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Abstract. Polynomial commitments schemes are a powerful tool that enables one
party to commit to a polynomial p of degree d, and prove that the committed function
evaluates to a certain value z at a specified point u, i.e. p(u) = z, without revealing
any additional information about the polynomial. Recently, polynomial commitments
have been extensively used as a cryptographic building block to transform polynomial
interactive oracle proofs (PIOPs) into efficient succinct arguments. In this paper, we
propose a lattice-based polynomial commitment that achieves succinct proof size and
verification time in the degree d of the polynomial. Extractability of our scheme holds
in the random oracle model under a natural ring version of the BASIS assumption intro-
duced by Wee and Wu (EUROCRYPT 2023). Unlike recent constructions of polynomial
commitments by Albrecht et al. (CRYPTO 2022), and by Wee and Wu, we do not require
any expensive preprocessing steps, which makes our scheme particularly attractive as
an ingredient of a PIOP compiler for succinct arguments. We further instantiate our
polynomial commitment, together with the Marlin PIOP (EUROCRYPT 2020), to ob-
tain a publicly-verifiable trusted-setup succinct argument for Rank-1 Constraint System
(R1CS). Performance-wise, we achieve 17MB proof size for 220 constraints, which is
15X smaller than currently the only publicly-verifiable lattice-based SNARK proposed
by Albrecht et al.
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1. Introduction

Due to the significant progress in building quantum computers by various industry lead-
ers, e.g. IBM and Google, there has been a tremendous amount of interest in post-
quantum cryptography. This is highly evidenced by the NIST PQC Competition for stan-
dardising quantum-safe key encapsulation mechanisms and signatures, where the vast
majority of the selected algorithms are based on algebraic lattices. Indeed, not only do
the lattice-based constructions offer relatively small key and signature sizes [28,42,48],
but they are also renowned for their very fast implementation [71,78]. Consequently,
lattices seem to be a natural candidate to build more complex quantum-safe primitives,
such as non-interactive zero-knowledge proofs (NIZKs).

The last several years have seen enormous progress in constructing practically ef-
ficient NIZKs for lattice relations [12,44,68] which can produce proofs of size a few
dozen kilobytes. This has led to rather compact and practical constructions of privacy-
preserving primitives, such as ring signatures [67], blind signatures [1] and anonymous
credentials [27,56]. Unfortunately, the aforementioned protocols suffer the following
limitations—both the proof size and verification time are linear in the length of the wit-
ness. Hence, for proving more complex statements, efficient NIZKs with succinct proof
size and verification complexity are desired, i.e. zero-knowledge succinct non-interactive
arguments of knowledge (zk-SNARKs).

Polynomial commitment schemes [58] have been getting more and more spotlight
in the SNARKs community. The main reason is that, in combination with Polynomial
Interactive Oracle Proofs (PIOPs) [31,37], this cryptographic primitive can be used to
obtain succinct arguments with concrete efficiency (see e.g. [23,51,79]). In a polynomial
commitment scheme, one can commit to any polynomial f :=∑d

i=0 fiXi of bounded
degree d over a ring R, and then later prove that f evaluated at some public point u ∈ R
is equal to a public image z ∈ R, i.e.

f (u) = z . (1)

In the context of PIOPs, we require both the proof π and the verification time to be
succinct (i.e. polylogarithmic in the degree d), even if the evaluation point is chosen
adaptively by a verifier. Further, to obtain a SNARK, we need π to be a proof of knowl-
edge; thus we call such a polynomial commitment extractable.

Recently, various lattice-based polynomial commitments [3,13,35,76,83] were in-
troduced1, mainly as a direct application of functional commitments [64] over standard
cyclotomic rings R:=Zq [X ]/(XN + 1) where N is a power-of-two. Indeed, (1) can be
seen as a degree-one multivariate polynomial

[
1 u u2 · · · ud]

⎡

⎢
⎢
⎢
⎣

f0
f1
...

fd

⎤

⎥
⎥
⎥
⎦
= z . (2)

1We excluded generic constructions which simply commit to a polynomial and use a general-purpose
SNARK to prove correctness of the evaluation.
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Unfortunately, the aforementioned constructions suffer several limitations when applied
in the context of PIOPs. Firstly, succinct verification requires a preprocessing step,
meaning that the evaluation point u must be known when public parameters are gener-
ated and cannot be chosen adaptively. Further, only [3,13] offer extractable polynomial
commitments which unfortunately suffer from the following limitations: (i) they rely
on a knowledge assumption, which now seems to be at least “morally” broken [82],
(ii) message space can only consist of short vectors, and (iii) they only support linear
functions with short coefficients. This makes proving relations as in (2) cumbersome for
large degrees d. Even though one of the issues was circumvented by a promising recent
work from Wee and Wu [83], which allows committing to vectors of arbitrarily large
coefficients, their knowledge soundness analysis is left for future work. Therefore, con-
structing extractable polynomial commitments with succinct verification from lattices
still remains an open problem.

1.1. Our Contributions

In this work we propose a lattice-based PIOP-friendly polynomial commitment scheme.
Concretely, our construction supports committing to arbitrary polynomials f ∈ R[X]
of bounded degree d over R, and proving evaluations for any point u ∈ R with no
preprocessing necessary. Extractability holds in the random oracle model via the Fiat–
Shamir transformation [46] under a variant of the BASIS assumption defined recently
by Wee and Wu [83], which we call PowerBASIS.

