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Abstract
Metabolomics quantitatively measures metabolites in a given biological system and facilitates the understanding of physiological
and pathological activities. With the recent advancement of mass spectrometry (MS) technology, liquid chromatography-mass
spectrometry (LC-MS) with data-independent acquisition (DIA) has been emerged as a powerful technology for untargeted
metabolomics due to its capability to acquire all MS2 spectra and high quantitative accuracy. In this trend article, we first
introduced the basic principles of several common DIA techniques including MSE, all ion fragmentation (AIF), SWATH, and
MSX. Then, we summarized and compared the data analysis strategies to process DIA-based untargeted metabolomics data,
including metabolite identification and quantification. We think the advantages of the DIA technique will enable its broad
application in untargeted metabolomics.
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Introduction

Metabolome is a collection of all metabolites in the biological
system and represents the most downstreammolecular entities
closest to the phenotype compared to genome and proteome
[1, 2]. Metabolomics aims to quantitatively measure metabo-
lites in biological systems and provides the mechanistic in-
sights to understand physiological and pathological activities
and events [3]. Metabolites have high diversity of chemical
structures and span a broad concentration ranges, therefore,

requiring powerful analytical techniques for metabolic profil-
ing [4]. With the recent advancement of mass spectrometry
(MS) technology, liquid chromatography-mass spectrometry
(LC-MS) has become one of the most commonly used tech-
niques for metabolomics due to its high sensitivity, selectivity,
and throughput in data acquisition and is applied for both
targeted and untargeted metabolic profiling [1, 4–6].
Targeted metabolomics analyzes a set of pre-selected metab-
olites related to a specific biological hypothesis using MS
techniques such as multiple reaction monitoring (MRM) and
parallel reaction monitoring (PRM) [1, 6–8]. Meanwhile,
untargeted metabolomics (or called non-targeted metabolo-
mics) focuses on the comprehensive analysis of all the mea-
surable metabolites in biological samples including both
known and unknown ones [1, 4].

For LC-MS-based untargeted metabolomics profiling,
data-dependent acquisition (DDA) and data-independent ac-
quisition (DIA) MS techniques are two common data acqui-
sition techniques (Fig. 1) [9]. Both DDA and DIA techniques
aim to simultaneously acquire MS1 and MS/MS (or MS2)
data for all metabolites from the biological samples in one
analysis, but using different strategies. In one data acquisition
cycle, both DDA and DIA techniques first acquire a full MS1
scan, and followed by one or multiple MS2 acquisition scans.
In DDA, all precursor ions acquired in the MS1 scan are
ranked by their intensities (and/or charges). Then, top n
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ranked precursor ions are sequentially chosen and isolated for
fragmentation to acquire their corresponding MS2 spectra one
by one (Fig. 1a). The precursorMS1 and its MS2 spectrum are

inherently linked, and the metabolite structure can be elucidat-
ed by comparing the similarity of m/z of precursor ion and its
MS/MS spectrum to the metabolite standards in the spectral

Fig. 1 Mass spectrometry–based data acquisition for untargeted metabo-
lomics: (a) data-dependent acquisition (DDA); (b–g) data-independent
acquisition (DIA): (b) MSE and AIF, all co-eluted precursor ions in the
whole mass range fragmented to acquire MS2 spectra; (c) SWATH, se-
quential fragmentation of all precursor ions in a serial of quadrupole
isolation windows such as 25 Da; (d) SWATH with variable Q1 isolation
window, assigning each SWATH window with different isolation width

