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Abstract
Since the introduction of liquid chromatography tandem mass spectrometry in clinical laboratories, folate analysis has shifted
from microbiological or protein-binding assays to chromatographic methods. Now, it is possible to sensitively and selectively
determine several folate species in clinical samples where only a total folate content could be quantified using a microbiological
or a binding assay. Although several chromatographic methods have been developed, validated, and published, interlaboratory
variability limits the comparability of the results. In this review, we provide an overview of the latest strategies for sampling,
sample treatment, and analysis and how these may influence the final analytical result. Among the variables covered are the effect
of pH, temperature, and storage and the use of antioxidants and anticoagulants on analyte stability. In addition, we highlight the
importance of correct assay calibration and the use of (labeled) certified reference materials in order to obtain correct and
comparable results among different laboratories.
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Introduction

Within the water-soluble vitamins, the group of folates is es-
sential for the maintenance of adequate methylation potential
in an individual and is involved in the synthesis of purines and
pyrimidines.

Currently, clinical folate determination primarily depends on
the use of binding assays for the quantification of total folate in
serum samples. However, the introduction of liquid

chromatography tandem mass spectrometry (LC-MS/MS) as
a higher order method in the clinical lab allows to study the
folate status and speciationmore into depth than was previously
possible using microbiological assays (MAs) or protein-
binding assays (PBAs). This is relevant since more information
is needed for a complete understanding of the effect of genetic
polymorphisms on nutritional status and folate distributions.

The multitude of sample treatment procedures preceding
these LC-MS/MS methods hinders comparability of clinical
data across laboratories. This has proven to be the Achilles’
heel of current folate determinations in clinical samples. In
addition, the application of cut-off values, derived from MA
or PBA, on results obtained via these higher order methods
causes another major challenge.

In this review, we focus on the use of LC-MS/MS for folate
quantitation in blood, plasma, and serum, by providing a non-
exhaustive overview of methods improving the existing ana-
lytical procedures since the year 2000. The strengths and
weaknesses of these methods are evaluated and alternative
procedures are discussed to obtain an understanding of the
measurement process and related results.

Furthermore, this review elaborates on method compara-
bility and on the risk of misinterpreting folate status due to
mismatching of cut-off values and population-based data.
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Chemical properties

Folates consist of three distinct parts: a pterin moiety with a
varying oxidation state, a para-aminobenzoic acid (pABA)
entity, and a tail of repeating glutamic acid molecules bound
at the γ-position. As shown in Fig. 1, different functional
groups may be bound at either or both the 5 and 10 positions
[1]. Folates can be present in 3 oxidation states, i.e., a fully
oxidized form, known as folic acid (FA); a fully reduced
form, known as tetrahydrofolate (THF); and an intermediate
form, known as dihydrofolate (DHF). Stability of folates de-
pends on both the oxidation state and the substitution with a
methyl or formyl group at the 5 and/or 10 position. In addi-
tion, folate polyglutamylation, an important factor for both
intracellular folate retention and enzyme binding, indirectly
results in folate stabilization. Since folate polyglutamylation
favors enzyme binding, folates are protected from oxidative
degradation [2].

Although FA is the commonly used folate in supplementa-
tion and food fortification, it is 5-methyltetrahydrofolate
(5MTHF) that is the predominant species both in natural food
items and in clinical samples.

Folate metabolism

In human cells, folates take part in two different metabolic
cycles, as depicted in Fig. 2. In the methylation cycle, the
vitamin B12–dependent methionine synthase (MS) transfers
the methyl group of 5MTHF to homocysteine, resulting in
the formation of THF and methionine. The latter can be fur-
ther converted to S-adenosyl methionine (SAM), which is
involved in many different metabolic processes, including
methylation of lipids and DNA and the formation of DOPA
and myelin, the insulating material of neural tissue [5].
Disruption of the abovementioned cycle, as a result of a vita-
min B12 and/or folate deficiency, can be clinically measured as

Fig. 1 Chemical structure and
typical MS/MS fragmentation
(indicated by dotted lines) of a
number of relevant folates (a) and
chemical structure of MeFox, the
metabolically inactive
degradation product of 5MTHF
(b)
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an elevated plasma homocysteine concentration, known as
hyperhomocysteinemia. This is associated with an increased
risk for cardiovascular diseases (CVDs) [5, 6]. Folate supple-
mentation is the method of choice to treat hyperhomocystei-
nemia. Hyperhomocysteinemia has also been associated with
an increased risk for neural diseases including dementia and
Alzheimer’s disease [7]. Best established is undoubtedly the
profound influence of folate status on the prevalence of neural
tube defects (NTDs). During early pregnancy, a low folate
status can lead to failure of the neural tube to close in the
developing fetus, resulting—depending on the severity—in
disability or even death [8].

Secondly, 5,10-methylenetetrahydrofolate and 10-
formyltetrahydrofolate (5,10CH2THF and 10FoTHF) take
part in the de novo synthesis of pyrimidines and purines, re-
spectively. Especially the methylation of uracil to thymidine is
strongly influenced by folate status. Folate deficiency has for
instance been implicated in uracil incorporation in DNA, lead-
ing to chromosomal damage [9]. In addition, severe folate
deficiency might lead to megaloblastic anemia, the presence
of enlarged red blood cells in the bloodstream, since cell rep-
lication is inhibited due to the impairment of DNA synthesis.

Megaloblastic anemia is also used as an indicator for vitamin
B12 deficiency. The use of FA as a folate supplement is prob-
lematic, since the presence of FA in the bloodstream leads to a
bypass of the methionine synthase enzyme. Although this
allows DNA replication to be maintained, alleviating megalo-
blastic anemia, the formation of methionine is still blocked,
potentially leading to neural damage [10].

In general, the assessment of the clinical folate status does
not involve determination of folate polyglutamate derivatives,
since only folate monoglutamates are present in plasma and
serum. However, in cells (including RBCs), glutamate chain
elongation is responsible for folate accumulation [2, 11–13].
Althoughmethods do exist for distinguishing individual folate
polyglutamate species [14], the lack of pure reference stan-
dards limits the use of these methods for true quantitative
folate determination in clinical matrices.