At the core of our construction lie two split-and-fold interactive protocols for prov-
ing polynomial evaluations. The first one, which brings resemblance to lattice Bullet-
proofs [5,8,26], enjoys proof size and verification complexity polylogarithmic in the
degree d. Unfortunately, due to certain restrictions on the challenge space, which are in-
herited from the aforementioned works, the protocol achieves only 1/poly(λ) knowledge
soundness error. Even though soundness can be amplified via parallel repetition [9] for
the interactive protocol, this is not necessarily the case in the non-interactive setting when
applying the Fiat–Shamir transformation, as discussed in [10]. To this end, we propose
the second protocol, which achieves negligible soundness error in one-shot at the cost of
quasi-polylogarithmic dO(1/ log log d) proof size and verification runtime. Furthermore,
the non-interactive version of the scheme can be proven secure in the random oracle us-
ing the framework by Attema et al. [10]. Last but not least, we show how to upgrade the
evaluation proof to achieve zero-knowledge using the standard Fiat–Shamir-with-aborts
paradigm [29,65,66]. As a downside, our constructions suffer (i) from having a trusted
setup, with the common reference string (crs) size being quadratic in the degree d, and
(ii) the committing time is also O(d2). We summarise the efficiency of both schemes in
Table 1.

As a direct application, we combine our polynomial commitment scheme, which in-
cludes batch evaluation proofs, with the Marlin Polynomial IOP [37] to obtain a trusted-
setup (zero-knowledge) succinct non-interactive arguments of knowledge for Rank-1
Constraint System (R1CS). Practically, for ≈ 220 constraints our construction achieves
proofs of size 17MB, which is around 15X smaller than the only concretely instantiated
lattice-based proof system with succinct verification by Albrecht et al. [3]. Moreover, we
obtain a square-root improvement over [3] in terms of the prover runtime. In comparison
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Table 1. Efficiency overview of our polynomial commitment scheme.

scheme Commit Prover Verifier crs size Commitment Asymptotic Commitment Concrete
time time time size proof size size proof size

Construction 1 (Sec-
tion 5.2)

O(d2) O(d) O(log d) O(d2) O(1) O(log d) 480 KB 105 MB

Construction 2 (Sec-
tion 5.3)

O(d2) O(d) dO(1/ log log d) O(d2) O(1) dO(1/ log log d) 209 KB 3 MB

In this setting, we commit to polynomials of degree at most d over the ring R:=Zq [X ]/(XN +1). We count the
runtime (resp. sizes) in the number of ring operations (resp. elements), which take time (resp. size) polylog(d)

each. For clarity, we ignore the terms related to the security parameter λ. When computing concrete proof
sizes, we set λ = 128 and d = 220. We also include the Fiat–Shamir loss of Q = 264 random oracle queries.

Table 2. Comparison of lattice-based publicly verifiable proof systems forNP relations of size � with sublinear
communication complexity .

Scheme Assumptions TP NI Time Size Concrete
proof size

Prover Verifier crs Proof

[14] (M-)SIS, RO ✓ ✓ O(�) O(�) O(1) O(
√

�) –
[26] (M-)SIS, RO ✓ ✓ O(�) O(�) O(1) O(�ε) –
Lattice

Bulletproofs [5,
8,26]

M-SIS ✓ ✗ O(�) O(�) O(1) O(log �) –

[32] (M)-SIS, RO ✓ ✓ O(�) O(�) O(1) O(log �) –
[75] M-SIS, RO ✓ ✓ O(�) O(�) O(1) O(

√
�) 6 MB

Labrador [20] M-SIS, RO ✓ ✓ O(�) O(�) O(1) O(log �) 49KB
[3] Knowledge

k-M-SIS
✗ ✓ O(�4 log �) O(log �) O(�2) O(log �) 261 MB

This work PowerBASIS, RO ✗ ✓ O(�2) �O(1/ log log �) O(�2) �O(1/ log log �) 17 MB

We count the runtime (resp. sizes) in the number of ring operations (resp. elements), which take time (resp.
size) polylog(�) each, and we ignore the terms related polynomially in the security parameter λ. We exclude
the preprocessing step from the verifier runtime. Here 0 < ε < 1 is a constant. The “TP” column specifies
whether the scheme has transparent setup, and “NI” means whether the protocol can be made non-interactive
with negligible soundness error. The concrete proof sizes correspond to proving R1CS with � = 220 as reported
in the respective works.

with other lattice-based arguments which admit linear verification time, our scheme pro-
duces comparable proofs to the recent “square-root” protocol by Nguyen and Seiler [75]
for bigger R1CS instances, such as 230 constraints, but still more than two orders of
magnitude larger than the current state-of-the-art by Beullens and Seiler [20]. We refer
to Table 2 for full comparison and Sect. 6 for more details on sizes.

1.2. Technical Overview

We provide a brief overview of our techniques. Let λ be a security parameter, q be an
odd prime, and N be a power-of-two. Define the polynomial rings R:=Z[X ]/(XN + 1)

and Rq :=Zq [X ]/(XN + 1). Let R×q be the set of invertible elements in Rq . For a base

δ ≥ 2 and n ≥ 1, we define the gadget matrix as Gn :=
[
1 δ · · · δq̃]⊗In ∈ Rn×nq̃

q where
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q̃:=�logδ q	 + 1. For simplicity, we omit the subscript n and write G:=Gn when it is
clear from the context. Further, for a fixed matrix T ∈ Rn×k

q and matrix A ∈ Rn×m
q , we

denote by S ← A−1
σ (T) sampling S ∈ Rm×k

q from the discrete Gaussian distribution
with Gaussian parameter σ > 0 conditioned on AS = T over Rq .