based on equalizing the distribution of either the precursor ion population
or the total ion current; (e) shift or offset SWATH, sequentially shifting the
isolation window with a small mass such as 5 Da for five injections; (f)
PAcIFIC, taking multiple injections for one sample analysis in order to
obtain comparable isolation window width as the DDA technique; (g)
MSX, five separate 4-m/z isolation windows combined to obtain one
MS2 spectrum
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library [10], such as METLIN [11], MassBank [12], HMDB
[5], and MoNA (http://mona.fiehnlab.ucdavis.edu/).
However, DDA technique suffered from two major
limitations: (1) the low acquisition coverage of MS2 spectra
due to its biased selection of high abundant precursor ions for
fragmentation and (2) the undefined MS2 spectral quality,
which is due to the fact that the MS/MS spectra are not always
acquired at the apex of chromatogram peak. In our previous
work, we found that < 60% of precursor ions were fragmented
for MS2 spectra [13]. The limitations of DDA technique in
MS2 spectral coverage and quality restrict its application in
untargeted metabolomics. As a comparison, in DIA, all pre-
cursor ions in a predefined isolation window (from 5 Da to a
full mass range) are isolated to acquire multiplexedMS2 spec-
tra, and this step is repeated until the full mass range is cov-
ered. In theory, DIA technique enables to acquire MS2 spectra
for all precursor ions. In addition, DIA technique enables to
select either MS1 or MS2 ions for metabolite quantification,
which potentially increases the quantitative accuracy.
However, the direct link between MS1 and MS2 ions in
multiplexed MS2 spectra is missing. Shared fragments from
the co-isolated precursor ions increased the complexity of
multiplexMS2 spectra.We performed a very rough estimation
analysis using the human urine SWATH dataset report in our
publication [13].We found that approximately 2838MS1 ions
on average were recorded (considered as co-elution) in one
MS1 scan. Therefore, about 118 MS1 ions on average were
co-isolated in one 25-Da SWATH window (24 windows in
total) (see Electronic Supplementary Material for more
details). Both present a great challenge to process and recon-
struct MS2 spectrum for metabolite identification in DIA-
based untargeted metabolomics.

In this trend article, we first introduced the basic principles
of several common DIA techniques and summarized and
compared the data analysis strategies to process DIA-based
untargeted metabolomics data (mostly for SWATH tech-
nique), including both metabolite identification and quantifi-
cation. Finally, we summarized the future development to
overcome the challenges in DIA and advance its application
in untargeted metabolomics.

Data-independent acquisition technology

DIA techniques have been emerged as an alternative approach
for untargeted metabolomics owing to its capability to acquire
all MS2 spectra and high quantitative accuracy. The concept
of data-independent acquisition was first introduced by
Venable et al. and applied in proteomics [14]. The method
employed the sequential isolation and fragmentation of all
precursor ions within a 10-Da window at a time until a desired
mass range (e.g., 400–1400 Da) has been covered. The meth-
od aimed to acquire MS/MS spectra for multiple ions without

the selection of precursor ion and to ensure the full acquisition
coverage. The generated dataset had comparable peptide iden-
tification coverage and quality as the conventional DDA tech-
nique, but higher signal-to-noise ratios and broader dynamic
range in quantitative analysis [14]. The method is very time-
consuming. Therefore, it has not been applied in untargeted
metabolomics. Later, benefited from the recent advancements
of mass spectrometers including improved acquisition speed,
mass accuracy, and resolution, more research interests have
been focused on the development of DIA techniques. Several
DIA techniques have emerged and applied in both proteomics
and metabolomics. In DIA, all precursor ions in a predefined
isolation window (from several Da to a full mass range) are
sequentially isolated to acquire multiplexed MS2 spectra and
ensure to acquire MS2 spectra for all ions in MS1 scan.
According to the width of isolation window, several represen-
tative DIA techniques are described, including MSE [15], all
ion fragmentation (AIF) [16], SWATH [17], PAcIFIC [18],
and MSX [19].