Folate status

Poor folate status is primarily caused by an inadequate intake of
sources rich in folates such as legumes, green leafy vegetables,
fruits, and fortified cereals [15]. In addition, food preparation,

Fig. 2 Cytosolic folate metabolism; 5,10CH+THF, 5,10-methenylTHF;
cSHMT, cytoplasmic serine hydroxymethyltransferase; DHFR,
dihydrofolate reductase; 5FiTHF, 5-formiminoTHF; 10FoFA, 10-
formylFA; 5FoTHF, 5-formylTHF; FTCT, glycine formiminotransferase/
formimidoyltetrahydrofolate cyclodeaminase and glutamate
formiminotransferase/formimidoyltetrahydrofolate cyclodeaminase;
FTHFS, 10-formyltetrahydrofolate synthetase; hmTHF, 4α-hydroxy-5-

methylTHF; MeFox, pyrazino-s-triazine derivative of hmTHF; 5MTHF,
5-methylTHF; MS, vitamin B12–dependent methionine synthase;
MTHFC, methenyltetrahydrofolate cyclohydrolase; MTHFD,
methenyltetrahydrofolate dehydrogenase; MTHFR, methylenetetrahydro-
folate reductase; SAHH, S-adenosyl-L-homocysteine hydrolase; SMAT,
methionine adenosyltransferase; THF, tetrahydrofolate; TS, thymidylate
synthase [3, 4]
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such as boiling, might cause a further decrease of the nutritional
value of food products. The recommended daily allowance
(RDA) for adults is 400 μg/day. However, folate requirement
increases during periods of growth, development, and repro-
duction, such as pregnancy and lactation [15]. Therefore, sup-
plementation with folic acid is recommended. Several diseases,
such as chronic disease and some cancers, may also affect folate
status due to the disturbance of folate absorption. The use of
certain medicines may have an impact as well. Methotrexate,
used for the treatment of autoimmune and inflammatory condi-
tions, and trimethoprim, used for bacterial infections, are folate
antagonists. Inducers of metabolic enzyme activity, such as
phenytoin and phenobarbital, may cause folate depletion due
to the enhancement of folate degradation [16]. Another impor-
tant condition, influencing folate status, is chronic alcoholism.
Alcohol acts via several mechanisms: malnutrition, inhibition
of folate transporters, increase of folate degradation due to en-
zyme induction, and increase of urinary excretion, resulting in
folate depletion [17]. Last, given the complexity of the folate
pathway and the numerous enzymes involved, it is not surpris-
ing that a link has been found between several genetic poly-
morphisms and folate status. The most studied is a single nu-
cleotide polymorphism (SNP) in themethylene tetrahydrofolate
reductase gene at nucleotide 677 (MTHFR 677 C>T), changing
an alanine to a valine, which results in a thermolabile and less-
efficient enzyme [18]. This SNP is very rare in the African
population but approximately 10% of Caucasians and 20% of
Asians are homozygous for this functional polymorphism [19].
While intracellular folates in 677C homozygotes and in hetero-
zygotes mostly consist of 5MTHF, 677T homozygotes have a
much lower fraction of 5MTHF and are at higher risk for low
folate status, leading to hyperhomocysteinemia, which is asso-
ciated with an increased risk of CVDs, and posing a higher risk
for NTDs. Additionally, other polymorphisms have been de-
scribed that may influence folate status. As described by
DeVos et al. [20], SNPs can occur in nearly all metabolically
relevant enzymes such as folylpolyglutamate synthase (FPGS)
and gamma-glutamylhydrolase (GGH); enzymes governing
polyglutamylation and hydrolysis, respectively; andmethionine
synthase (MS), responsible for demethylation of 5MTHF in
order to increase affinity for FPGS and folate hydrolase
(FOLH1), which hydrolyses polyglutamated food folates in
the brush border membrane of the jejunum before absorption.
Folate carriers such as proton-coupled folate transporter
(PCFT), which absorbs folate monoglutamates from the gut,
and reduced folate carrier (RFC), responsible for the uptake of
circulating folates into tissues, are subject to polymorphic var-
iations as well [20]. However, not all polymorphisms have a
significant influence on the intracellular folate profile and/or
concentration. Ideally, a method for the analysis of folates in
plasma or serum should be able to discern differences in con-
centrations of all relevant folate species, including the degree of
polyglutamylation in RBCs.

Cut-off values for folate status

In 2015, the World Health Organization (WHO) released
an updated guideline on the use of serum (or plasma)
folate and red blood cell folate concentrations to assess
the folate status in different populations [21]. Such an
assessment is useful to monitor trends in folate status
and to evaluate the impact of public health interventions.
A quantitative value for an adequate folate status is not
easily determined since this depends on the metabolic
indicator used to define the cut-off value. Since the
1970s, the prevalence of megaloblastic anemia, a hema-
tological indicator of folate deficiency, was used to cat-
egorize patients with various folate concentrations.
Patients with serum or plasma folate concentrations be-
low 6.8, between 6.8 and 13.4, between 13.5 and 45.3,
or above 45.3 nmol/l were respectively categorized as
deficient, possibly deficient, normal, and elevated. To
assess long-term folate status, a cut-off value of
226.5 nmol/l (derived via a microbiological assay) in
RBCs was used to indicate folate deficient levels [22,
23]. In 2005, the elevation of plasma homocysteine con-
centrations was chosen as a marker for folate deficiency,
based on the National Health and Nutrition Examination
Survey (NHANES) III data. This population survey in-
vestigated the effect of dietary intake on folate status and
related clinical parameters and health outcomes. The cut-
off levels indicating folate deficiency (i.e., the folate con-
centrations below which homocysteine concentrations
started to rise) were set at 10 and 340 nmol/l (values
derived via a radioprotein-binding assay) for serum
(plasma) and RBCs, respectively [24, 25]. As folate re-
quirements are increased during pregnancy and lactation,
a 2015 WHO guideline for women of reproductive age
recommends in this population a RBC folate concentra-
tion above 906 nmol/l (derived with the use of a micro-
biological assay) to achieve the greatest reduction of
NTD risk [26].

