techniques and the effects
of different biological matrices. The samplematrix is expected
to have a large, possibly detrimental influence on the quality
of data obtained by direct-infusion DMS-MS. For better com-
parability of DMS- and HPLC-based workflows, we recom-
mend de-salting and preconcentration, for example using a
trapping column. Future work will also focus on optimizing
sensitivity, the selection of suitable internal standards to im-
prove quantitation, and the incorporation of tandem MS ex-
periments to increase confidence in metabolite identification.
Technological advances will bring better sensitivity, which in
turn will result in decreased sample consumption and reduced
instrument contamination.
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