Both MSE [15] and AIF [16] techniques transmit all co-
eluted precursor ions in the whole mass range for fragmenta-
tion and acquiring MS2 spectra, and no precursor isolation is
applied (Fig. 1b). The MSE technique was registered by
Waters Corporation. It alternatively acquires the fullMS1 scan
with low collision energy and MS2 scan from all precursor
ions with high collision energy [15]. It enables to obtain com-
plete chromatograms for MS1 and MS2 data due to an effi-
cient duty cycle. The relationship between precursor and prod-
uct ions can be re-linked by retention times, mass defect, peak
shape similarity, or a combination of them. The principle of
AIF is similar to MSE. It was originally developed on Thermo
ExactiveMS instrument by transmitting all precursor ions into
a higher energy collisional dissociation (HCD) cell for frag-
mentation and acquiring a multiplexed MS2 spectrum after
each full MS1 scan [16]. The similar function is also now
enabled with different instruments from other vendors, such
as Agilent Q-TOF [20].

Since all precursor ions are fragmented all together in MSE

and AIF, the generated multiplexed MS2 spectra are largely
complexed. To reduce the complexity, SWATH technique was
developed using a narrow isolation window (Fig. 1c). The
SWATH technique was first described by Gillet et al. in
2012 and applied in proteomics research [17, 21]. Later, it
became popular in the analysis of small molecules [22–26],
including metabolomics [27–29]. SWATH-based DIA tech-
nique enables the sequential fragmentation of all precursor
ions in a serial of quadrupole isolation windows (Q1 window)
and records the complete Bsnapshots^ of all metabolite ions
(MS1 data) and their product ions (MS2 data) in the entire
chromatogram. Depending on the MS1 scan range and the
width of isolation window (or SWATH window), multiple
multiplexed MS2 spectra were acquired to cover the full mass
range in one cycle. The width of isolation window is typically
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set as 25 Da, but can be variable from 5 to 100 Da or even
larger. Compared with MSE and AIF, SWATH allows a reduc-
tion of simultaneously fragmented precursor ions, therefore,
decreasing the complexity of multiplexed MS2 spectra. As a
result, the effort to reconstruct the connections between the
precursor and product ions is also alleviated. For the quanti-
tative analysis, the reduced complexity of product ions also
significantly decreases the interference and improves the
quantitative accuracy. Recently, Bonner et al. reviewed the
application of SWATH technique in metabolomics [30].

Commonly, SWATH acquisition applies a fixed Q1 isola-
tion window (e.g., 25 Da) to acquire MS2 spectra. A revised
version of SWATH technique, called variable Q1 isolation
window (Fig. 1d), enables to assign each SWATH window
with different isolation width based on equalizing the distri-
bution of either the precursor ion population or the total ion
current (TIC) [31]. Therefore, the precursor ion population for
fragmentation in one MS2 spectrum is reduced for those from
the densely distributed region. This approach further reduces
the ion interference from co-elution and co-fragmentation and
improves the spectral quality. Alternatively, sequentially
shifting the isolation window of SWATH acquisition with a
small overlapping mass range (e.g., 5 Da) is another way to
reduce the spectral complexity, referred as shift or offset
SWATH technique (Fig. 1e) [21]. However, shift SWATH
technique typically requires five repetitive injections to cover
a 25-Da SWATH window. Specifically, in the first analysis,
the SWATH isolation window is set the same as the conven-
tional SWATH method (e.g., 25 Da each; 100–125 Da, 124–
150 Da). However, in a second analysis, a given shift (e.g.,
5 Da) is set to each isolation window (e.g., 100–105 Da, 104–
130 Da, 129–155 Da). Sequentially shifting the isolation win-
dow for five analyses provides an effect of spectral
deconvolution for acquired multiplexed MS2 spectra. For
each feature, multiplexed MS2 spectra at the apex of chro-
matogram peak in each offset SWATH analysis can be extract-
ed and combined to generate a consensus MS2 spectrum. The
consensus spectrum obtained from offset SWATH provided a
spectral deconvolution effect similar to the MS2 spectra ac-
quired using a 5-Da isolation window. Therefore, the
precursor/product ion relationship can be reconstructed more
accurately to improve the accuracy of metabolite identifica-
tion and quantification.