The use of convenient cut-offs is essential to correctly
assess folate status. Recently, Pfeiffer et al. [27] made
clear that the application of inappropriate cut-offs leads
to misinterpretation of folate status in the USA. In their
study, they demonstrated that the mismatching of cut-offs
derived from one assay (e.g., microbiological assay) with
population-based data from another assay (e.g.,
radioprotein-binding assay) risks misjudgment of the nu-
tritional status. When the comparability between different
assays is known, assay-adjusted cut-offs can be calculat-
ed. However, this information is often missing.
Therefore, the authors encourage to invest in comprehen-
sive method comparison studies for the derivation of
intermethod conversion factors in order to establish
assay-adjusted cut-offs.
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The measurement of folates in clinical
matrices

Plasma or serum folate measurement is widely applied in clin-
ical laboratories and, to this day, provides clinicians with an
indication of the folate status. However, these measurements
are affected by recent intake changes. Therefore, this method
relies on an adequate (overnight) fasting period to assure that
steady-state folate concentrations are measured, since only
these correlate with folate stores elsewhere in the body.
Absorption following ingestion of chemically pure 5MTHF
is rapid, with peak plasma concentrations readily occurring
after 1 h. Food 5MTHF is absorbed more slowly, with peak
plasma concentrations after only 2 h [28]. Following con-
sumption of oxidized folate, i.e., FA, peak plasma concentra-
tions are reached after only 3 h because a reduction by DHF
reductase (DHFR) is required prior to release in the portal
circulation. Alternatively, RBC folate concentrations provide
an average folate concentration over the lifetime of these cells
as folates accumulate in these cells during erythropoiesis and
remain present there as polyglutamate derivatives [2].

The relevant folate species are 5MTHF, THF, DHF,
5,10CH2THF, and 10FoTHF [29]. However, as a result of folate
instability and interconversions, not all of these can be quanti-
fied directly. Moreover, oxidation of 5MTHF leads to the for-
mation of 4′-hydroxy-5-methyltetrahydrofolate (hmTHF),

which structurally rearranges to a pyrazino-s-triazine derivative
known as MeFox. This folate species, of which the chemical
structure is presented in Fig. 1b, is metabolically inactive.
However, since it may be formed during sample treatment or
storage andmay interferewith the determination of other folates,
it is of interest tomeasure this compound as well when aiming at
an accurate folate profiling of a sample [30]. As a summary,
Fig. 3 depicts the degradation and interconversion pathways of
the different folate vitamers under different conditions.

Sampling strategy

Samples for clinical folate analysis are typically blood, plas-
ma, or serum derived thereof, obtained following venipunc-
ture. Table 1 shows that recent methodologies aim to limit the
burden on the patient by the collection of microsamples, ob-
tained following a finger or heel prick. Already in 1999,
O’Broin and Gunter [55] reported on the use of a MA for
screening the folate status in neonates using dried blood spots.
In 2015, Kopp and Rychlik [48] published a stable isotope
dilution assay using LC-MS/MS to determine 5MTHF in
dried blood and serum spots. Hereby, aliquots of blood, plas-
ma, or serum were spotted on paper pretreated with ascorbic
acid. The folates were extracted from 3-mm punches by son-
ication in a buffer containing 2-(N-morpholino)-
ethanesulfonic acid, Triton X-100, and dithiothreitol (DTT).

Fig. 3 Folate degradation and interconversion pathways under different
conditions; 5MTHF, 5-methylTHF; 5MDHF, 5-methylDHF; 5FoTHF, 5-
formylTHF; 10FoFA, 10-formylFA; 10FoTHF, 10-formylTHF;
10FoDHF, 10-formylDHF; 5,10CH+THF, 5,10-methenylTHF;

5,10CH2THF, 5,10-methyleneTHF; DHF, dihydrofolate; FA, folic acid;
hmTHF, 4α-hydroxy-5-methylTHF; MeFox, pyrazino-s-triazine deriva-
tive of hmTHF; pABG, para-aminobenzoylglutamate; THF, tetrahydro-
folate [1, 31–33]
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Tomeasure total folate, whole blood spot extracts were treated
with rat serum and chicken pancreas GGH. Plasma folates
could be determined from whole blood spots by first
performing heat denaturation to abolish endogenous GGH
activity. These authors found that 5MTHF could be deter-
mined at LOD’s of 1.5, 2.2, and 9.1 nM for serum, plasma,
and whole blood, respectively, and that spotted samples were
stable for 11 days when kept desiccated at − 20 °C. During
storage and extraction, the presence of labeled internal stan-
dards, added after spotting, compensated for the degradation
of the folates present. Pretreating the paper with ascorbic acid
did not provide adequate stabilization of THF, which conse-
quently could not be quantified [48]. For longer storage, lower
storage temperatures (− 80 °C) are required, as shown by
Zimmerman et al. [56].

More recently, the same research group published the de-
velopment and application of volumetric absorptive
microsampling (VAMS) as an alternative microsampling strat-
egy for whole blood 5MTHF assessment [53]. With this tech-
nique, a fixed volume of blood is collected on an absorbent tip
rather than on filter paper. This approach can offer a solution
to the well-known hematocrit (Hct) effect in DBS analysis.
Nevertheless, we and others observed that Hct may still influ-
ence analyte recovery from VAMS [57–59]. Although the
authors did not assess the impact of Hct on extraction efficien-
cy, they did acknowledge the necessity of evaluating this pa-
rameter. Despite a fivefold reduction in sample volume com-
pared to DBS (10 μl vs. 50 μl), a comparable LOD of 9 nM
could be achieved when using VAMS. Remarkably, in contrast
to their DBS methodology, where filter paper was pretreated
with ascorbic acid, VAMS were used without pretreatment.
The authors hypothesize that this may be owing to the influence
of the chemical composition of the absorptive matrix on the
degree of hemolysis. Samples were stable during 2.5-h drying
at RT. Once dried, samples could be kept for 3 weeks at − 20 °C
without any significant analyte degradation.

In conclusion, the abovementioned dried matrix sampling
techniques have been reported to offer an important advantage
for follow-up by increasing folate stability [48, 53, 56].
Furthermore, the possibility for automation, the easier sample
storage and handling, and no need for medical surveillance
during sampling are important improvements in the field of
clinical folate determination, especially in remote regions.

Sample preparation

Sample preparation is often laborious and time-consuming,
whereby analytes are exposed to elevated temperatures, light,
oxidants, pH, etc. Although isotope-labeled internal standards
are included in LC-MS/MS methods, accounting for folate
losses, their utility may be lost when too little internal standard
is left following sample preparation. Therefore, it is crucial to
consider conditions that support the stabilization of folates

during each step of the analysis. Figure 3 represents the effects
of different conditions, applied during sample preparation, on
folate stability.

