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Abstract
This paper presents a combination of elemental and isotopic spatial distribution imaging with near-infrared hyperspectral imaging
(NIR-HSI) to evaluate the diagenetic status of skeletal remains. The aim is to assess how areas with biogenic n(87Sr)/n(86Sr)
isotope-amount ratios may be identified in bone material, an important recorder complementary to teeth. Elemental (C, P, Ca, Sr)
and isotopic (n(87Sr)/n(86Sr)) imaging were accomplished via laser ablation (LA) coupled in a split stream to a quadrupole
inductively coupled plasma mass spectrometer (ICP-QMS) and a multicollector inductively coupled plasma mass spectrometer
(MC ICP-MS) (abbreviation for the combined method LASS ICP-QMS/MC ICP-MS). Biogenic areas on the bone cross section,
which remained unaltered by diagenetic processes, were localized using chemical indicators (I(C)/I(Ca) and I(C) × 10/I(P)
intensity ratios) and NIR-HSI at a wavelength of 1410 nm to identify preserved collagen. The n(87Sr)/n(86Sr) isotope signature
analyzed in these areas was in agreement with the biogenic bulk signal revealed by solubility profiling used as an independent
method for validation. Elevated C intensities in the outer rim of the bone, caused by either precipitated secondary minerals or
adsorbed humic materials, could be identified as indication for diagenetic alteration. These areas also show a different n(87Sr)/
n(86Sr) isotopic composition. Therefore, the combination of NIR-HSI and LASS ICP-QMS/MC ICP-MS allows for the deter-
mination of preserved biogenic n(87Sr)/n(86Sr) isotope-amount ratios, if the original biogenic material has not been entirely
replaced by diagenetic material.
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Abbreviations
ICP-QMS Inductively coupled

plasma quadrupole mass spectrometer
LA Laser ablation
LASS ICP-QMS/
MC ICP-MS

Laser ablation coupled via a split
stream to a quadrupole inductively
coupled plasma mass spectrometer
and a multicollector inductively
coupled plasma mass spectrometer

MC ICP-MS Multicollector inductively coupled
plasma mass spectrometer

NIR Near-infrared
NIR-HSI Near-infrared hyperspectral imaging
PCA Principal component analysis
ROI Region of interest

Introduction

The investigation of provenance andmigration of past humans
and animals is of substantial interest in anthropological and
archeological research. Recent developments in analytical
chemistry allow Breading^ the incorporated chemical finger-
print in skeletal remains, which can be correlated to the indi-
vidual’s region of origin. In this context, strontium (Sr) isotope
ratio analyses of human and animal skeletal remains to trace
residential changes and/or living conditions by either thermal
ionization mass spectrometry (TIMS) or MC ICP-MS have
evolved as key tools in anthropology and archeology, as com-
prehensively described in recent reviews [1–4]. To minimize
damage to valuable remains, and to investigate the spatial
resolution of the incorporated Sr signature (e.g., growth layers
of tooth enamel), LA as a direct sample introduction system
has been coupled to a (MC) ICP-MS [5–12]. For migration
studies, the main interest lies in the n(87Sr)/n(86Sr) isotope-
amount ratio, which varies according to the radioactive decay
of 87Rb to 87Sr (half-life ~ 48.8 × 109 years) and is therefore a
function of the geological age and the original Rb/Sr ratio
[13]. (In this manuscript, the isotope-amount ratio notation
(e.g., n(87Sr)/n(86Sr)) follows IUPAC guidelines according to
[14].) Sr is released via weathering from the bedrock material,
and due to its chemical similarity to Ca, it is taken up by and
incorporated into plants and animals. It is finally taken up by
animal and human organisms as a substitute for Ca, mainly
incorporated in hard tissues (teeth and bones) [1]. Since no
significant fractionation of the environmental n(87Sr)/n(86Sr)
isotope signature occurs during the biological uptake [13, 15],
the incorporated radiogenic Sr isotopic signature reflects the
ratio of a particular geographic location inhabited during a
specific period of an individual’s life, depending on the type
of tissue and its specific turnover [1, 13]. In this context, tooth
enamel has been shown to act as an Barchive of the childhood^
[5] of the Sr uptake in an individual’s life, as tooth enamel

reflects the Sr signature of the years of life when mineraliza-
tion takes place (incremental growth of human third molar
enamel continues until completion between 12 and 16 years
of age [2]). Contrary to tooth enamel, dentin and bone tissue
undergo continuous turnover during life and therefore reflect
the Sr isotope signature of the last 10 to 20 years of an indi-
vidual before death [2, 3]. The comparison of the n(87Sr)/
n(86Sr) isotope-amount ratio within tooth enamel and bone/
dentin has been successfully applied to reconstruct the past
(migration and diet) of past individuals [16–21]. In instances
where (multiple) migration took place within months or a few
years prior to death of an individual, the Bmulti-year archives^
[20] of bones might be reconstructed by analyses of multiple
bones types, which vary in bone turnover and thus also carry
different Sr archives [2]. For example, the n(87Sr)/n(86Sr)
isotope-amount ratios within the femur and the rib of BÖtzi,^
the Tyrolean Iceman, potentially indicate multiple changes in
(residential) localities during the last years of his life [22].

The post-depositional overprint of the Sr isotopic signa-
tures in ancient skeletal remains by cumulative physical,
chemical, and biological alteration in the form of inorganic
modifications and structural alterations—referred to as
diagenesis—is a challenge in the application of the technique
and the interpretation of results [23]. Diagenetic Sr from
soil moisture and groundwater of the burial environment
accumulates post mortem in the archeological bone due to
recrystallization of the hydroxyapatite lattice, adsorption
onto the apatite crystal surface, and crystallization of sec-
ondary minerals (e.g., brushite (CaHPO4·2H2O) or car-
bonate (CaCO3)) in micro-cracks, pores, and vacancies
[5, 24–27]. This diagenetic effect may alter the Sr finger-
print, shifting it away from that incorporated in vivo (often
referred to as biogenic Sr signal). Studies by Kyle [28]
showed that archeological tooth enamel is well preserved
in contrast to bones and dentin due to its extremely com-
pact structure with very little pore space and minor
amounts of organic content (~ 2%). Hence, tooth enamel
has been a preferred sample for Sr isotopic analysis.
Dentin and bone material on the other hand with their
higher porosity, smaller crystallites and a higher organic
content (~ 30%) show a stronger susceptibility to diagenetic
changes [29]. Nonetheless, the combination of the incorporat-
ed childhood signature in tooth enamel with the incorporated
isotopic signature of the last 10–20 years before death in den-
tin and bone allows for a more substantial reconstruction of
the past movement pattern of an ancient individual [2, 3].
Furthermore, in certain archeological/anthropological con-
texts non or only little dental tissue is preserved, wherein
migratory information has to be extracted from bone tissue.
Therefore, a diligent assessment of the diagenetic process is a
prerequisite to avoid scientific conclusions drawn from insuf-
ficiently preservedmaterial and rigorousmethods to assess the
biogenic signal are mandatory.
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A major concern is the fact that soil water can penetrate
through the porous structure (caused e.g. by the Haversian
channels and bone canaliculi) deeply into the inner parts of
the cortical bone and cause diagenetic changes. In order to
retrieve the biogenic signal from bone and dentin, several
protocols have been established: Sample preparation included
for example mechanic abrasion of the outer bone/dentin sur-
faces to remove diagenetically altered material [30]. The pro-
cedure significantly reduced the content of Zn, Cd, K, Al, Fe,
and Mn but showed no effect for the diagenetic impact of Na,
Ca, Mg, Sr, and Ba [31]. Other protocols were based on acid
wash procedures to remove the high soluble diagenetic
bioapatite from archeological remains, by significantly reduc-
ing the contamination level and revealing the theoretical w
(Ca)/w(P) mass fraction ratio of modern bones. However,
the original biogenic n(87Sr)/n(86Sr) isotope-amount ratios
could not be recovered [31].