1.2.1. BASIS Commitment Scheme

Until lately, lattice-based commitment schemes were split into two disjoint classes:
Hashed-Message Commitments [2] and Unbounded-Message Commitments [15]. The
former one has the property that the sizes of commitments are almost independent of the
sizes of the committed values, and thus the commitments are compressing. This comes
at the cost of the restricted message space being only vectors of small norm. On the other
hand, the main characteristic of the latter class is the unbounded message space, but the
commitment size is linear in the size of the message.

Recently, Wee and Wu [83] proposed the first lattice-based commitment scheme which
is compressing, and simultaneously supports arbitrarily large messages over Rq . The
downside of the construction is a requirement on having a trusted setup, which was
not necessary in prior works, as well as the quadratic committing time in the message
length. In the following, we describe the main intuition behind the construction by Wee
and Wu. To this end, we recall the BASIS assumption2, which lies at the core of the
binding property of the commitment.
BASIS assumption. As in the (Module-)SIS problem [61], the adversary’s final goal is to
find a non-zero vector s of small norm such that As = 0 for a uniformly random matrix
A← Rn×m

q . However, in the BASIS setting the adversary is given more information.
Namely, let (B,aux)← Samp(A) be an efficient algorithm, which given matrix A as
input, outputs another matrix B ∈ Rn′×m′

q along with some auxiliary information aux.
Then, in addition to the challenge matrix A, the adversary is given a tuple (B,aux,T),
where T is a trapdoor3 for B. In particular, T can be used to efficiently emulate sampling
from B−1

σ (t) for any image t ∈ Rn′
q under certain conditions on the parameter σ > 0.

Note that hardness of theBASIS assumption heavily depends on theSamp algorithm.
For instance, if Samp(A) is an identity function and simply outputs B:=A, then using
the trapdoor T we can find a short non-zero solution to A by sampling s← B−1

σ (0). In
this paper, we consider the following three instantiations of the Samp algorithm:

� StructBASIS: The sampling algorithm Samp(A) first generates a row aᵀ ← R�
q

and sets

A�:=
[
aᵀ
A

]

∈ R(n+1)×�
q . (3)

2BASIS stands for Basis-Augmented Shortest Integer Solution.
3In [83], the trapdoor T is generated by sampling T← B−1

σ (G). Since the matrix T ∈ Rm′×n′q̃
q is short

and BT = G, it can be used in Micciancio-Peikert trapdoor sampling [72] to efficiently generate preimages
under B.
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Next, it samples square matrices W1, . . . ,W� ∈ R(n+1)×(n+1)
q and outputs

B�:=
⎡

⎢
⎣

W1A� −Gn+1
. . .

...

W�A� −Gn+1

⎤

⎥
⎦ and aux:=(W1, . . . ,W�) .

� PowerBASIS: Samp(A) generates a row aᵀ ← R�
q and sets A� as in (3). Then, it

samples a single square matrix W← R(n+1)×(n+1)
q and outputs

B�:=
⎡

⎢
⎣

W0A� −Gn+1
. . .

...

W�−1A� −Gn+1

⎤

⎥
⎦ and aux:=W . (4)

� PRISIS4: Samp(A) samples a row aᵀ ← R�
q and sets A� as in (3). Then, it samples

a uniformly random polynomial w← Rq and outputs

B�:=
⎡

⎢
⎣

w0A� −Gn+1
. . .

...

w�−1A� −Gn+1

⎤

⎥
⎦ and aux:=w .

Observe that the only difference between these variants is how the square matrices
W1, . . . ,W� are generated. For StructBASIS they are picked independently and uni-
formly at random, while for PowerBASIS (resp. PRISIS) each matrix Wi is defined as
Wi :=Wi−1 for i ∈ [�], where W← R(n+1)×(n+1)

q (resp. W:=w · In+1 for w← Rq ).
Not to mention the fact that the functional commitment from [83] can be built on top of
all three BASIS instantiations 5.

In this work, we analyse hardness of the three newly introduced assumptions for
� = 2. Concretely, we prove that under a certain parameter selection

StructBASIS
Lemma 3.6←−−−−→ PowerBASIS and PRISIS

Lemma 3.7−−−−−−→ MSIS .

Unfortunately, the techniques do not translate well for larger values of �, as we argue
in Sect. 3.2. Therefore, hardness of the BASIS assumption for � > 2 is left as an open
problem.

4The name stands for Power-Ring-BASIS.
5A reader familiar with the work of [83] can notice a difference between StructBASIS and the original

BASISstruct from [83, Assumption 3.3]. Namely, the latter one directly sets the matrix A�:=A without
appending an additional row aᵀ at the top (as in BASISrand [83, Assumption 3.3]). Note that it is possible to
build a commitment scheme based on such a variant, as described in [83, Section 4], but this would increase
the commitment, as well the opening sizes, by a factor of nq̃. Hence, for efficiency we consider the modified
version of BASISstruct as presented here.
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Commitment construction. We describe a commitment scheme based on thePowerBASIS
assumption. Trivial modifications can be made in order to make the scheme secure under
the StructBASIS or PRISIS assumptions.

Consider a message space of arbitrary vectors in Rd+1
q of length d + 1. The setup

algorithm generates a (pseudo-)random matrix A ∈ Rn×m
q , along with a uniformly

random invertible matrix W ∈ Rn×n
q . Further, it computes a trapdoor T for the matrix

B:=
⎡

⎢
⎣

W0A −G
. . .

...