Anticoagulants

Ethylenediamine tetraacetic acid (EDTA) is the most used
anticoagulant to generate plasma as well as for whole blood
folate analysis. However, Hannisdal et al. [60] investigated the
influence of anticoagulants on folate stability during storage at
room temperature and, strikingly, found a significant impact
of EDTA treatment on the stability of 5MTHF. During the first
hours of storage, a significant oxidation of this folate to
MeFox was observed. Given its biological inactivity, this
compound is not measured using a MA. However, the total
folate content (including MeFox), measured via either LC-
MS/MS or GC-MS analysis of pABA-glutamate(s), is not
influenced by this oxidation reaction. In a study investigating
the stability of fat- and water-soluble vitamins during long-
term storage at − 20 °C, a similar pattern was observed for
EDTA plasma samples analyzed by a competitive binding
assay [61]. Based on the data obtained, storage was consid-
ered acceptable up to 6 months, provided that samples were
kept at − 20 °C. Serum samples as well as citrate- or heparin-
treated plasma samples showed less oxidation and should
therefore be preferred when long-term storage is foreseen
[60]. However, depending on the anticoagulant used, mea-
sured plasma folate concentrations may differ to a limited
extent [50]. Also the folate concentration in erythrocytes was
found to be influenced by the anticoagulant. O’Broin et al.
[62] found substantial losses of folate activity (assessed by
MA) in the presence of EDTA during storage at room temper-
ature, which were observed to a lesser extent in heparinized
samples. While heparinization may improve sample stability
upon storage, fresh heparinized samples readily had a slightly
lower (3.61%) folate activity as compared to fresh EDTA-
treated samples [62].

Antioxidants

Erythrocyte folate analysis is commonly performed by tenfold
dilution of whole blood with a 1% L-ascorbic acid solution in
deionized water (pH = ± 3). The use of an antioxidant during
cell lysis ensures immediate protection against oxidative dam-
age of intracellular folates. Also when an alternative lysis
procedure is performed, for instance using a selective
ammonia-based buffer, the addition of L-ascorbic acid is re-
quired to protect the intracellular folates against degradation
[13]. Since the utilized lysis procedure might differ between
labs, it can be a possible source of variability between
methods, due to incomplete lysis. This influence of different
lysis procedures was demonstrated by O’Broin et al. [63],
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whereby the pH of the 1% L-ascorbic acid solution affected
hemolysis and therefore the final analytical result.

Addition of a thiol such as DTT or 2-mercaptoethanol is
required to capture the formaldehyde released by degradation
of ascorbic acid at elevated temperature. This is relevant since
free formaldehyde causes the methylation of THF to 5,10-
methenyltetrahydrofolate (5,10CH+THF) and, as such, influ-
ences the measured folate distribution [1].

Though performed in a food matrix, Patring et al. [64]
investigated the effect of different reducing agents on the sta-
bility of folates during sample preparation. The addition of 2-
mercaptoethanol, dithiothreitol, 2,3-dimercapto-1-propanol,
and 2-thiobarbituric acid in combination with sodium ascor-
bate was evaluated for different experimental conditions. The
choice of antioxidant had an effect on the measurement of
THF following various sample treatment procedures includ-
ing heat treatment, freeze-thawing, and frozen storage. While
2,3-dimercapto-1-propanol was most effective, these authors
suggested to evaluate the stability of all folates for each spe-
cific sample treatment procedure, a suggestion we concur.

pH

Folates are ionogenic and amphoteric compounds. They un-
dergo changes in ionic forms as a function of the pH, which
explains the influence of pH on the stability during analysis
(Fig. 3). De Brouwer et al. [1] investigated the influence of pH
on folate recovery following 2 h of incubation in a phosphate
buffer with a pH ranging between 4 and 8. While most folates
proved stable at the different pH levels, some degradation was
observed for THF at acidic pH. Both DHF and 5,10CH2THF
are extremely sensitive to incubation at a pH lower than 8.
Though 5,10CH2THF is an essential intermediate for folate
metabolism in living cells, this compound itself is difficult to
determine due to its limited stability at physiological pH [31,
65]. This property implies that 5,10CH2THF, as well as DHF,
cannot be measured accurately using the commonly applied
sample preparation techniques [1, 54, 65]. Horne [66] showed
that extraction of liver tissue at high pH (> 9.5) results in
stability of 5,10CH2THF, despite the absence of antioxidants.
However, other folates (e.g., THF) require antioxidants (e.g.,
ascorbic acid) for stabilization at this high pH. 5,10CH2THF
can then be determined indirectly via subsequent borohydride
reduction to 5MTHF, allowing the differential measurement
of 5,10CH2THF. Likewise, 10-FoTHF, a possible intermedi-
ary during the purine biosynthesis, cannot be detected when
acidic conditions are employed, since it converts to
5,10CH+THF [1]. However, very recently, Schittmayer et al.
[67] did develop a method for the determination of all natu-
rally occurring cellular folate species. Derivatization with
heavy isotope-labeled reagents resulted in the stabilization of
folate derivatives. Therefore, the method allows discrimina-
tion of the structural isomers 5-FoTHF and 10-FoTHF. In

addition, this method permits the use of unlabeled standards,
derivatized with unlabeled reagents, as internal standard rather
than the costly isotope-labeled compounds. Both mono- and
polyglutamylation state of folates are quantified, hereby
avoiding lengthy incubation steps and gaining valuable infor-
mation about the cellular regulation of the folate pathway.

Akhtar et al. [32] studied the influence of light on the sta-
bility of FA in aqueous solutions and found that a high pH,
exceeding 10.0, was optimal to minimize degradation (Fig. 3).
However, since most sample treatment steps are performed at
or below neutral pH, sample treatment is best performed under
subdued light.