The solubility profiling method has been applied to retrieve
the biogenic fraction in bulk bones. The method is based on
sequential leaching of bone/dentin powder using acidic ace-
tate buffer and allows for the isolation of biogenic bone
leaching fractions with w(Ca)/w(P) mass fraction ratio close
to the theoretical value of biogenic hydroxyapatite (2.16) and
a stable w(Sr)/w(Ca) mass fraction ratio based on the differing
solubility of diagenetic bioapatite (carbonate and fluoride con-
tent among others) [32]. This enables the identification of
leaching fractions containing biogenic n(87Sr)/n(86Sr) signa-
tures which may be used to ascertain the geographic origin of
the individual. However, the numerous leachates required to
remove Sr in secondary minerals and from surface absorption
make the method time-consuming and only applicable for
solution-based analysis. The method of solubility profiling is
limited in revealing biogenic n(87Sr)/n(86Sr) signatures when
chemical changes altered the original bioapatite crystal struc-
ture [24, 27, 32].

In population studies, the correlation of the Sr mass fraction
w(Sr) and the n(87Sr)/n(86Sr) isotope-amount ratios in bone/
dentin in combination with the chemical information of the
burial environment was applied as a useful tool to assess a
potential diagenetic impact [9, 27] following the routine ap-
proach used for C and N isotopes in collagen [33].

Beside the mentioned methods to monitor diagenesis for
solution-based analysis of bone/dentin, several studies applied
chemical imaging techniques to assess the extent of diagenetic
alterations. These investigations have become necessary as
spatial information is a substantial information pool. Herein,
trace element mass fractions and diffusion gradients (mainly
REE, Y, Hf, U, Th) [34–38] are monitored as sensitive tracers
for diagenetic processes that take place shortly after the death
of the individual, since they occur in fresh bone and tooth
material at very low concentration levels [20, 25, 33].
Especially REE pattern reflects different diagenetic processes
with associated fractionation and diffusion profiles [33].

Furthermore, Willmes et al. [38] developed a less-destructive
depth-profile scanning method using LA-ICP-MS based on
the clear correlation between distribution of diagenetic U
and diagenetic Sr revealed by chemical imaging of U and Sr
on Neanderthal teeth cross sections. The monitoring of trace
element mass fractions has also been applied in solution-based
analysis [20, 25].

Punctual X-ray diffraction (XRD) and mid-infrared spec-
troscopy (MIR, approx. wavelength between 2500 nm
(≙ 4000 cm−1) and 25,000 nm (≙ 400 cm−1)) methods such
as Fourier transform infrared spectroscopy (FTIR) have been
widely applied to characterize the preservation of bone and
dentin. Herein, the crystallinity index (CI) [39] as a splitting
factor between the two phosphate ion absorption peaks
(605 cm−1 (≙ 16,530 nm) and 565 cm−1 (≙ 17,700 nm)) quan-
tifies the increase in crystallinity of bioapatite structure due to
the loss of collagen and the post-depositional recrystallization
of calcium phosphate [21, 26, 40–43]. The divergent total car-
bonate content (C/P index) estimated via the ratio of the ab-
sorption peaks a (CO3

2−; 1415 cm−1 (≙ 7070 nm))/a (PO4
3−;

1035 cm−1 (≙ 9660 nm)) correlates with the precipitation of
secondary carbonates and their surface adsorption [26, 42, 43].
The authigenic calcite calculated semi-quantitatively via the
height of the absorption peak at 713 cm−1 (≙ 14,025 nm) in
comparison to a reference material [44] indicates the presence
of diagenetic modification [21]. The mineral-to-matrix ratios
calculated from integrated areas of phosphate bands (900–
1200 cm−1 (≙ 11,110–8330 nm)) to amide I bands (1585–
1720 cm−1 (≙ 6310–5850 nm)) [45] indicate large amounts
of preserved collagen in bones [21].

First studies applied non-destructive spectroscopic im-
aging techniques such as mid-infrared [46, 47], near infra-
red (NIR) [48, 49], and hyperspectral near-infrared [50,
51] imaging (NIR-HSI, approx. wavelength between
400 nm (≙ 25,000 cm−1) and 2500 nm (≙ 4000 cm−1))
for monitoring the general preservation of forensic and
archeological remains as well as differentiation between
remains in soil samples. These spectroscopic imaging out-
perform the classical MIR and NIR techniques by provid-
ing spatial and spectral resolution covering the heteroge-
neity information of samples, while requiring minimal
sample preparation [50, 52]. In general, the passive remote
sensor system of HSI digitizes the electromagnetic radia-
tion (reflectance and emission) of an object in a variety of
adjacent spectral bands (VIS and IR) which can be de-
scribed as a three-dimensional data cube with the spatial
extensions x, y and the third dimension λ, representing the
spectral dimension. Hence, each pixel of an HSI image of
a tooth/bone contains an absorption spectrum (spectral
signature) based on the mineralogical/chemical composi-
tion of the displayed material in a certain position [53]. In
comparison to NIR imaging, NIR-HSI measures energy in
narrower and more numerous bands (> 20), which provides
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a continuous spectral measurement across the near-infrared
spectrum [54]. Via classification of these pixels by e.g.
principal component analysis (PCA), mineralogically/
chemically different regions can be identified, which holds
on great potential for diagenetic studies.

The problem of diagenesis has been known, discussed
and investigated for more than 30 years, and several
methods have been developed and applied. Still, there is
no fully satisfactory method to assess the overall diagenet-
ic status of archeological remains and to monitor diagenet-
ically changed regions for a reliable evaluation of (pre-)-
historic migration (paths). A well-preserved biogenic Sr
signal is indispensable when using n(87Sr)/n(86Sr)
isotope-amount ratios analysis to determine (pre-)historic
migration (paths). Herein, we present for the first time the
combination of elemental and isotopic imaging with near-
infrared hyperspectral image analysis, cross-referenced
with results from sequential bone leaching of the same
samples, to identify and subsequently assess biogenic re-
gions. These data will aid in the development of
hyperspectral imaging as a cheap and fast method of scan-
ning bones to identify best preserved areas of bones, which
may then be selectively targeted for n(87Sr)/n(86Sr) analy-
sis. This would allow for the routine analysis of only par-
tially preserved bones, and potentially obviate the need for
lengthy solubility profiling methods to identify biogenic Sr
signals. The approach has a substantial potential to allow
for the spatial determination of the biogenic n(87Sr)/n(86Sr)
isotopic signature in skeletal remains for a reliable inter-
pretation of analytical datasets and the reconstruction von
residential changes or diet and nutrition habits of ancient
human and animals.