WdA −G

⎤

⎥
⎦ . (5)

Then, the common reference string is crs:=(A,W,T).
In order to commit to a vector f = ( f0, f1, . . . , fd) ∈ Rd+1

q , one uses the trapdoor T

to sample short s0, . . . , sd ∈ Rm
q and t̂ ∈ Rnq̃

q as follows:

⎡

⎢
⎢
⎢
⎣

s0
...

sd
t̂

⎤

⎥
⎥
⎥
⎦
← B−1

σ

⎛

⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

− f0W0e1

− f1W1e1
...

− fdWde1

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠

where e1:=(1, 0, . . . , 0)ᵀ ∈ Rn
q . The commitment becomes t:=Gt̂, and the opening

consists of (si )i∈[0,d]. The opening algorithm, given the common reference string crs,
commitment t ∈ Rn

q and openings (si )i∈[0,d] as input, checks whether for all i =
0, 1, . . . , d:

Asi + fie1 =W−i t and ‖si‖ ≤ β

for some norm parameter β > 0.

Security properties. In this paper, we consider the notion of relaxed binding [12].
Namely, we say that a relaxed opening for a commitment t consists of (i) a vector of
openings s = (s0, . . . , sd), (ii) a message f = ( f0, . . . , fd) ∈ Rd+1

q , and (iii) a vector

of relaxation factors c:=(c0, . . . , cd) ∈ Rd+1
q , which together satisfy:

Asi + fie1 =W−i t, ‖ci · si‖ ≤ β, ‖ci‖1 ≤ κ and ci ∈ R×q

for i = 0, 1, . . . , d and some κ ≥ 1. In particular, vectors si do not need to be short.
Now, we show that the commitment scheme is binding w.r.t. relaxed openings under the

PowerBASIS assumption. Indeed, letBbe the following adversary for thePowerBASIS
security game, which is given as input a tuple (A,B,W,T) from the challenger, whereB
is defined as in (4) for � = d+1, andA� is constructed as in (3). First,B aborts ifW is not
invertible6. Otherwise, B passes crs:=(A�,W,T) to the adversary A against the relaxed

6Unlike in PowerBASIS, the commitment construction requires that matrix W is invertible. However, by
carefully choosing parameters q and N , one can argue that the probability of W← Rn×n

q not being invertible
is negligible (c.f. [29, Appendix C.3] and [45, Appendix C]).
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binding game. Suppose A comes up with two relaxed openings (s, f, c) and (s′, f ′, c′)
for the same commitment t and f �= f ′. Thus, for some index i we have fi �= f ′i . Then,
by definition of relaxed openings we have

A�(si − s′i )+ ( fi − f ′i )e1 = 0 .

Since fi − f ′i �= 0, we must have s̄i :=si − s′i �= 0. Hence by definition of A�, s̄i is
a non-zero solution for the matrix A, but not necessarily a short one. To conclude the
proof, note that ci c′i s̄i is still a non-zero vector, due to the invertibility property of ci , c′i ,
and at the same time:

‖ci c′i s̄i‖ ≤ ‖c′i (ci si )‖ + ‖ci (c′i s′i )‖ ≤ 2κβ . (6)

Thus, ci c′i s̄i is a valid solution for the PowerBASIS problem.
Finally, the statistical hiding property is directly inherited from the original construc-

tion of the BASIS commitment by Wee and Wu [83].

1.2.2. Framework for Proving Polynomial Evaluations

We use the construction above to build our polynomial commitment scheme. Namely,
given a polynomial f ∈ Rq [X] of degree at most d over Rq , we commit to f by
committing to its coefficient vector f = ( f0, f1, . . . , fd) ∈ Rd+1

q , as described in
Sect. 1.2.1, to obtain a commitment t ∈ Rn

q along with a short opening (s0, s1, . . . , sd),
where each si ∈ Rm

q .
An essential property of polynomial commitments is being able to prove that the

committed polynomial was evaluated correctly, i.e. f (u) = z for public u and z in Rq .
In the setting of our commitment scheme, we are interested in the following ternary
relation7:

Rd,β :=
{(

(A,W,T), (t, u, z), ( f, (si )0≤i≤d)
)

∣
∣
∣
∣
∀0 ≤ i ≤ d,Asi + fie1 =W−i t ∧ ‖si‖ ≤ β

∧ f (u) = z

}

. (7)

The key ingredient for proving such relations efficiently will be the compressed �-
protocol in Fig. 1, which we will use recursively.

We take inspiration from a common split-and-fold technique used by prior works, e.g.
FRI [17] and DARK [31]. Concretely, take k ∈ N and suppose d + 1 = kh for some
h ∈ N. Let us write the polynomial f (X) =∑d

i=0 fiXi as

f (X) =
k∑

t=1

ft (Xk)Xt−1, where ft (X):=
d+1
k −1∑

i=0

fki+t−1Xi for t = 1, 2, . . . , k .

7We use the standard notation that the first entry corresponds to the common reference string, the second
one is the statement, and the last one is the witness. Also, T is not going to be used by the prover, nor by the
verifier.
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Fig. 1. Compressed �-protocol for the relationRd,β from (7). Here,crs = (A,W,T) is the common reference

string for our polynomial commitment scheme and d + 1 = kh . We denote d ′:=(d + 1)/k − 1 to be degree
of the polynomial g, and w:=maxα∈C ‖α‖1.

Then, we want to prove that f (u) = ∑k
t=1 ft (uk)ut−1 = z. To this end, we let the

prover send these partial evaluations zt := ft (uk) for t ∈ [k], and the verifier manually
checks whether

k∑

t=1

ztu
t−1 = z . (8)

Further, the verifier returns a challenge α:=(α1, . . . , αk) from a challenge space C ⊆ Rk
q .