Alternative to SWATH technique, other DIA techniques
utilizes even smaller isolation windows for the isolation of
precursor ions. For example, PAcIFIC, referred as precursor
acquisition independent from ion count (Fig. 1f), acquires
tandem mass spectra at every m/z value on a LTQ-orbitrap
instrument [18]. In the first injection, ion trap is used to per-
form data-independent acquisition at each of ten continuous
intervals (each with a 1.5-Da width) across a range of 15 Da
using a 2.5 Da isolation width. In the next analysis, the same
manner is performed on another 15-Da mass range. The

injections are repeated until the whole mass range has been
covered. PAcIFIC has comparable isolation window width as
the DDA technique and decreases the complexity of acquired
MS2 spectra. However, the analysis of PAclFIC takes multiple
injections for one sample analysis. Instead, MSX is developed
by multiplexing five isolation mass ranges (4 Da each) into
one fragmentation (Fig. 1g) [19]. Five isolation mass ranges
are randomly chosen from the predefined n possible non-
overlapping windows (4 Da each) and combined as one anal-
ysis. The random selection is repeated until covering the
whole mass range. The generated one multiplexed MS2 spec-
trum from five isolation mass ranges can be de-multiplexed
into five separated MS2 spectra, and each covering a 4-Da
window. MSX technique maintains the acquisition efficiency
similar to SWATH technique, but higher selectivity similar to
PAcIFIC, which is a good combination of data acquisition
efficiency and computational deconvolution. Both of
PAcIFIC and MSX were only applied in proteomics, but po-
tentially applicable for metabolomics. However, these DIA
techniques are not systematically studied for metabolomics,
and the availability of data processing tools is another major
barrier. Therefore, no untargeted metabolomics studies using
two techniques were reported.

Overall, we think DIA technique has the following the ad-
vantages to make it suitable for untargeted metabolomics: (1)
high transmission efficiency in isolation leading to relative
higher intensity and improved MS2 spectra quality; (2) non-
restriction of precursor ions leading to the informative and
broad coverage of MS/MS spectra; (3) efficient duty cycle
ensuring to obtain complete chromatograms for all MS1 and
MS2 ions, which increases the quantitative analysis with wider
dynamic range, better sensitivity, and higher reproducibility.

Data analysis for DIA data in metabolomics

For untargeted metabolomics, the raw data processing such as
peak detection, peak alignment, and grouping is first per-
formed to generate a feature table. Several software tools, such
as XCMS [32], MZmine [33], OpenMS [34], and MS-DIAL
[27], are the most widely used. All of them are open-source
software tools and support users to develop new algorithms
and flexible workflows to process both DDA and DIA-based
metabolomics data. In addition to generating a feature table,
new strategies are required to obtain the corresponding MS2
spectra and perform metabolite identification. However, in
DIA-based metabolomics dataset, direct connections between
precursor and product ions are missing, which presents a chal-
lenging task for data analysis. In DIA, product ions are
scanned in each cycle; hence, chromatographic ion profiles
are considered the key information to reconstruct the
precursor-product relationship. However, the co-elution and
co-fragmentation of precursor ions make the eluted
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chromatographic ion profiles complicated. In general, two
strategies were usually used to process DIA-based metabolo-
mics data: untargetedMS/MS spectral deconvolution (Fig. 2a)
and targeted extraction (Fig. 2b) including metabolite-centric
and spectrum-centric approaches. MS-DIAL, MetDIA, and
MetaboDIA are three representative tools for DIA-based
metabolomics.