Experimental

All preparatory laboratory works were performed in a clean
room (ISO class 8 according to ISO 14644-1). Type I reagent-
grade water (18 MΩ cm) (F + L GmbH, Vienna, Austria) was
further purified by sub-boiling distillation (Milestone-MLS
GmbH, Leutkirch, Germany). Nitric acid was prepared by
double sub-boiling distillation of analytical reagent-grade acid
(65% w/w) (Merck KGaA, Darmstadt, Germany). All

polyethylene (PE) flasks, tubes, and pipette tips (VWR
International GmbH, Vienna, Austria), as well as
perfluoroalkoxy (PFA) screw cap vials (Savillex,
Minnetonka, USA), were cleaned in a two-stage washing pro-
cedure using nitric acid (10%w/w and 1%w/w) and were then
rinsed with Type I reagent-grade water before use.

Preparation of human femur samples

Two intact human femurs (sample ID ES_SK91 and
GT_25.025) recovered from two archeological sites in
Austria (ES, Elisabethstrasse, Vienna; GT, Gars/Thunau,
Lower Austria) were provided by the Museum of Natural
History, Vienna. The specimens were selected for their pur-
ported different state of diagenetic alterations based on their
different localities and absolute ages (fourteenth century AD,
ninth century AD) (see Table 1).

From each bone, a section of about 5 × 3 × 1 cm was taken
by partially cross-sectioning along the bone shaft of the fe-
murs (see Electronic Supplementary Material (ESM) Fig. S1).
The bone samples were cleaned by ultrasonicating
(Bandelin Sonorex Digitec Ultrasonic Bath DT 255,
Bandelin electronic GmbH & Co. KG, Berlin, Germany)
in high-quality water (0.06 μS cm−1) from a TKA GenPure
water treatment system (TKAWasseraufbereitungssysteme
GmbH, Niederelbert, Germany) for 10 min and dried at
40 °C until constant weight. These bone pieces were sub-
sampled further for the present study.

Bone cross sections for chemical imaging

Following cleaning, two 1–1.5-mm-thick cross sections per-
pendicular to the length of the bone shaft were obtained using
a low speed saw (IsoMet, Buehler, Lake Bluff, IL, USA) with
a diamond-rim blade (Series 15LC IsoMet Wafering Blade,
Buehler). The cross sections were cleaned using high-quality
water and air-dried. One cross section of each bone was fixed
using double-sided adhesive tape onto a glass plate of the size
of the ablation chamber (10 cm × 10 cm) for the LASS ICP-
QMS/MC ICP-MS measurements. The opposite cross section
of each bone was fixed using double-sided adhesive tape onto
an object glass slide for NIR-HSI measurements.

Table 1 List and key
characteristics of bones
investigated in this study; both
samples originate from the shafts
of human femurs

Sample ID Origin Sex Approx. age Approx. time
of death

ES_SK91 Excavation Elisabethstraße,
Vienna, Austria

Female (?) 30–40 years 14th century AD

GT_25.025 Excavation Gars-Thunau,
Lower Austria, Austria

Inconclusive* 40–55 years 9th century AD

*No sex determination possible
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Bone powder for solubility profiling

Powder samples of cortical bone adjacent to the cross sections
were obtained from the dry bone samples using a Dremel
Moto 396 Type 1 drill with a diamond drill bit (Dremel
Manufacturing Co., Racine, WI, USA). In order to limit the
damage, only one sample of about 50 mg was obtained per
bone, for each of which a fresh drill bit was used.

Near-infrared hyperspectral image analysis

Near-infrared hyperspectral images were recorded using a
push-broom HSI instrument (Zeutec Gmbh). The instrument
is equipped with a Xenics NIR camera (Xeva-USB-FPA-1.7-
320-TE1-100 Hz; XEVA 6179; 0.9 to 1.7μm; 320 × 256 pixel
matrix; 12 bit) operating an InGaAs focal plane array sensor
with 2% pixel noise. The camera is connected to a Specim
N17E spectrograph (Spectral Imaging Ltd., Oulu, Finland)
operating in the wavelength range of 900–1700 nm with 5-
nm spectral resolution, with an objective lens (2/3^ C-mount
broadband coated lenses, Schneider–Kreuznach CINEGON).
The system consists of a 600-mm y-table gear and stable dif-
fuse 45/0 illumination created by halogen bulbs emitting light
of the entire spectral range of the spectrograph. The y-table
was driven by Isel LF4 mechanics and an Isel TMO-4403
(PICMIC) stepping motor controlled by textual commands
via an RS-485 interface. A forced convection (TE-1) cooling
was applied to cool down the XEVA 6179 camera to a tem-
perature between − 4 and − 13 °C, which is needed to reduce
the noise in the images. The field of view for the samples was
selected by setting the appropriate height of the spectrograph
in relation to the sample. Image focusing was achieved by
adjusting the lens. The setup of the optics resulted in a reso-
lution of 0.156 mm/pixel. The image processing system and
the sensor were controlled using Argus software [55].

Before measurement, a two-point calibration was carried
out using a diffuse reflectance standard (Sphereoptics) as a
Bwhite reference^ and by completely covering the objective
lens for a Bblack reference.^ Relative reflectance (R) of the
sample image (Bx^) to the black (Bmin^) and white (Bmax^)
reference was calculated as shown in Eq. 1, using Argus soft-
ware [55]. The two bones were analyzed by NIR-HSI on the
mirroring thin section of those analyzed by laser ablation.

R ¼ x−min
max−min

ð1Þ

Before analyzing the data cube, dead pixels were removed
using a machine-specific in-house MatLab algorithm. The
subsequent analysis of the data cube was carried out using
the MatLab-based PLS Toolbox of Eigenvector Research
Incorporated (Manson, USA). Data were pre-processed using

Sawitzky-Golay smoothing (Polynomial Order 1, Derivative
Order 1) with subsequent median centering of spectra after
background removal. Finally, a PCA overall data points from
both bone samples (EK_SK91 and GT_25.025) together was
conducted, and loading plots and plots of the principal com-
ponents were produced. The loading plots were used to iden-
tify the most relevant wavelengths for the discrimination of
zones with different chemical compositions, and images of
slabs of relative reflectance of the selected significant wave-
lengths were produced.