Enzyme treatment

Theoretically, no enzyme treatment is necessary for the anal-
ysis of folates in serum or plasma samples: while intracellular
folate retention depends on polyglutamylation, only
monoglutamates have been observed in plasma. This is owing
to the presence of GGH in plasma, an exopeptidase that
deconjugates any polyglutamate that would be released in
plasma following cell lysis [30]. When measuring folates in
whole blood lysate, monoglutamates are recovered by the en-
dogenous GGH, present within the plasma portion of whole
blood. However, this requires incubation times for up to 4 h at
37 °C prior to analysis [68]. These lengthy incubation periods
risk degradation of the labile folates. When the RBC folate
concentration is directly determined, the addition of exoge-
nous GGH (rat serum or chicken pancreas) is required.
Recently, Stamm et al. [69] demonstrated that the additional
use of a commercially available recombinant exogenous GGH
would lead to a minimization of the incubation time, reducing
degradative losses of folate vitamers.

Large quantities of proteins capable of binding folates,
most importantly folate-binding proteins (FBP), are found in
clinical samples, rendering folates unavailable for analysis.
Total folate measurement requires release of these bound fo-
lates via protease treatment or via gentle acidification, since
both the specific (FBP) and non-specific binding capacities
are negligible below pH 4 [70].

Sample storage

The optimal storage of a clinical sample is critical to obtain a
trustworthy result. Since folates are known to be relatively
unstable, different conditions, to ensure both short- and
long-term stability, need to be evaluated. First, short-term stor-
age includes time of transport (whole blood), serum-clot con-
tact time, and the time until samples are stored for a longer
period (serum/plasma). As samples may be transported from
distant clinics for analysis, whole blood folate stability should
be evaluated. Van Eijsden et al. [71] reported 24-h folate sta-
bility in EDTA-anticoagulated blood at room temperature.
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Next, Zhang et al. [72] were the first to investigate the effect of
delayed whole blood processing (or serum-clot contact time)
on folate stability. They found acceptable stability for total
folate after 1 day of contact time at 32 °C. However, this
was not confirmed by Drammeh et al. [73], who reported a
significant decrease in total folate level after 1 day at 32 °C.
Fazili et al. [74] evaluated this effect of processing delay dur-
ing 3 days at 32 °C, whereby they differentiated between the
effect on total folate and the effect on the different folate
forms. Similar to Drammeh et al., significant decreases were
observed in total folate level, which was mainly caused by a
decrease in 5MTHF, while FA concentrations remained stable.
Those same two research groups also investigated the influ-
ence of delayed freezing of serum samples on folate stability.
Both observed significant decreases in total folate levels after
longer delays in freezing (7–14 days) [73, 74].

Second, epidemiological studies often involve long storage
times between sample collection and laboratory analysis.
Therefore, several research groups investigated long-term folate
stability in serum samples. Hannisdal et al. [75] measured folate
levels in serum samples stored at − 25 °C for up to 29 years.
Concentrations were derived using 3 different assays: (1) an LC-
MS/MS assay, measuring the different folate species; (2) a mi-
crobiological assay, measuring microbiologically active folate;
and (3) an LC-MS/MS assay, assessing folate status as p-
aminobenzoylglutamate equivalents. The authors observed that
folate is substantially degraded in serum frozen for years.
However, they also noted that most of the folate loss was recov-
ered as p-aminobenzoylglutamate equivalents. Therefore, this
latter assay is suggested as the method of choice for the analysis
of long-term stored samples. Both Jansen et al. [76] and Fazili
et al. [74] confirmed this folate instability in serum samples
stored at − 20 °C. They observed that storage at − 70 °C is nec-
essary to obtain reliable results from samples stored for 1 year.

On the other hand, sometimes, samples have to be
reanalyzed due to an analysis which did not meet the
predetermined criteria. Therefore, the evaluation of folate sta-
bility during repeated freeze/thaw cycles is of great impor-
tance. Fazili et al. [74] found that folates (total, 5MTHF, and
FA) are fairly stable when exposed to a limited number of
freeze/thaw cycles. However, stability of the most labile folate
form THF was not discussed.

Last, the group of Pfeiffer recently investigated the influ-
ence of ascorbic acid (5 g/L), added to serum, during repeated
freeze/thaw cycles (within 8 months) and long-term storage
(≥ 4 years at − 70 °C), on serum folate stability [77]. The
authors showed that the presence of the antioxidant may even
protect the most labile folate form THF during the repeat
analysis from a same vial within an 8-month period. In addi-
tion, all serum folate forms showed acceptable stability during
at least 4 years of storage at − 70 °C. Therefore, the addition of
ascorbic acid to serum is highly recommended to ensure long-
term folate stability.

LC-MS/MS analysis

Multiple chromatographic methods have been developed for
the measurement of 5MTHF and other folate species. The
availability of LC-MS(/MS) equipment has fueled the devel-
opment of higher order assays to measure folates in both se-
rum or plasma and RBCs. Below, we focus on the most recent
developments for clinical folate analysis (represented in
Table 1). For an in-depth overview of other methods, we refer
to Pfeiffer et al. [78].

GC-MS-based methods rely on the cleavage of the 9–10
bond between the pterin and the pABA-Glu moiety followed
by derivatization (Fig. 1). Though these methods allow for a
total folate measurement, they do not allow for individual
folate speciation and rely on a quantitative (i.e., complete
and selective) folate cleavage.

While LC-MS/MS methods attempt to quantify the differ-
ent folate species as they occur at the time of phlebotomy,
some methods explicitly interconvert some folate species.
Both van Haandel et al. [12] and Huang et al. [40] performed
acidification of the final sample to determine 10FoTHF and
5FoTHF as 5,10CH+THF (Fig. 3). While at a pH below 10,
almost instantaneous conversion of 10FoTHF to
5,10CH+THF will occur, it is possible to determine 5FoTHF
and 5,10CH+THF separately (Table 1) (cfr. Kiekens et al.,
Fazili and Pfeiffer, Nandania et al., Smith et al., Kirsch et al.,
and Fazili et al.) [13, 44, 45, 50, 51, 54].

Sample cleanup

To minimize the presence of matrix compounds and assure
method selectivity, sample cleanup is performed prior to LC-
MS/MS analysis. This can range from simple protein precip-
itation to combined affinity and solid-phase extraction (SPE)
(Table 1). As with any sample cleanup procedure, simplicity
and throughput need to be balanced against the sensitivity and
robustness that will eventually be required.