In 2015, Tsugawa et al. developed the Mass Spectrometry-
Data-Independent AnaLysis software, namely, MS-DIAL [27],
for untargeted MS/MS spectral deconvolution to support
SWATH-based metabolomics. The recent version of MS-
DIAL is also applicable for AIF-based metabolomics data. In
this software tool, the acquired DIA data are first converted to
the Analysis Base File (ABF) data format. Next, the Bpeak
spotting^ method is applied to smooth chromatograms of the
precursor ions and detect peaks in m/z and RT axes. Then, the
MS/MS deconvolution algorithm, namely, MS2Dec, is used to
reconstruct the connections between precursor and product
ions. In MS2Dec algorithm, the model peaks of the targeted
precursor ion and its shoulder peaks are first extracted from
the product ion chromatograms. Then, the least-square optimi-
zation method is used for MS2 spectral deconvolution with the
model peaks and to reconstruct the pseudo MS2 spectrum.
Finally, compound identification is performed using the
deconvoluted MS2 spectra, the precursor m/z, and RT, through

comparing their similarities to the standards in the spectral li-
brary. In addition, the peak alignment, filtering, and missing
value imputation are also performed to the detectedMS1 peaks.

The deconvolution algorithm used in MS-DIAL only con-
siders the model peak of the target precursor ion and its shoul-
der peaks. This simplified model decreases the computation
complexity and has a fast deconvolution speed. However, the
co-elution of the co-fragmented product ions from different
precursor ions in the same isolation window is far more com-
plexed. Thereby, the determination of component number and
the selection of proper model peaks from the elution profiles
for the precursor and product ion chromatograms should be
carried in a more accurate way. In GC-MS, ADAP-GC soft-
ware developed by Du Lab provides a better algorithm for the
selection of model peak and enables the deconvolution of GC-
MS data accurate [35]. In this software, components are auto-
matically determined from the detected peaks using a two-step
clustering method, which takes both the apex elution time and
shape of EIC peaks into account. Each component represents a
potential compound in the analysis and the sharpest peak in
the component is selected as model peak. A linear combina-
tion of all selected model peaks is applied to each elution
profile (i.e., ion chromatogram) for deconvolution. However,
this method is only applied for GC-MS data and has not been
applied for SWATH-based metabolomics data analysis.
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relationship between the precursor and product ions; (b) targeted extraction of metabolites in a given spectral library using a metabolite-centric strategy



Another software tool, namely, MetDIA, is developed by
our group in 2016 [28].MetDIA is an R package that performs
targeted extraction of metabolites in a given spectral library
from the SWATH data using a metabolite-centric strategy.
MetDIA performs the metabolite-centric identifications in
the following steps: (1) MS1 peak detection and alignment;
(2) targeted MS1 match and extraction of both MS1 and MS2
ion chromatograms using MS2 ions in the spectral library; (3)
generation of peak groups with the extracted precursor and
product ion chromatograms, and generation of pseudo MS2
spectra; (4) metabolite-centric identification using two orthog-
onal scores, peak-peak correlation (PPC) score and spectrum-
spectrum match (SSM) score; (5) statistical analysis and re-
sults output. Specially, for metabolite identification, PPC
score is calculated by averaging the highest Pearson correla-
tion coefficient values from half of the product ions. In addi-
tion, PPC and SSM scores are averaged to generate the final
metabolic-centric identification (MCI) score for targeted me-
tabolite identification. AminimumMCI score was determined
as 0.8 for 1% false positive rate (FPR) in metabolite identifi-
cation. In this work, we constructed a consensus spectral li-
brary of 786 metabolites (765 metabolites in positive and 757
metabolites in negative modes). The validation experiments
were acquired using a mixture of 30 metabolite standards at
two concentrations, and we found thatMetDIA correctly iden-
tified more metabolites at low concentration with fewer false
positive metabolites than the conventional DDA approach.
Additionally, MetDIA also provided much more metabolite
identifications than DDA in biological samples. Both results
proved that the DIA technique is more accurate and sensitive
than the DDA technique, especially for low abundant metab-
olites. Comparing to MS-DIAL, we also found that MetDIA
detected 20–70%moremetabolites thanMS-DIAL. However,
the targeted method is restricted by the size and quality of the
spectral library. Recently, Bruderer et al. reported a guideline
to build high-quality spectral library for SWATH-based meta-
bolomics [36].