Images were exported from PLS toolbox as TIFF-files with
600-dpi resolution and at a size similar to the size of the mi-
croscope images of the ablated samples for optimizing
matching for further processing of spectral image slabs at
selected wavelengths (1410 nm and 1150 nm).

Elemental and isotopic imaging

LASS ICP-QMS/MC ICP-MS measurements

A nanosecond excimer-based laser ablation system (NWR
193, ESI-NWR Division, Electro Scientific Industries, Inc.,
Portland, CA, USA) was coupled to an ICP-QMS (NexION
350D, Perkin Elmer, Waltham, MA, USA) and aMC ICP-MS
(Nu Plasma HR, Nu Instruments, Wrexham, UK) using a
split-stream laser ablation setup following the protocol of
Prohaska et al. for the simultaneous detection of the multi-
elemental composition (C, P, Ca, Sr) and n(87Sr)/n(86Sr)
isotope-amount ratio data of the bone samples [56]. General
instrumental settings for the LASS ICP-QMS/MC ICP-MS
are described in ESM Table S1.

Sr isotopic data were collected using static multicollection
with an integration time of 0.2 s using the corresponding de-
tector configuration as shown in ESM Table S2. A solution of
NIST SRM 987 (highly purified SrCO3, NIST, Gaithersburg,
USA) [57] with a mass fraction of approximately 50 ng g−1

was introduced as bracketing standard via an Aridus II (Cetac
Technologies, Omaha, NE, USA) desolvating nebulizer for
optimization and correction of instrumental isotopic fraction-
ation (IIF) at the beginning and end of each laser ablation
event in the following sequence: liquid standard1—laser ab-
lation solid sample—liquid standard2. During laser ablation,
dual sample introduction to the MC ICP-MS from the laser
and a dry solution aerosol of 2% (w/w) nitric acid by anAridus
II (Cetac Technologies) desolvating nebulizer was performed
to minimize changes in plasma conditions according to
Prohaska et al. [56].

Laser ablation was performed in line scans from the inner
core to the outer rim area of each bone sample. Both the ICP-
QMS and the MC ICP-MS were set to record time-resolved
signals, with 2.27 data points recorded by the MC ICP-MS for
every data point recorded by ICP-QMS (integration time of
0.453 s). A gas blank of 100 s was recorded at the beginning
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of each measurement. Since the detection range of the MC
ICP-QMS is limited, laser settings were tested for each bone
prior to analysis, and adjusted as needed to obtain similar
signals for both bones (see ESM Table S1).

In-house pressed reference pellets of NIST SRM 1400 and
NIST SRM 1486—certified for P, Ca, and Sr; values for
n(87Sr)/n(86Sr) isotope-amount ratios have been determined
in several studies [58–60]—were measured using line mea-
surements under similar conditions as the samples at the be-
ginning and end of each laser ablation event for quality control
and correction of polyatomic interferences.

Data evaluation and reduction

The average gas blank values were subtracted from the mea-
sured values of the samples for each measurement.

Multi-elemental dataset All measured intensities of 12C, 31P,
and 88Sr were normalized to 43Ca. Additionally, measured
intensities of 12C and 43Ca were normalized to 31P. On the
basis of the Ca-normalized 88Sr intensities, the mass fractions
of Sr were determined applying a one-point calibration using
certified Sr mass fractions of NIST SRM 1400. The w(Sr) ×
1000/w(Ca) mass fraction ratios were calculated under the
assumption of the presence of pure bioapatite (w(Ca) = 0.4).
The w(Ca)/w(P) mass fraction ratios were calculated based on
the certified w(Ca)/w(P) values of NIST SRM 1400 and NIST
SRM1486. Since the Cmass fractions of the NIST SRM1400
and NIST SRM 1486 are not certified, I(C) × 10/I(P) and I(C)/
I(Ca) intensity ratios were calculated instead of C mass frac-
tions to identify regions with increased C levels.

Sr isotope dataset Data correction of the Sr isotope dataset
was accomplished according to [61, 62]: Gas blank correction,
correction of the 87Sr signal by subtraction of the 87Rb signal
(obtained from 85Rb via the natural abundance ratio of
n(87Rb)/n(85Rb), and using the certified 88Sr/86Sr ratio of the
NIST SRM 987 standard solution for IIF correction) [56, 61,
62], a correction for the contributions of calcium dimers and
argides [61, 62], a correction for the contribution of
40Ca31P16O+ and 40Ar31P16O+ polyatomic clusters (incorpo-
rating 88Sr/43Ca data from the ICP-QMS data for a dynamic
correction) [7, 61, 62], and external IIF correction of the
n(87Sr)/n(86Sr) isotope-amount ratio using the NIST SRM
987 bracketing standard [56]. Corrections for doubly charged
rare earth elements were not performed, as values at m/z 85.5,
86.5, and 87.5 were at blank level.

Image creation and statistical analysis

Microscope images of the bone samples were taken after laser
ablation including a spatial scale using a standard binocular
microscope (S63T Trinocular Pod 8-50x) connected to a

digital camera (ProgRes CT3, Jenoptik, Jena, Germany) in
8- to 10-fold magnification. The microscope images were
imported and georeferenced in the geographical mapping soft-
ware ArcGIS® 10.4.1 (ESRI, Redlands, CA, USA) by using
the spatial reference scale, which creates a spatial reference
system for the images. The laser ablation lines were digitized
and the x-y coordinates of the start and end points of each line
were determined. By knowing the distance between the first
and last data point in x and y direction and the amount of data
point in between, the intermediate x- and y-coordinates for
each data point (z-values) were calculated according to
Draxler et al. [63]. These data (including multi-elemental
and Sr isotope ratio data) were then imported to ArcGIS® as
an overlay to the microscopic images.

The relative reflectance images from near-infrared
hyperspectral image analysis at the selected wavelengths
(1410 nm and 1150 nm) were also imported to ArcGIS®
and referenced manually to the elemental and isotopic im-
ages/datasets. Subsequently, the data from the spectral raster
images were extracted to the laser ablation data points using
the Spatial Analysis Tool BExtract Multi-Values to Points^ of
ArcMap.

The merged datasets were exported in DBF format for fur-
ther processing using MS EXCEL®. Since elemental, isoto-
pic, and near-infrared hyperspectral data were gathered with
different spatial densities and in order to reduce the complex-
ity of these data, all three datasets were buffered according to
the applied spot size (100 μm and 150 μm), by calculating
their average. Each data point displayed in the resulting chem-
ical images of the bone sample ES_SK91 (diameter of
100 μm) contains 22 elemental ratio or mass fraction data
points and 50 Sr isotope ratio data points, whereas each data
point in the chemical images of the bone sample GT_25.025
(diameter of 150 μm) contains 33 elemental ratio or mass
fraction data points and 75 isotopic data points (see ESM
Table S1).