While extensive sample treatment is often preferred to ob-
tain purified extracts, some methods simply use protein pre-
cipitation with an organic solvent, like methanol or acetoni-
trile, followed by evaporation to dryness and reconstitution in
mobile phase (Table 1). For serum or plasma, this approach
seems feasible since these are relatively clean matrices. For
RBCs, however, either SPE alone or SPE combined with af-
finity extraction is needed.

Given its selectivity, FBP is ideally suited to extract folates
from complex matrices. While FBP is now commercially
available in purified form, it can also be obtained from bovine
milk. For affinity extraction procedures, FBP is bound to aga-
rose beads and stored refrigerated in the presence of sodium
azide as a preservative [35, 39]. Sample preparation is per-
formed in a column configuration, with elution under acidic
conditions since FBP shows little folate retention at a pH
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below 4. The fact that FBP does not have equal affinity for all
folate species necessitates a substantial excess of binding sites
to quantitatively retain all folates [79]. The number of samples
which can be purified using one column is limited due to
degradation of and irreversible binding to the protein. As such,
there is a gradual decrease of binding capacity, which has to be
controlled to avoid erroneous sample handling [80].

Recently developed methods have shown the value of SPE.
Especially for the analysis of numerous samples, SPE is pre-
ferred over FBP columns. For low throughputs, manual
column–format SPE can be used, while for higher through-
puts, the different SPE steps can be automated and/or 96-well
formats can be used [45]. Hence, samples can be run in par-
allel, limiting total analysis time, and therefore improving fo-
late stability duringmass screenings. Depending on the charge
state of folates in solution, both reversed phase and ion ex-
change sorbents can be used to separate folates from matrix
constituents. The former being used more frequently, since
serum samples are commonly diluted in 1% L-ascorbic acid
solution, which promotes the protonation of α- and γ-
glutamate carboxyl groups. Phenyl and octadecyl sorbents
are most frequently used and elution is often performed using
a small percentage of organic solvent, either methanol or ace-
tonitrile, acidified to correspond to the mobile phase. In con-
trast, Monch et al. [43] published on the extraction of blood
folates using 2-(N-morpholino)ethanesulfonic acid buffer at
pH 5. At these conditions, the carboxyl groups are ionized,
necessitating the use of an anion exchange sorbent for sample
cleanup. Additionally, this setup enabled the authors to quan-
t i fy fo l a t e s a s we l l a s the i r ca t abo l i t e s , pa ra -
a m i n o b e n z o y l g l u t a m a t e , a n d a c e t y l - p a r a -
aminobenzoyglutamate. Further, as already discussed before,
the acidic pH of both elution solvent and mobile phase may
influence folate stability. In addition, it must be considered
that high concentrations of salt, used for elution, may interfere
with compound ionization when using LC-MS/MS. Finally,
samples can be concentrated prior to injection by evaporation
or by using a vacuum system, followed by reconstitution in
the initial mobile phase or in another appropriate solvent [13,
34, 35, 38, 39, 43, 44, 51, 52, 60, 81–83].

Chromatographic separation

Both standard HPLC and UHPLC have been applied for the
separation of folate species in clinical samples. Using tradi-
tional reversed-phase columns, typically C8 or C18, folate spe-
cies can relatively easily be separated. MeFox, despite being
an oxidation product of 5MTHF, is also worth measuring as it
allows insight into possible oxidative stress the sample was
subjected to during, e.g., sample storage or treatment.
However, care should be taken to differentiate MeFox from
its isobar 5FoTHF, which requires optimization of the chro-
matography [42, 82]. Alternatively, when using MS/MS-

based detection, it is possible to distinguish both folate species
by selecting certain product ions (see BDetection
methodology^), although maximal sensitivity may not be
achieved this way [82].

Separation is mostly achieved by applying gradient elution
with acidic mobile phases containing either acetic or formic acid
in ultrapure water and methanol, acetonitrile, or a combination
of both. The use of salt buffers is not common and mainly
reserved for hydrophilic interaction liquid chromatography
(HILIC) [34]. In 2006, Patring et al. [84] investigated the elution
pattern of folates when varying the stationary phase and the
mobile phase constituents. The ionization of the α- (pKa =
3.1–3.5) and γ- (pKa = 4.6–4.8) carboxyl groups of the gluta-
mate part of the folate molecule was found to influence the
retention behavior. A pH< 3 is needed to completely suppress
the ionization of both carboxyl groups. At higher pH (> 3), the
retention of the folates decreases to a varying extent depending
on the column chemistry. This also negatively impacts peak
symmetry and peak width. This effect is also noticed when the
amount of organic solvent at the time of injection is increased.
High retention of folates was achieved on columns with either
polar endcapping or with a high carbon content. When volatile
modifiers are used, i.e., either acetic or formic acid, retention is
generally increased while peak shape deteriorates, though this
effect was most pronounced using polar endcapped columns.

Detection methodology

Both ultraviolet, fluorescence [85, 86], and electrochemical
[87] detection have been applied for folate analysis in food
items. Reduced folates show strong fluorescence (290–
295 nm→ 356 nm), making this type of detection highly ef-
ficient and specific for the detection of THF, 5MTHF, and
5FoTHF in food matrices and for quality control purposes.
Typical methods using fluorescence detection for 5MTHF in
food items have an LOD of 20 to 40 fmol on column [85, 86].
Oxidized folates do not fluoresce but all folates can be detect-
ed using a UV detector (± 280 nm), albeit at the expense of
sensitivity, which drops with a factor 50 to 100 compared to
fluorescence detection [87]. With detection limits down to 0.2
to 0.4 fmol on column, recent LC-MS/MS methods for the
determination of folates in plasma or serum are 50 to 100
times more sensitive than fluorescence detection, allowing
quantitation in ever-decreasing volumes (microsamples cfr.
[48, 53]). As such, the use of fluorescence detection for clin-
ical folate analysis would be limited to the quantification of
RBC or whole blood folates due to the higher folate concen-
tration in these samples. UVand electrochemical detection are
not able to match the sensitivity of fluorescence detection and
cannot be used for clinical samples as they would require vast
sample volumes [87].