MetaboDIA, developed by Chen et al. in 2017 [29], first
built a customized consensus spectral library from a DDA-
based metabolomics dataset. The generated spectral library
consisted of compound identification units (CIUs), each la-
beled with precursor m/z value, retention time, and a consen-
sus MS2 spectrum. Then, targeted extraction ofMS2 ions was
performed in the DIA-based metabolomics dataset for accu-
rate quantification. The targeted extraction strategy is similar
to MetDIA [28], but with a large size spectral library. The
authors applied MetaboDIA to a clinical serum metabolomics
study. In this study, they built a DDA-based spectral library
containing MS2 spectra for 1829 metabolites. For metabolite
identification, putative molecular formulas were first generat-
ed by matching the accurate mass of MS1 peak against a
known database. Then, metabolite identification can be fur-
ther achieved through theMS2 spectral match with an external

standard library such asMETLIN. MetaboDIA prefers to con-
struct the consensus spectral library from the DDA data be-
cause it provides a direct precursor-product ion relationship.
Alternatively, MetaboDIA also allows users to build a spectral
library directly from the DIA data using the proteomics soft-
ware DIA-Umpire [37]. However, the ambiguity still existed
when mapping the product ions to their precursor ions.

Other tools have also been emerged for processing DIA-
based metabolomics data. For example, OpenSWATH [38],
which is a module of OpenMS software tool and designed for
proteomics, is capable to perform the DIA analysis with a
prebuilt spectral library. We believe OpenSWATH may be used
for targeted extraction in DIA-based metabolomics with some
proper modifications. Skyline, another popular tool for proteo-
mics [39], can also be utilized to perform targeted extraction
using a spectral library and support the analysis of DIA-based
metabolomics data [40]. Specific for MSE-based metabolomics,
Prenni lab has reported several publications, including the utili-
zation of the whole metabolomics dataset for reconstructing
precursor-product ion relationships [41], and the development
of an hierarchical clustering-based approach to group both MS
and MS/MS peaks (i.e., RAMClustR) [42]. Other tools provid-
ed by instrument vendors such as MasterView and Progenesis
QI can also be utilized for processing DIA-based metabolomics
data.

Quantification in SWATH-MS data analysis

Accurate metabolite quantification is also important in
untargeted metabolomics, especially for the discovery of dif-
ferential metabolites. In DDA-based metabolomics, MS1
peak areas are commonly used for relative quantification. In
DIA-based metabolomics, since both MS1 and MS2 ions are
acquired in each sampling point, it enables to select either
MS1 or MS2 ions for metabolite quantification. However,
metabolite quantification is commonly performed using the
MS1 peak area, such as MS-DIAL [27] and MetDIA [28].
Recently, MetaboDIA demonstrated the utility of MS2 ion
as a mean for relative quantification [29]. The authors first
constructed a DDA library consisting of compound identifi-
cation units (CIUs). Each CIU was labeled with precursor m/z
value, retention time, and aMS2 spectrum. Then, MetaboDIA
re-extracted either MS1 or MS2 ions for each CIU in the
library from the DIA dataset for quantification. The authors
further demonstrated that the average quantification perfor-
mances are comparable using MS1 and MS2 ion intensities.
However, in certain cases, the use ofMS2 ions provided better
quantification performances in terms of CV values, and vice
versa. In fact, a similar conclusion was also drawn by Li and
colleagues using the parallel reaction monitoring (PRM) tech-
nique [40]. They claimed that either MS1 or MS2 ions can be
used for quantification. For a total of 61 intracellular
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metabolites of interests, they evaluated the quantitative repro-
ducibility, sensitivity, and linear response range for each ion
and selected the most ideal quantification ion (either MS1 or
MS2 ion) for metabolite quantification. However, for a spe-
cific metabolite, there is no universal evaluation approach to
decide whether MS1 or MS2 ion should be selected as the
quantification ion. This presents a challenge to improve the
quantification accuracy.