To allow for an intersample comparison of the elemental,
isotopic, and near-infrared hyperspectral data, the buffered
data were re-imported into ArcGIS® and the coloration of
data points was set by classes evenly distributed in the range
of data values. Chemical images for relative reflectance at
wavelength 1410 nm, w(Sr) × 1000/w(Ca) mass fraction ra-
tios, w(Ca)/w(P) mass fraction ratios, I(C) × 10/I(P) intensity
ratios, I(C)/I(Ca) intensity ratios, and n(87Sr)/n(86Sr) isotope-
amount ratios were created. Further details on the creation of
spatial images using the software tools of ArcGIS® are pub-
lished elsewhere [56, 63, 64].

Selection of regions of interest Regions of interest (ROIs:
outer rim, inner core, preserved collagen, and transition area)
were defined and digitized in ArcGIS® in order to differenti-
ate between diagenetically altered and diagenetically unal-
tered areas on the bone sections and to allow for further
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(statistical) interpretation of the datasets. The boundaries of
these areas were determined for each bone section individual-
ly based on chemical distribution patterns of w(Ca)/w(P) and
w(Sr) × 1000/w(Ca) mass fraction ratios, I(C) × 10/I(P) and
I(C)/I(Ca) intensity ratios, and the relative reflectance at wave-
length 1410 nm. Additional visible inspection of the histolog-
ical characteristics was accomplished by light microscopy.
The digitized ROIs were assigned to the elemental, isotopic,
and near-infrared hyperspectral data by intersecting their in-
formation layer in ArcGIS®. The merged datasets were
exported in DBF format for further statistical processing using
PASW 18® (Armonk, NY, USA).

The export of the measured and quantified data of the cor-
responding ROIs from ArcGIS® allowed for a comparative
statistical evaluation of the data and the associated ROIs using
PASW 18®. An overview table displaying intensity of reflec-
tion on selected wavelengths, elemental, and Sr isotope ratio
distribution within the different ROIs (outer rim area, pre-
served collagen, transition area, inner core area) given as per-
centile (5%, 25%, 75%, and 95%), median, and mean was
created for both bone samples.

Solubility profiling

Bone powder samples were leached with 0.1 mol L−1 acetic
acid/sodium acetate buffer with a pH of 4.5 following a 30-
step in-house optimized protocol based on [65, 66] modified
from the sequential leaching procedure presented by Sillen
[32]. Multi-elemental analysis was performed using the ICP-
QMS (NexION 350D, Perkin Elmer) with an Ar plasma in
standard mode to determine P, Ca, and Sr mass fractions of
leachate aliquots using external calibration (ICP multi-
element standard solution VI, Merck; rare earth multi-
element solution ESI-71, Elemental Scientific, Omaha, NE,
USA; single-element standard of phosphorus, Inorganic
Ventures, Christiansburg, VA, USA) and internal normaliza-
tion (single element standard of indium, Merck). General in-
strumental settings for the multi-elemental measurements are
described in ESM Table S4. The total mass fractions of
leached P, Ca, and Sr of powdered samples were determined.
Based on these, w(Sr) × 1000/w(Ca) and w(Ca)/w(P) mass
fraction ratios were calculated.

In order to allow for sufficient signal intensity in Sr
isotope ratio measurement, every three successive leach-
ates of the 30 total leachates from each sample were
pooled, resulting in 10 pooled leachates (with the exception
of the initial three leachates (see EMS Table S5 for more
details)), evaporated, and re-dissolved in 2 mL of 8 mol L−1

nitric acid. Prior to Sr isotope ratio analysis, Sr/matrix separa-
tion was performed according to the methods described in
Swoboda et al. [67] and Irrgeher et al. [68] for all pooled
leachate samples, blanks, and including Sr isotopic certified
reference material NIST SRM 987.

The n(87Sr)/n(86Sr) isotope-amount ratios of the pooled
leachates were measured using a MC ICP-MS (Nu Plasma
HR, Nu Instruments) equipped with a desolvation nebuliza-
tion membrane unit (Aridus II, Cetac Technologies) in com-
bination with a PFA nebulizer (Microflow ST Nebulizer,
Elemental Scientific) as a sample introduction system.
(Operating conditions see ESM Table S6.) Pooled leachates
were diluted with nitric acid (2% w/w) after separation to
achieve a mass fraction of 50 ng g−1. A solution of NIST
SRM 987 with a mass fraction of 50 ng g−1 was used as an
isotopic reference for standard-sample bracketing (SSB).
Diluted leachates and NIST SRM 987 solution were spiked
with Zr (Merck) to allow for internal inter-elemental IIF cor-
rection of time-dependent and matrix-dependent variation be-
tween the samples. A detailed description of the general in-
strumental settings, data collection, blank correction, andmea-
surement strategy for the n(87Sr)/n(86Sr) isotope-amount ratio
measurement can be found in Retzmann et al. [69]. Data pro-
cessing and uncertainty calculations were performed follow-
ing standard protocols [70, 71]. Further detailed information
on the analytical procedures of solubility profiling can be
found in ESM Method.

Determination of biogenic Sr signatures

In accordance with the pattern of w(Ca)/w(P) mass fraction
ratios observed by Sillen [32] and previous in-house studies
[65, 66], the first and second pooled leachates were excluded
from the determination of biogenic n(87Sr)/n(86Sr) isotope-
amount ratios since they bear elevated w(Ca)/w(P) mass frac-
tion ratios, which predominantly contain material low in phos-
phorous (e.g., calcites), wherein the corresponding n(87Sr)/
n(86Sr) isotope-amount ratios are likely not representative of
biogenic values. The pooled leachates 3 to 6 were excluded
from the determination of biogenic n(87Sr)/n(86Sr) isotope-
amount ratios since they bear elevated w(Sr) × 1000/w(Ca)
mass fraction ratios compared to elemental mass fractions
observed in biogenic material [1, 72], which indicate diage-
netic Sr incorporated into the recrystallized bone. Small de-
creases of w(Sr) × 1000/w(Ca) mass fraction ratios < 21%
from pooled leachate 7 onwards are considered as stable and
representing the biogenic fractions [32]. Since the extent of
diagenetic alteration varies between samples, the selection of
the leachates for the determination of biogenic n(87Sr)/n(86Sr)
isotope-amount ratios was assessed on an individual basis
[27]: In the case of the bone sample ES_SK91 (approx. time
of death fourteenth century AD), where the later leachates
display constant n(87Sr)/n(86Sr) values, the average of pooled
leachates 7 to 11 was taken to determine the biogenic n(87Sr)/
n(86Sr) isotope-amount ratios. In the case of the bone sample
GT_25.025 (approx. time of death ninth century AD), where
the n(87Sr)/n(86Sr) isotope-amount ratio of the pooled leach-
ates 7 to 11 displays a near linear decrease in value, pooled

A combined chemical imaging approach using (MC) LA-ICP-MS and NIR-HSI to evaluate the diagenetic status of... 571



leachate 11 was considered to be the closest approximation of
the biogenic n(87Sr)/n(86Sr) isotope-amount ratios, though it
may well be even lower. Further detailed information and
discussion on the determination of biogenic n(87Sr)/n(86Sr)
isotope-amount ratios from solubility profiling can be found
in ESM Discussion.