For clinical analyses, MS (and more particularly MS/MS)
is most used as detection technique hyphenated with liquid
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chromatography. Folates, containing both alkaline (pterin
moiety) and acidic (glutamate moiety) sites, can be positively
and negatively charged in the pH range of mobile phases
containing volatile modifiers such as acetic and formic acid.
As such, MS systems can be operated both in positive and in
negative mode. Electrospray ionization (ESI) is most com-
monly used as an interface system to vaporize the mobile
phase. To achieve high ionization efficiencies, a modifier
(i.e. formic or acetic acid) is commonly used and is included
in either themobile phase (cfr. BChromatographic separation^)
or infused post-column [83]. In general, folates show predom-
inant single ionization in either negative or positive mode,
with the latter being used most. However, double ionization
can occur, though more in positive than in negative mode. As
such, singly charged ions are typically used as Q1 ions
(MW + 1 or MW-1) during MS/MS analysis. Generally, 2
fragment ions are monitored, as this allows to add the ion ratio
as an extra identification criterion. In positive mode, the most
abundant fragment ion, used as quantifier, generally consists
of the ionized remainder (pterin-pABA+•), following neutral
loss of the glutamic acid• moiety [51, 88]. 5,10CH+THF dif-
fers from the other folates in that the glutamate moiety is not
split off due to the withdrawal of electrons from the nitrogen
atom at the 10 position and the resulting influence on ion
stabilization [51]. During fragmentation, the formyl groups
bound to the nitrogen at the 5 or 10 position have a tendency
to split off. This phenomenon, the expulsion of CO, does not
influence the charge of the remaining ion and has little influ-
ence on the signal intensity of the ion which is monitored [89].
The second fragment ion is typically formed after cleavage of
the bond between position 6 and 9 or 9 and 10, yielding ions
of 166 (representing the reduced pterin cation), 176 or 194 Da
(the latter two resulting from loss of both Glu and pABA). For
5,10CH+THF, the second fragment ion that is typically
followed is formed after the loss of glutamate–C=O [90].
The quantitative LC-MS/MS determination of 5FoTHF and
MeFox is complicated by their identical molecular mass of
474 amu and the fact that both are predominantly fragmented
to a fragment ion of 327 amu. Both compounds also have a
tendency to coelute. Though baseline resolution is achievable,
the less-abundant ions of 284 and 299 amu, specific for
MeFox and 5FoTHF, respectively, can be used as quantifiers
[82].

Method comparability

Method comparability has remained a substantial issue hin-
dering folate analysis because of the influence of several pro-
cedural aspects such as the use of calibrators, strains of micro-
organisms, and antioxidants. Indeed, even when the same an-
alytical technique is applied, folate results may show poor
comparability across laboratories [91, 92]; e.g., a recent re-
view of the performance of different assays in relation to a

comparison assay (the CDC MA, calibrated with 5MTHF)
showed that different methods within the same assay type
can generate very different results relative to a comparison
assay. To this day, the MA, despite its limitations, is still con-
sidered the gold standard for folate measurement. As such, the
performance of alternative methods such as PBA and LC-MS/
MS assays is measured against this MA [93]. For serum or
plasma, the total folate results obtained using the MA (cali-
brated with 5MTHF) and LC-MS/MS analysis were found to
be in good agreement, although slightly higher concentrations
were found with LC-MS/MS. Results obtained using a PBA
(calibrated with FA) were much (i.e., close to 30%) lower than
those of either the MA or the LC-MS/MS assay. This is likely
due to a lower recovery of certain folate species, among which
5MTHF, in the PBA. As such, results depend on whether
5MTHF or FA is used as a calibrator. For RBC folates, a good
agreement was found between results obtained by MA and
those obtained by LC-MS/MS, although here total folates de-
termined by LC-MS/MS were 10% lower than those scored
by MA. Again, a substantial difference was seen between the
results obtained by MA and PBA, the results in the latter being
45% lower. Importantly, this differencewas genotype dependent,
with as an underlying cause a differential recovery of different
folate species [94]. As such, theMAwasmaintained as reference
method for whole blood or RBC folate measurement [93].

Assay calibration

One of the major issues complicating folate analysis is the
comparability of analytical results between labs throughout
the world. Therefore, correct calibration of an assay is of par-
amount importance to obtain correct results.

Perhaps the most important part of an assay is its calibra-
tion using pure reference standards. These can be obtained
f r om va r i ou s sou r c e s , s u ch a s Me r ck Ep rova
(Schaffenhausen, Switzerland), Schircks Laboratories (Jona,
Switzerland), or Sigma-Aldrich (Saint-Louis, MO, USA). As
mentioned above, several authors have indicated that the cal-
ibrator choice can strongly influence analytical results [38,
95]. The actual panel of folates that is measuredwill determine
the total folate concentration measured by LC-MS/MS, as the
latter is derived from the sum of the individual folate species.
On the other hand, the composition of the panel of folates that
can be reliably quantified depends on the availability of pure
reference standards.

While the use of MS allows to differentiate individual fo-
late species, the technique does suffer from matrix-associated
effects, including differences between individual samples
influencing the measured signal. For this reason, isotopically
labeled internal standards are commonly used for LC-MS/MS
folate analysis, so-called stable isotope dilution assays, to
compensate for the influence of the matrix on recovery and
ionization efficiency. For this purpose, isotopologues of the
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parent compounds are used in which either carbon or hydro-
gen atoms are replaced with 13C or 2H atoms. A mass differ-
ence of 4 to 5 amu ensures that the analyte and the IS can be
monitored separately, given the presence of natural
isotopologues in samples (up to + 2 amu) [96]. While deuter-
ated ISs are easier to manufacture, deuterium ions from the IS
and hydrogen atoms from the aqueous solvent can inter-
change, which impacts the isotopic purity of the IS and may
influence the analytical result. Also, given their location at the
outside edge of the molecule, deuteration can change the
charge density of the molecule, thereby slightly influencing
its retention time [97]. For this reason, 13C-labeled ISs are
preferred over deuterium-labeled ISs. Unfortunately, not every
folate form has its own labeled IS commercially available. In
that case, the nearest folate species in terms of stability and
elution time is used as an IS. However, it should be evaluated
on a case-by-case basis which IS is most appropriate for a
specific folate.

Recently, the group of Pfeiffer showed that errors in meth-
od calibration are an important source for inaccurate results
[98]. They experienced problems with folic acid solubility at
certain pH and concentration conditions. As a result, an incor-
rect value was assigned to the folic acid calibrator, leading to
an overestimation of serum folic acid concentrations.