We denote w:=maxα∈C ‖α‖1. Later we will discuss concrete instantiations for C.
Now, consider the folded polynomial g(X) =∑k

t=1 αt ft (X)which is of degree at most
d ′:=(d + 1)/k − 1 = kh−1 − 1. The crucial observation here is that using the structure
of the PowerBASIS commitment8 from Sect. 1.2.1 we get for every i = 0, 1, . . . , d ′:

(Wk)−i
(

k∑

t=1

αtW−(t−1)

)

t =
k∑

t=1

αtW−(ki+t−1)t

= A

(
k∑

t=1

αi ski+t−1

)

+
(

k∑

t=1

αi fki+t−1

)

e1

= Azi + gie1

8We note that a similar result could be obtained using PRISIS.
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where zi :=∑k
t=1 αt ski+t−1 satisfies ‖zi‖ ≤ β ′:=wβ. In other words, t′:=

(
∑k

t=1 αtW−(t−1)) · t, which can be computed by the verifier in time O(k), is a commit-
ment to the polynomial g with the opening (z j ) j∈[0,d ′] w.r.t. the new common reference
string crs′:=(A,Wk,T). Further, by definition of g:

g(uk) =
k∑

t=1

αt ft (u
k) =

k∑

t=1

αt zt .

Thus, we can conclude that:

(

(A,Wk,T),

(
k∑

t=1

αtW−(t−1)t, uk,
k∑

t=1

αt zt

)

,
(
g, (zi )i∈[0,d ′]

)
)

∈ Rd ′,wβ . (9)

In our �-protocol, the prover directly outputs
(
g, (zi ) j∈[0,d ′]

)
to the verifier, who checks

Eqs. (9) and (8). To achieve succinct proofs and verification, we let the prover recursively
run the �-protocol on the new instance tuple (9) until the degree of the folded polynomial
is zero9. Overall, the protocol has 2h + 1 rounds and the last prover message is a pair
of the form (g, z) ∈ Rq ×Rm

q , where ‖z‖ ≤ β ′:=whβ. Performance-wise (excluding
the poly(λ) factors), the prover sends O(hk) elements in Rq , while the verifier makes
in total O(hk) operations in Rq .

We now focus on knowledge soundness. As common in the lattice setting, we aim to
extract a witness with respect to the relaxed relation:

R̃d,β,κ :=
{(

(A,W,T), (t, u, z), ( f, (si )0≤i≤d , (ci )0≤i≤d)
)

∣
∣
∣
∣

∀0 ≤ i ≤ d,Asi + fie1 =W−i t
∧‖ci · si‖ ≤ β ∧ ‖ci‖1 ≤ κ

∧ci ∈ R×q ∧ f (u) = z

⎫
⎬

⎭
.

In other words, the witness is now a relaxed opening for the commitment t. Note that the
relation is still meaningful as long as the commitment scheme is binding w.r.t. relaxed
openings.

The knowledge extraction strategy for R̃β,κ will strongly depend on the instantiation
of the challenge space C. In this work, we consider two variants described below.

Construction 1:Monomial protocol. As the name suggests, we will make use of certain
invertibility properties of the set of signed monomials in Rq , following the approach
from lattice Bulletproofs [5,8,26]. Namely, we set (k, h) = (2, log(d + 1)) and define
the challenge space

C:=
{
(1, Xi ) : i ∈ Z

}
⊆ Rk

q .

9For concrete efficiency, it might be more beneficial to apply the protocol recursively until the degree of
the folded polynomial is sufficiently small, instead of going down to zero.
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By construction, w = 2 and |C| = 2N . Now, we show that for the challenge space
C above, the �-protocol in Fig. 1 is special sound w.r.t. the relaxed relation R̃. The
methodology can then be extended to show that our recursive protocol is (2, . . . , 2)-
special sound. Thus, the general parallel repetition results [9], as well as security of the
Fiat–Shamir transformation in the random oracle model [10] would directly apply here.

To this end, suppose we are given two transcripts

tr j :=((z1, z2), (1, α j ), (g j , (z j,i )i∈[0,d ′])) for j = 0, 1

with the same first message (z1, z2) and two distinct challenges (1, α0) �= (1, α1) in C
such that

{(
(A,W2,T),

(
(In + α jW−1)t, u2, z1 + α j z2

)
,
(
g j , (z j,i )i∈[0,d ′]

)) ∈ Rd ′,β ′

z1 + uz2 = z

whereβ ′:=wβ = 2β. Observing thatα0−α1 ∈ R×q , we define for i = 0, 1, . . . , d ′:=(d−
1)/2

f̄2i+1:=g0,i − g1,i

α0 − α1
, f̄2i :=α1g0,i − α0g1,i

α1 − α0
(10)

and similarly

s̄2i+1:=z0,i − z1,i

α0 − α1
, s̄2i :=α1z0,i − α0z1,i

α1 − α0
.

Denote 2:=(2, . . . , 2) ∈ Rd+1
q . We claim that

(
(A,W,T), (t, u, z) ,

(
f̄ , (s̄i )i∈[0,d], 2

)) ∈ R̃d,2Nβ ′,2 .