The biogenic n(87Sr)/n(86Sr) isotope-amount ratios deter-
mined by solubility profiling from bulk samples (adjacent to
cross sections) were used as reference values for the biogenic
n(87Sr)/n(86Sr) isotope-amount ratios determined by LA MC
ICP-MS measurements and therefore served to validate the
effectiveness of the determination of biogenic areas using
LASS ICP-QMS/MC ICP-MS and NIR-HSI.

Results and discussion

Near-infrared hyperspectral imaging

PCA overall data points together gathered from the near-
infrared hyperspectral images of the cross sections (opposite
to those used in LA (MC) ICP-MS analysis) from both bone
samples (EK_SK91 and GT_25.025) shows that the first two
components explain more than 85% (PC1–2, 73% and 12%)
of the variation in the data (see Fig. 1a). The analysis of the
loading for PC1 indicates two wavelengths of influence at
1150 nm and 1410 nm (see Fig. 1b). A similar loading of
PC1 for wavelength 1410 nm at half the extent and a tenth
of the extent for wavelength 1150 nm was reported by Vincke
et al. [51] when analyzing bone specimens to identify overall
sufficient collagen for 14C dating using accelerator mass spec-
trometry. They excluded the wavelength 1410 nm as indicator
of O–H bonds which may be linked to carbonated crystal
apatite or water content and used wavelength 1430 nm (N–
H first overtone) instead, which was identified in PC2 loading.

In contrast, Stathopoulou et al. [48] and Thomas et al. [49]
attributed the wavelength 1432 nm to the overtone of the
fundamental OH− mode, which proved to be a property of
biogenic apatites [48]. Therefore, the wavelength of influence
at 1410 nm was utilized in the present approach to identify
biogenic apatites.

Figure 2b and c shows the reconstructed image slabs of rela-
tive reflectance at the wavelengths of influence 1410 nm and
1150 nm identified by the first principal component, whereas
the coloring indicates differences in the score values, suggesting
changes in physical and chemical compositions of the bones.
While bone sample GT_25.025 shows a mainly homogenous
coloring with just slight differences, bone sample ES_SK91—
especially in the center area where preserved collagen is likely
present—displays a large extent of coloring differences in the
intra-bone and inter-bone comparison to GT_25.025.

Identification of areas of preserved biogenic bone
material

Figure 3a shows the spot size-buffered line plots of the relative
reflectance at wavelength 1410 nm together with the intensity
ratios I(C)/I(Ca) and I(C) × 10/I(P) of bone sample ES_SK91.
The center of the bone cross section with likely preserved
collagen in biogenic apatite present (according to blue
coloring in the image slab, Fig. 2) displays a relative reflec-
tance lower than 150 at wavelength 1410 nm (between 1650
and 4250 μm distance in the line plot, see Fig. 3a). The rela-
tive reflectance at wavelength 1410 nm in the region of likely
preserved collagen in biogenic apatite is significantly lower
than those of the adjacent regions of inner core and outer rim,
where the relative reflectance at wavelength 1410 nm ranges
from 150 to 200 (in the line plot between 0–1650 μm and
4250–4850 μm distance, see Fig. 3a). The I(C)/I(Ca) and
I(C) × 10/I(P) intensity ratios of ES_SK91 follow a reverse

Fig. 1 (a) PC model scatterplot of near-infrared hyperspectral images on bone samples ES_SK91 and GT_25.05 displaying scores of PC1 against PC2;
(b) PCA loadings on PC1 (73.44%)

572 Retzmann A. et al.



trend to the relative reflectance at wavelength 1410 nm, show-
ing maximum values in the center of the bone cross section
with likely preserved collagen in biogenic apatite (between
1650 and 4250 μm distance in the line plot, see Fig. 3a).

Vincke et al. [51] indicated that the relative reflectance at
wavelength 1410 nm resulted from the absorption of the O–H
bond, which may be linked to the carbonated crystal hydroxy-
apatite or its water content [51, 73]. The present data of this
study (including BSr isotope amount ratios in areas of pre-
served biogenic bone material^) showed different results.
The carbonate content (w(C) ~ 0.07) of hydroxyapatite [74]
can be considered to be evenly distributed within the bone
material which is in accordance with the observation that the
I(C)/I(Ca) and I(C) × 10/I(P) intensity ratios follow the same
trend (see Fig. 3a). Thus, in this case, the lower relative reflec-
tance at wavelength 1410 nm likely represents degradation of
collagen in biogenic apatite, which is in agreement with ob-
servations from Stathopoulou et al. [48] and Thomas et al.
[49] on recent/forensic and fossil bone samples.

Figure 3b shows the spot size-buffered line plot of the
relative reflectance at wavelength 1410 nm together with the

intensity ratios I(C)/I(Ca) and I(C) × 10/I(P) of bone sample
GT_25.025. The relative reflectance at wavelength 1410 nm
remains stable over the major part of the bone cross-section
area (variation between 230 and 250 from 0 to 4875 μm dis-
tance), with a slight decrease at the outer rim area (between
4875 and 5775μm distance, down to 200). The I(C)/I(Ca) and
I(C) × 10/I(P) intensity ratios also remain stable throughout
most of the bone cross section, as well. A reverse trend is seen
when a significant increase at the outer rim area to maximum
values is reached (between 4875 and 5775 μm distance, see
Fig. 3b). While the high I(C)/I(Ca) and I(C) × 10/I(P) intensity
ratios in the outer rim area of GT_25.025 show similar levels
as may be seen in the likely preserved collagen in biogenic
apatite of ES_SK91, the differences in the relative reflectance
at wavelength 1410 nm as seen in the image slabs (see Fig. 2b
and c) and the line plots (Fig. 3a and b) indicate different
sources for the high carbon content (see BSr isotope amount
ratios in areas of preserved biogenic bone material^) in these
regions, namely, on the one hand biogenic collagen and on the
other hand precipitated secondary carbonates or adsorbed hu-
mic materials.
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Fig. 3 Single line plot of spot size-buffered relative reflectance at wave-
length 1410 nm, I(C)/I(Ca) intensity ratios and I(C) × 10/I(P) intensity
ratios of (a) ES_SK91 and (b) GT_25.025 in laser direction from the
inner core to the outer rim. (Note that I(C)/I(Ca) intensity ratios at distance

of 5475 μm (9.3 cps/cps ± 0.6 cps/cps) of GT_25.025 are beyond the
displayed range.) Error bars display the standard deviation over 1 spot
size

cba

Fig. 2 (a) Cross sections of ES_SK91 and GT_25.025 used for NIR-HSI
measurement. Red arrows indicate the position of ablation lines on
mirroring cross section used for LASS ICP-QMS/MC ICP-MS measure-
ments. (b) PC1 reconstructed image slabs of relative reflectance at wave-
length 1410 nm for bone samples ES_SK91 and GT_25.025 (red, high

relative reflectance; blue, low relative reflectance). (c) PC1 reconstructed
image slabs of relative reflectance at wavelength 1150 nm for bone sam-
ples ES_SK91 and GT_25.025 (red, high relative reflectance; blue, low
relative reflectance)
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Sr isotope amount ratios in areas of preserved
biogenic bone material