Instead, targeted metabolomics has advantages for quanti-
tation featuring high sensitivity, wide dynamic range, and high
reproducibility [4, 7]. But it is limited by the number of me-
tabolites analyzed in one experiment. Recently, we developed
a workflow, namely, SWATHtoMRM [13], to combine the
broad coverage of SWATH technique for metabolic profiling
and accurate quantification of MRM technique. Specifically,
we utilized the SWATH-MS technique to profile the pooled
biological samples and acquired all MS2 spectra. Then,
SWATHtoMRM software was used to generate a large scale
MRM transitions from SWATH data. Quantitative analysis
was then performed on QqQ with MRM technique.
Combining the advantages of SWATH and MRM,
SWATHtoMRM has broad metabolites coverage together
with high quantification reproducibility, accuracy, sensitivity,
and dynamic range. We applied the strategy on the potential
metabolite biomarker discovery for colorectal cancer (CRC)
diagnosis. In CRC tissue, a total of 1303 metabolites can be
measured in one experiment and a total of 20metabolites were
selected as the potential biomarkers for cancer classification.
Finally, we validated the performance of these potential bio-
markers on human plasma samples. Similarly, Wang et al.
developed a Bpseudo targeted^ method by combining the
SWATH and MRM techniques [43]. They applied the method
to discover differential serum metabolites related to type 2
diabetes and indicated that mitochondrial dysfunction hap-
pened with the patients.

Outlook

Overall, DIA technique has been emerged as a powerful ap-
proach for untargeted metabolomics due to its capability to
acquire all MS2 spectra and the potential to achieve high
quantitative accuracy. However, the generated complex data
set for metabolomics heavily relies on sophisticated bioinfor-
matics software for data processing and metabolite identifica-
tion. Improvement of reconstructed spectral quality is imper-
ative not only for high confident metabolite annotation but
also for accurate quantification. From the technology perspec-
tive, reducing the data complexity without losing the informa-
tion is the key to enable the broad application of DIA tech-
nique in metabolomics. First, the addition of an additional
separation of precursor ions can significantly reduce the spec-
tral complexity. Currently, liquid chromatography-ion

mobility-mass spectrometry (LC-IM-MS) coupled with data-
independent acquisition method is an emerging technique to-
ward this purpose [44]. Ion mobility technology enables rapid
gas-phase separation of metabolite ions through the collisions
between ions and buffer gas under an electric field and pro-
vides an orthogonal separation to effectively reduce chemical
noise. The technique also provides CCS values to aid metab-
olite identification [45]. Moreover, the product ions eluted at
the same drift time are considered to be derived from the same
precursor ion. This principle provides an additional constrain
to facilitate the spectral devolution in the analysis of DIA-
based metabolomics data. Second, other data deconvolution
algorithms to construct the precursor and product ion relation-
ship are still needed. Currently, MS2 spectral deconvolution
such asMS-DIAL is operated by combining the selected mod-
el peaks in a linear way. However, other non-linear
deconvolution methods can possibly be employed, such as
kernel-based spectral deconvolution. Kernel-based
deconvolution is one of the non-parametric deconvolution
methods. Recently, Hong et al. reported to employ a
machine-learning method for the kernel-based component de-
termination on IMS-MS/MS data [46]. We think the same
principle is also applicable for the analysis of DIA-MS data.
In DIA data analysis, one can learn the combination of multi-
ple kernels using DIA MS2 extracted ion chromatograms
(EICs) and deconvolve the EICs to discover the true spectrum
of a certain precursor peak. In summary, DIA technology has
demonstrated its advantages and applicability in untargeted
metabolomics. With the future advancements in both technol-
ogy and data processing methods, we believe the advantages
with DIA technique will enable its broad application in
untargeted metabolomics.
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