Let us start with proving correctness of the relaxed opening. By careful inspection:

As̄2i+1 + f̄2i+1e1 = 1

α0 − α1

(
(Az0,i + g0,ie1)− (Az1,i + g1,ie1)

)

= W−2i

α0 − α1

(
(In + α0W−1)t − (In + α1W−1)t

)

=W−(2i+1)t

and similarlyAs̄2i+ f̄2ie1 =W−2i t. As for shortness, we use the result from [19] which
says that ‖ 2

α0−α1
‖∞ = 1 for any distinct α0, α1 ∈ {Xi : i ∈ Z}. Thus, for any i ∈ [0, d ′]

we have

‖2 · s̄2i+1‖ ≤
∥
∥
∥
∥

2

α0 − α1
· (z0,i − z1,i )

∥
∥
∥
∥ ≤

∥
∥
∥
∥

2

α0 − α1

∥
∥
∥
∥

1
· ∥∥z0,i − z1,i

∥
∥ ≤ 2Nβ ′

and similarly

‖2 · s̄2i‖ ≤
∥
∥
∥
∥

2

α1 − α0
· (α1z0,i − α0z1,i )

∥
∥
∥
∥ ≤

∥
∥
∥
∥

2

α1 − α0

∥
∥
∥
∥

1
· ∥∥α1z0,i − α0z1,i

∥
∥ ≤ 2Nβ ′.
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Finally, we need to prove that the extracted polynomial f̄ satisfies f̄ (u) = z. From the
verification equations we know that g0(u2) = z1+α0z2 and g1(u2) = z1+α1z2. Hence,

f̄ (u) =
d ′∑

i=0

f̄2i u
2i +

d ′∑

i=0

f̄2i+1u
2i+1

=
d ′∑

i=0

α1g0,i − α0g1,i

α1 − α0
· u2i +

d ′∑

i=0

g0,i − g1,i

α0 − α1
· u2i+1

= α1g0(u2)− α0g1(u2)

α1 − α0
+ g0(u2)− g1(u2)

α0 − α1
· u

= z1 + uz2

= z

which concludes the proof of the claim.
An almost identical strategy can be applied to our recursive protocol when given a

general (2, . . . , 2)-tree of transcripts [8]. In this case, we can extract a relaxed opening
( f̄ , (s̄i )i∈[0,d], 2h) to the commitment t which satisfies

(
(A,W,T), (t, u, z) ,

(
f̄ , (s̄i )i∈[0,d], 2h

))
∈ R̃d,(2N )hβ ′,2h

where β ′:=2hβ and 2h:=(2h, . . . , 2h). In terms of performance, the communication
complexity and the verifier runtime (in terms of operations in Rq ) are O(log d).

Using the knowledge soundness result from [8], we deduce that the soundness error
for our protocol is h/|C| = h/(2N ). Since N = poly(λ), we only manage to obtain
an inverse-polynomial soundness error. Even though this can be further reduced via
parallel repetition in the interactive case [9], such amplification does not combine with
the Fiat–Shamir transformation [10]. Our second construction circumvents this issue by
achieving negligible soundness error in one-shot.

Construction 2: Large sampling set protocol. In this scenario, we define the challenge
space as

C:= {(α1, . . . , αk) : ∀i ∈ [k], ‖αi‖∞ ≤ βC}
for some suitable parameter βC ≥ 1. Hence, by construction w ≤ kβCN .

One could naively adapt the strategy from Construction 1 to prove knowledge sound-
ness of the �-protocol as follows. To begin with, we aim to extract k accepting transcripts
with k pairwise distinct challenges α j ∈ C for j = 1, . . . , k. Further, we compute the
extracted polynomial f by inverting the k× k matrix C, where the j-th row corresponds
to the challenge α j in the j-th transcript. Unfortunately, this approach contains a few
critical issues. Firstly, it is unclear whether the matrix C is invertible. But even if it is,
the resulting polynomial f may contain large coefficients, or in the context of relaxed
openings, there might be no sufficiently short element v ∈ Rq such that v · fi is short
for all coefficients fi .
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Fig. 2. Visualisation of the notion of coordinate-wise special soundness (CWSS) for k = 4 coordinates. Here,
α�
i �= αi for all i ∈ [4].

We propose an alternative approach which relies on a notion, called coordinate-wise
special soundness10 (CWSS). As in special soundness, it says that given k + 1 valid
transcripts tr j = (a,α j , z j ) for j = 0, 1, . . . , d, such that α0, . . . ,αk ∈ C satisfy a
certain relation, then one can extract the witness. The relation is defined as follows:
for every j ∈ [k], vectors α0 = (α0,1, . . . , α0,k) and α j = (α j,1, . . . , α j,k) differ
exactly in the j-th coordinate, i.e. ∀i ∈ [k]\{ j}, α j,i = α0,i and α j, j �= α0, j (see Fig. 2
for visualisation). We prove that for multi-round protocols, CWSS implies knowledge
soundness both in the interactive and non-interactive setting where the Fiat–Shamir
transformation is applied.

In the following, we show that our �-protocol satisfies CWSS. Suppose we are given
k + 1 valid transcripts

tr j :=
(
(z1, . . . , zk),α j = (α j,1, . . . , α j,k), (g j , (z j,i )i∈[0,d ′])

)
for j = 0, 1, . . . , k .

Let us fix j ∈ [k] and consider the transcripts tr0 and tr j . From the verification equations
we have for i = 0, . . . , d ′:

Az0,i + g0,ie1 =W−ki
(

k∑

t=1

α0,tW−(t−1)

)

t

Az j,i + g j,ie1 =W−ki
(

k∑

t=1

α j,tW−(t−1)

)

t.