Bone ES_SK91: The ROIs of preserved collagen were iden-
tified in the center of the bone cross section, based on elevated
I(C)/I(Ca) intensity ratios (> 5 cps/cps) and I(C) × 10/I(P) (>
4.5 cps/cps) intensity ratios (see Figs. 3a, 4b–d, and Table 2).
This is in agreement with recent studies from Longato et al.
[46], who characterized recent/forensic bone samples as
displaying a C/Ca emission ratio between 4.5 and 5.5, deter-
mined using energy-dispersive X-ray (EDS) mapping, and
with recent studies from Patonai et al. [43], which character-
ized recent/forensic material as displaying a C × 10/P absorp-
tion ratio > 3.7, determined using FTIR analysis (see Table 2).
This was confirmed by the relative reflectance at the wave-
length 1410 nm (< 146, abrupt drop of relative reflectance
from 150 to 8 within 600 μm (between 1650 and 2250 μm)
was observed, see Figs. 3a and 4f) and histologically by vis-
ible structural differences in the microscope image. Adjacent
to the ROI of preserved collagen, the ROIs of the outer rim
and the inner core area were defined.

Figure 4b also shows a higher w(Ca)/w(P) mass fraction
ratio (average value of 2.40 μg g−1/μg g−1 ± 0.08 μg g−1/
μg g−1 (SD), see ESM Table S3) in the area of preserved
collagen in comparison to the surrounding areas of the inner

core and outer rim, which overlaps with the mass fraction ratio
to be expected in human bones (2.0 μg g−1/μg g−1 ±
0.3 μg g−1/μg g−1 (SD)) [31, 75, 76]. The w(Sr) × 1000/
w(Ca) mass fraction ratios show a negative correlation with
lower values in the area of preserved collagen in biogenic
apatite compared to those without sufficiently preserved col-
lagen of outer rim and inner core areas (see Fig. 4a, e, and
Table 2). Since Sr tends to accumulate upon diagenesis [26],
the outer rim area showing elevated w(Sr) × 1000/w(Ca) mass
fraction ratios of > 2.4 μg g−1/μg g−1 is seen as diagenetically
altered and as a consequence the n(87Sr)/n(86Sr) isotope-
amount ratio, as well. Penetrating water/movement fluids
driven by pore-mediated diagenesis might be the explanation
for Sr accumulations in the inner bone area and surrounding
the pores/vacancies (see Fig. 4a) [77]. The region of preserved
collagen in biogenic apatite is seen to be the region of best
preservation of biogenic Sr signatures in this case, although it
needs to be taken into consideration that diagenesis affecting
n(87Sr)/n(86Sr) isotope-amount ratio (via, e.g., water fluxes)
and degradation of collagen (microbial action/bio erosion)
may significantly differ in extent, depending on the decompo-
sition conditions.

The n(87Sr)/n(86Sr) isotope-amount ratio in the area of pre-
served collagen is 0.70882 ± 0.00033 (SD) (see Table 2 and
Fig. 4e). This value is in agreement with the biogenic n(87Sr)/
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Fig. 4 Chemical imaging results for ES_SK91 displaying (a) w(Sr) ×
1000/w(Ca) mass fraction ratios, (b) w(Ca)/w(P) mass fraction ratios,
(c) I(C)/I(Ca) intensity ratios, (d) I(C) × 10/I(P) intensity ratios, (e)
n(87Sr)/n(86Sr) isotope-amount ratios, (f) relative reflectance at wave-
length 1410 nm; and chemical imaging results for GT_25.025 displaying

(g)w(Sr) × 1000/w(Ca) mass fraction ratios, (h)w(Ca)/w(P) mass fraction
ratios, (i) I(C)/I(Ca) intensity ratios, (j) I(C) × 10/I(P) intensity ratios, (k)
n(87Sr)/n(86Sr) isotope-amount ratios, (l) relative reflectance at wave-
length 1410 nm. ES_SK91, GT_25.025
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n(86Sr) isotope-amount ratio of 0.70883 ± 0.00017, deter-
mined using solubility profiling (see Table 3). As the bone
was recovered intact from the archeological site, only its outer
surface was exposed primarily to the repository material
where diagenesis is more likely. The outer rim area of the bone
has a n(87Sr)/n(86Sr) isotope-amount ratio of 0.70932 ±
0.00039 (SD) (see Table 2 and Fig. 4e). This value is in agree-
ment with the value of the likely diagenetic fluoride-apatite
[32] in the leaching residue (0.70896 ± 0.00017 (U, k = 2))
(see Table 3).

Bone GT_25.025: In the case of bone cross section
GT_25.025, the hyperspectral data did not reveal areas of
sufficiently preserved collagen. The ROI of the outer rim area
was identified based on the relative reflectance at wavelength
1410 nm (< 230), by elevated I(C)/I(Ca) intensity ratios (> 4)
and elevated I(C) × 10/I(P) intensity ratios (> 3.6). Herein, a
decrease of the relative reflectance at wavelength 1410 nm
from 242.0 ± < 0.1 (SD) to a minimum level of 203.0 ± 1.7
(SD) over 1340 μm (between 4725 and 5775 μm distance)
was observed (see Figs. 3b and 4l). For I(C)/I(Ca) intensity
ratios, a significant increase from 3.93 cps/cps ± 0.25 cps/cps
(SD) up to 7.61 cps/cps ± 0.30 cps/cps (SD) within 750 μm
(between 5025 and 5775 μm distance) was observed (see
Figs. 3b and 4i). In case of I(C) × 10/I(P) intensity ratios, a
significant increase of the intensity ratio from 2.92 cps/cps ±
0.14 cps/cps to 5.46 cps/cps ± 0.27 cps/cps within 750 μm
(between 5025 and 5775 μm distance) was observed (see
Figs. 3b and 4j). The ROI of the inner core area was estimated
as the innermost homogeneous region. This was identified
based on the relative reflectance on wavelength 1410 nm (<
240) and on stable w(Sr) × 1000/w(Ca) mass fraction ratios,
I(C)/I(Ca) intensity ratios (average 3.32 cps/cps ± 0.24 cps/cps
(SD)) and I(C) × 10/I(P) intensity ratios (average 2.41 cps/cps
± 0.23 cps/cps (SD)) (see Table 2). The ROI of the transition
area displays the region between the outer rim and inner core
with stable relative reflectance on wavelength 1410 nm (aver-
age 242.8 ± 4.1 (SD)), stable I(C)/I(Ca) intensity ratios (aver-
age 3.71 cps/cps ± 0.39 cps/cps (SD)) and I(C) × 10/I(P) inten-
sity ratios (average 2.71 cps/cps ± 0.31 cps/cps (SD)) (see
Table 2). The latter two indicate no preservation of collagen
due to degradation of organic matter, which is in agreement
with C/Ca emission ratio < 4 [46] and C × 10/P absorption ratio
< 3.4 [43] found for archeological samples (see Table 2).