The limited stability of folates also requires careful storage
of prepared calibrators and, if these are gravimetrically pre-
pared, likewise careful storage of the powder form. Reduced
folates are susceptible to oxidative degradation while some,
like 5FoTHF, are very hygroscopic. Therefore, it is advised to
verify the purity of the standard material as part of the prepa-
ration of stock solutions. This can be performed spectropho-
tometrically based on the molar extinction measured by
Blakley [99]. In addition, it is worth noting that L-ascorbic
acid, commonly used to stabilize folates in solutions, absorbs
light at the same wavelengths as folates, making the spectro-
photometric verification of folate concentrations in the pres-
ence of this antioxidant impossible [100].

Possible certified reference materials and the values
measured

Key to the evaluation of method performance is the use of
reference materials with a known folate content. These are
commercially available materials that allow the comparison
of results obtained in different laboratories. Ideally, the con-
centration obtained should match, although for sensitive com-
pounds, such as folates, this may be a tall order.

To accurately assess the performance of an entire method, a
certified reference material (CRM) should resemble a native
sample as close as possible. The spiking of folates to samples
can be problematic due to differences in protein binding and
may lead to divergent extraction behavior. It is therefore pre-
ferred to mix different blood pools to obtain a certain folate

concentration. However, this is not always possible due to the
limited and unpredictable presence of non-methyl-folates.

Two WHO-approved international standards are available
for folates through the National Institute for Biological
Standards and Control (NIBSC), one consisting of lyophilized
serum (03/178) and the other of a lyophilized whole blood
lysate (95/528). The NIBSC serum reference material has been
assigned reference values for total folate, as well as for 5MTHF,
5FoTHF, and FA. The application of the international standard
was evaluated following the analysis of the standardmaterial by
24 laboratories in 7 different countries, published by Thorpe
et al. in 2007 [81]. These included 19 protein-binding assays,
3MA, and 2 LC-MS/MS assays. Though significant variability
was observed between the results obtained using the different
assays, this study showed the potential of such a reference
material. When the reference standard 03/178 for folates in
serum was used to correct for the systematic error between
the laboratories, significant gains in comparability were obtain-
ed [81]. Also, the National Institute of Standards and
Technology (NIST) has issued a standard for folates in serum,
the standard reference material (SRM) 1955 [101].
Concentration values were assigned in 2004 by four indepen-
dent NIST methods and CDC method. To replace the SRM
1955 when stocks were depleted, a new standard reference
material was prepared, i.e., the SRM 3949. This set of three
serum samples was devised to contain, apart from 5MTHF
and FA, the minor folate species THF, 5FoTHF, MeFox, and
5,10CH+THF. Given the limited availability of analytical re-
sults, consensus concentrations for the different folate species
using a variety of methods have not been reached yet [102].

Recently, Fazili et al. [98] conducted, for the first time, two
international round-robin studies for the systematical assess-
ment of comparability, precision, and accuracy of serum folate
LC-MS/MS methods. Next to 6 serum pools and 6 calibrators
form the CDC, the two NIST SRMs (1955 and 3949) were
analyzed by the CDC laboratory, 7 laboratories with indepen-
dently developed methods, and 6 laboratories with an adapted
CDC method. Comparability was good for 5MTHF but poor
for folic acid. Interpretation of the results for minor folate
forms (FA, 5FoTHF, and 5,10CH+THF) was limited because
(1) for most serum samples, concentrations were below LOD
and (2) fewer laboratories included these compounds in their
method. This study demonstrated the key role of certified
reference materials in order to compare results among differ-
ent laboratories. In addition, this work showed the need for
reference materials with certified concentrations for minor fo-
late forms in order to improve method accuracy.

For whole blood lysate (95/528), a consensus value was
assigned following a study in which 13 laboratories partici-
pated for a total of 34 assay results. Unfortunately, only MA
and PBAs were used [103]. However, recently, we published
an LC-MS/MS method for the analysis of folates in RBC
samples which includes data obtained using this reference
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material [13]. Table 2 lists the consensus concentrations for
the reference materials (serum and whole blood) for the dif-
ferent analytical techniques, where available.

Conclusion

Given the ability of higher order LC-MS/MS methods to dif-
ferentiate between different folate forms and degradation
products (e.g., MeFox), folate analysis has shifted from mi-
crobiological or protein-binding assays to chromatographic
methods. However, the relative instability of folates poses
some challenges, whereby degradation and interconversions
between folate species may impact the final analytical result.
Therefore, care must be taken during sampling, sample prep-
aration, and analysis in order to obtain accurate and compara-
ble results.

Besides the classical sampling methods, it has been dem-
onstrated recently that alternative strategies, such as dried
blood spot sampl ing and volumetr ic absorp t ive
microsampling, are suitable alternative techniques for the clin-
ical determination of 5MTHF. So in the future, it may be
investigated whether such microsampling techniques can be
applied to other folate species.

Given the problematic storage stability of EDTA-
anticoagulated samples, heparin or citrate may be preferred
over EDTA to limit the degradation and interconversion dur-
ing sample storage. While whole blood lysis using a diluted
ascorbic acid solution is commonly performed, small varia-
tions in the procedure can significantly influence the analytical
outcome. The use of a thiol in combination with L-ascorbic
acid has proven to be required for the stabilization of THF in
food samples. This approach may prove beneficial to stabilize
this folate species in clinical samples as well. Also the pH
(extraction, elution solvent, and mobile phase) has been prov-
en to strongly influence folate stability, given the ionogenic
nature of the compounds of interest. Overall, it is highly rec-
ommended to evaluate the stability of all folates for each spe-
cific procedure of analysis.

Inherent to MS detection is the influence of matrix-
associated effects on the measured signal. Therefore, isotopi-
cally labeled internal standards should be included to compen-
sate for the influence of the matrix on recovery and ionization
efficiency. Which IS is most appropriate for a specific folate
should be evaluated on a case-by-case basis, where, if avail-
able, 13C-labeled ISs are preferred.

Lastly, given the problematic analytical calibration, a har-
monization of folate calibrator preparation is recommended to
compare results obtained using different procedures. In this
respect, the use of certified reference materials, analyzed using
a variety of methods, including MA, PBA, and, importantly,
also LC-MS/MS assays, would prove beneficial to compare
analytical results.
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