Since α0 and α j are the same in all coordinates apart from the j-th one, by subtracting
the two equations we obtain

A(z0,i − z j,i )+ (g0,i − g j,i )e1 = (α0, j − α j, j )W−(ki+ j−1)t .

Now, by choosing parameters q, N , βC appropriately, and using the result by Lyuba-
shevsky and Seiler that short elements in Rq are invertible [70], we deduce that α0, j −
α j, j ∈ R×q and thus can define the extracted openings

s̄ki+ j−1:= z0,i − z j,i
α0, j − α j, j

and f̄ki+ j−1:= g0,i − g j,i

α0, j − α j, j

10As far as we are aware, this strategy was first introduced by Baum et al. [14] in the context of amortised
lattice-based zero-knowledge proofs.
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and the partial vector of relaxation factors c j :=(α0, j −α j, j , . . . , α0, j −α j, j ) ∈ Rd ′+1
q .

Then, by construction we have As̄ki+ j−1 + f̄ki+ j−1e1 =W−(ki+ j−1)t, and further

‖(α0, j − α j, j ) · s̄ki+ j−1‖ ≤ 2wβ and ‖α0, j − α j, j‖ ≤ 2βCN .

From the other verification checks we similarly conclude that
∑d ′

i=0 f̄ki+ j−1uki = z j .
Eventually, by running the argument above for j = 1, 2, . . . , k, we reconstruct a poly-

nomial f ∈ R≤dq [X], along with (si )i∈[0,d], and the vector c:=(c1, . . . , ck) of relaxation
factors so that

(
(A,W,T), (t, u, z) ,

(
f̄ , (s̄i )i∈[0,d], c

)) ∈ R̃d,2wβ,2βCN .

In terms of security, we show that the knowledge soundness error of our �-protocol
is bounded by k/(2βC + 1)N , where (2βC + 1)N is the number of all possible choices
for a single coordinate in C. Consequently, by picking k, βC ≥ 1 and N = poly(λ)

appropriately, we achieve negligible soundness error in one-shot.
This strategy can be further applied in our recursive protocol. That is, analogously as

for special soundness, we first generalise the notion of coordinate-wise special soundness
in the multi-round setting, and then prove that our protocol satisfies CWSS as above. By
following the methodology from [8,10], we obtain the knowledge soundness error equal
to hk/(2βC + 1)N , while the knowledge extractor runs the prover expected (k + 1)h

times, and outputs a relaxed opening ( f̄ , (s̄i )i∈[0,d], c) such that

(
(A,W,T), (t, u, z) ,

(
f̄ , (s̄i )i∈[0,d], c

)) ∈ R̃d,γ,ξ

where γ :=(2h(2βCN )2h−h−1wh) · β and ξ :=2βC(2βCN )2h−2N . We highlight that the
norm blow-up is much larger here than in the monomial case due to certain technical
differences11. As a result, we cannot pick k = 2 and h = O(log d) since then one
would require log q = O(d) for relaxed binding to hold (c.f. Eq. (6)); thus making
the proof size and verifier time polynomial in d. Instead, we instantiate the protocol by

choosing k = O
(
d

1
log log d

)
and h = O(log log d). In this case, log q = polylog(d),

and the proof size and verifier complexity, in terms of operations over Rq , become

O(d
1

log log d log log d) = dO(1/ log log d).

1.2.3. Polynomial Commitments over Finite Fields

Until now, we were focusing on polynomial commitments over the ring Rq :=Zq [X ]/
(XN + 1). Here, we sketch how to obtain a polynomial commitment over a finite field,
which is required by Polynomial IOPs [31,37] to compile into succinct arguments. The
key ingredient, which allows us to do that is the ability to commit to arbitrarily large
elements in Rq .

11Roughly speaking, in Construction 1 we managed to keep the norm growth smaller due to the fact that
the relaxation factors 2h are independent of the extracted transcripts, which is not the case for the relaxation
factors c in Construction 2. We refer to Sect. 5.3 for more details.
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Let l ≥ 1 be a divisor of N . It is a well-known fact [70] that if q ≡ 2N/ l + 1
(mod 4N/ l + 1), then there exists a ring isomorphism ϕ from F

N/ l to Rq , where F is a
finite field of size ql . Thus, we define a map ϕF : F→ Rq as x �→ ϕ(x, 0, . . . , 0), and
denote the image of ϕF as Sq . We will make use of the fact that Sq is an ideal of Rq .

Suppose we want to commit to a polynomial F ∈ F
≤d [X] and prove that F(x) = y for

x, y ∈ F. Using the homomorphic property of ϕF, it is easy to see that this is equivalent
to proving f (u) = z overRq , where f [X]:=∑d

i=0 ϕF(Fi )Xi ∈ Sq [X], u = ϕF(x) ∈ Sq

and z = ϕF(y) ∈ Sq . Therefore, we commit to the polynomial f ∈ Rq [X] and prove
evaluation of u at the point z as before.

What we need to take care of is proving that all coefficients of f indeed lie in Sq . This
allows us to extract the polynomial F̄ ∈ F[X] by taking the inverse of ϕF coefficient-
wise. Looking at our underlying � protocol in Fig. 1, the additional proof comes without
any change on the prover’s side, while the verifier also checks whether g ∈ Sq [X], which
is the case since Sq is an ideal. To see why this modification is sufficient, consider the
extraction strategy in Eq. (10). Since now g0,i , g1,i ∈ Sq , we again use the fact that Sq

is an ideal and conclude that f̄2i+1 = (g0,i − g1,i )/(α0 − α1) also lies in Sq . Identical
reasoning follows for both Construction 1 and 2.