The elemental and Sr isotopic images of bone sample
GT_25.025 display a clear diagenetic gradient from the outer
rim area to the inner core area for I(C)/I(Ca) intensity ratios
(7.6 cps/cps ± 1.8 cps/cps (SD) to 3.32 cps/cps ± 0.24 cps/cps
(SD), I(C) × 10/I(P) intensity ratios (5.5 cps/cps ± 1.3 cps/cps
(SD) to 2.41 cps/cps ± 0.23 cps/cps (SD)), w(Sr) × 1000/w(Ca)
mass fraction ratios (1.49 μg g−1/μg g−1 ± 0.05 μg g−1/μg g−1

(SD) to 0.89 μg g−1/μg g−1 ± 0.04 μg g−1/μg g−1 (SD)), and
n(87Sr)/n(86Sr) isotope-amount ratios (0.71664 ± 0.00032 (SD)
to 0.71556 ± 0.00038 (SD)) (see Table 2, Fig. 4g–k).Ta
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The I(C)/I(Ca) and I(C) × 10/I(P) intensity ratios show a
non-linear trend with a significant decrease within the outer-
most 750 μm (outer rim area) (Fig. 4i, j, ESM Fig. S2a),
indicating an accumulation of C. The most significant source
of C in diagenetically unaltered bones is collagen. Since col-
lagen was not detected by the hyperspectral imaging data, it
might be more likely that the source of this accumulated C
is diagenesis. The increase in I(C)/I(Ca) and I(C) × 10/I(P)
intensity ratios points toward replacement of apatite with
carbonates [26] or adsorption of organic matter (e.g., hu-
mic material). Comparison with the microscopic image
after laser ablation shows a deeper ablation depth in this
area, despite unchanging ablation settings, confirming a
change of the tissue density.

Thew(Sr) × 1000/w(Ca)mass fraction ratios follow a linear
trend of decreasing diagenetic impact from the outer rim to-
ward the inner core area (see Fig. 4g, k, ESM Fig. S2b),
supporting the assumption of only one diagenetic source
(i.e., repository material) (see ESM Discussion).

As the femur was recovered completely intact, we as-
sume that only its outer surface was exposed to the repos-
itory material. Even though water/movement fluids may
penetrate the inner bone via pores and vacancies [77],
diagenesis is likely to affect the outer bone area to a great-
er extent. This indicates that the higher n(87Sr)/n(86Sr)
isotope-amount ratio in the outer rim area (0.71661 ±
0.00038 (SD)) (see Table 2) is the result of a diagenetic
alteration, which is similar to the results of the solubility
profiling. The initial leachates (containing large amounts
of diagenetically altered material) had n(87Sr)/n(86Sr) iso-
tope-amount ratio values of 0.71686 ± 0.00018 (U, k = 2) (see
Table 3). Based on the diagenetic gradient, the inner core area
most likely provides the closest approximation of the biogenic
Sr signature (0.71557 ± 0.00039 (SD)) (see Table 2). This val-
ue overlaps within uncertainty with the n(87Sr)/n(86Sr)
isotope-amount ratio of the biogenic material assessed by
solubility profiling. The data indicates that diagenetic over-
print of the Sr signatures is still present, but the current
methods recovered a tendency toward the biogenic n(87Sr)/
n(86Sr) signals of this sample, which, in an archeological
context, may at least enable ruling out certain areas as
regions of origin.

Conclusion

The combination of NIR-HSI and LASS ICP-QMS/MC ICP-
MS has been successfully applied to reveal regions of pre-
served collagen (generally innermost areas of the bone less
affected), bearing biogenic n(87Sr)/n(86Sr) isotope-amount ra-
tio signatures in archeological bone samples, which are indis-
pensable for a reliable evaluation of (pre-)historic migration
(paths) during the most recent time prior to death of an indi-
vidual. The application of combining the change in C content,
the w(Ca)/w(P) and w(Sr) × 1000/w(Ca) mass fraction ratios
along with the NIR wavelengths of 1150 nm and 1410 nm,
proved most useful for direct analysis of archeological bone
samples using solid sample introduction such as laser ablation.
The statistical combination of the obtained information
allowed for the identification of biogenic areas of the bone
material with a high probability. Especially the combination
I(C)/I(Ca) and/or I(C) × 10/I(P) intensity ratios, NIR-HSI re-
sults at the wavelength of 1410 nm and microscopic charac-
terization allow for the detection of areas with preserved col-
lagen in biogenic apatite. As a result, these areas can be used
for the assessment of the biogenic n(87Sr)/n(86Sr) isotope-
amount ratios. In case of archeological bones with no suffi-
ciently reserved collagen, diagenetic gradients of w(Sr) ×
1000/w(Ca) mass fraction ratios, n(87Sr)/n(86Sr) isotope-
amount ratios, I(C)/I(Ca) and/or I(C) × 10/I(P) intensity ratios
in combination with NIR-HSI results at the wavelength of
1410 nm indicate the regions of less affected material with
the best estimation of biogenic n(87Sr)/n(86Sr) isotope-
amount ratios. Herein, a diagenetic overprint cannot be fully
excluded and impedes the assessment of biogenic n(87Sr)/
n(86Sr) isotope-amount ratios in archeological bone samples.
In such cases, acid buffer sequential leaching may reveal bio-
genic n(87Sr)/n(86Sr) isotope-amount ratios in powdered bone
samples or the closest approximation of these in case of ex-
tensive diagenetic alterations, but in significantly diagenetical-
ly altered bones, biogenic bone n(87Sr)/n(86Sr) isotope-
amount ratios remain irretrievable.

Nevertheless, the present method adds a new value to bones
in migration studies: Samples, which have been dismissed so
far as Btoo diagenetically altered,^ may now be of use and add
valuable information to the sole use of tooth enamel.

Table 3 Diagenetic, biogenic, and residual diagenetic n(87Sr)/n(86Sr) isotope-amount ratios of ES_SK91 and GT_25.025, determined by solubility
profiling. Errors are given as combined uncertainties (U, k = 2)

Initial diagenetic
n(87Sr)/n(86Sr)*

Pooled leachate
numbers

Biogenic
n(87Sr)/n(86Sr)

Pooled leachate
numbers

Residual diagenetic
n(87Sr)n(86Sr)**

Pooled leachate
numbers

ES_SK91 0.70858 ± 0.00017 1–2 0.70883 ± 0.00017 7–11 0.70896 ± 0.00017 Solid residue

GT_25.025 0.71686 ± 0.00018 1–2 0.71504 ± 0.00017 11 0.71527 ± 0.00017 Solid residue

*Average of the first two leachates, containing diagenetic bioapatite from secondary minerals and surface absorption

**Likely diagenetic fluoride-apatite in solid residual [32]
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