1.3. Related Works

The first lattice-based interactive proof with sublinear communication complexity for
arithmetic �-gate circuit satisfiability was formally proposed by Baum et al. [14], where
the authors achieve O(

√
�) size proofs.

The construction was later generalised by Bootle et al. [26] who define so-called
“levelled commitments” and give O(�1/k) size proofs for proving knowledge of a com-
mitment opening with k = O(1) levels. The main drawback of the scheme is that the
modulus for the proof system increases exponentially in k and thus considering more than
2-3 levels seems impractical. Recently, Nguyen and Seiler [75] combined the square-root
approach from [14] with the CRT-packing technique from [44] to obtain a practically
efficient square-root NIZK, with 6MB proofs for circuits of size � = 220.

Bootle et al. [26] also proposed the first lattice adaptation of the Bulletproofs proto-
col [22,30] over polynomial ringsRq = Zq [X ]/(XN+1) which offers polylog(�) proof
sizes. This approach was later improved independently by Attema et al. [8] and Albrecht
and Lai [5] in terms of tighter soundness analysis, and also generalised to a more abstract
setting by Bootle et al. [24]. While the split-and-fold strategy from Bulletproofs is very
attractive in the discrete logarithm setting and keeps asymptotic efficiency in the lat-
tice scenario, it does not mix well with the shortness condition required in lattice-based
cryptography. Consequently, this leads to a concrete blow-up of the parameters as well
as the proof size. Roughly speaking, for the knowledge soundness argument it must be
possible to invert the folding in the extraction such that the extracted solution vector
is still short. To this end, one needs a challenge space of the underlying compressed
�-protocol to have a property that (a scaled) inverse of a difference of any two distinct
challenges is still short - such sets are called subtractive. Hence, Bootle et al. [26] picked
the challenge space to consist of monomial challenges C:={Xi : i ∈ Z} ⊆ Rq , which is
indeed subtractive as shown in [19]. Since the �-protocol is 3-special sound, norm of the



31 Page 16 of 92 G. Fenzi et al.

extracted solution vector grows by a factor of O(N 3) for every level of folding. Then,
the parameters must be chosen such that Module-SIS is hard with respect to the norm
of the extracted solution vector, resulting in the need for a huge modulus q. Note that a
similar issue occurs in our Construction 1 (c.f. Sect. 5.2). However, since our underlying
compressed �-protocol is only 2-special sound, norm of the extracted vector grows by
only a factor of O(N ) for each folding level (but at the price of having a trusted setup).

In addition to the norm growth of the extracted witness, the restriction on the challenges
has a negative impact on the soundness error. Indeed, since the challenge space C in [26]
has size 2N , the soundness error becomes only 1/poly(λ). Furthermore, it was proven
by Albrecht and Lai [5] that all subtractive set over Rq have size O(N ). This becomes
problematic especially in the non-interactive setting due to the result by Attema et
al. [10], who showed that the Fiat–Shamir transformation of a parallel repetition of
special sound protocols does not necessarily decrease the soundness error. A promising
solution to circumvent this limitation was recently proposed by Bünz and Fisch [32],
who suggested a new knowledge extraction strategy, i.e. the notion of almost special
soundness, which does not require subtractive sets. Instead, the challenges are picked
from the exponential-sized set of integers [0, 2λ−1). Unfortunately, the former issue with
the norm growth for each folding level is still present in [32].

Recently, Beullens and Seiler [20] showed that by combining a split-and-fold ap-
proach with algebraic techniques introduced in linear-sized lattice-based NIZKs [68],
it is possible to achieve negligible soundness error whilst controlling the norm growth.
This is evidenced with impressive 50KB proofs for circuits of size � = 220.

Major downside of all the aforementioned works is a linear verification time, which can
be the main efficiency bottleneck when proving satisfiability of large circuits. Until now,
the only lattice-based publicly verifiable succinct argument of knowledge with efficient
verification (excluding the preprocessing step) was proposed by Albrecht et al. [3].
The construction is obtained as a direct application of functional commitments [64]
and soundness holds under a knowledge assumption. However, similar to our scheme,
a trusted setup is required, and more importantly, the prover algorithm runs in time
O(�4 log �) which makes it unappealing to implement in practice. Even more worryingly,
the underlying assumption has been recently (at least morally) broken [82].

Prior to [3], all lattice-based zk-SNARKs were in the designated-verifier setting [49,
55,81] . The constructions use the Linear-PCP compiler [21] to transform into succinct
arguments. Notably, the most recent work by Steinfeld et al. [81] achieves proofs of
size 6KB for � = 220 constraints at the cost of very large crs (in the order of tens of
gigabytes).

Naturally, there is a line of research focusing on the security of lattice-based zero-
knowledge proofs against quantum adversaries [41,59,60]. Particularly, Lai et al. [60]
show that any multi-round protocol, which satisfies special soundness and collapsing,
is knowledge sound in the post-quantum setting. As a special case, they demonstrate
that the lattice Bulletproofs protocol [26] is knowledge sound against quantum provers.
Since our constructions not only satisfy (coordinate-wise) special soundness but also
follow the split-and-fold strategy from [26], we believe that the general result from [60]
can be adapted to our setting.

Interestingly, lattice assumptions are not only used to build lattice-based commit-
ments, but also to construct non-interactive arguments in the standard model, i.e. without
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the random oracle. For instance, there is a line of works [33,53,54] which focuses on
instantiating the Fiat–Shamir transformation with a correlation intractable hash func-
tion [34], that itself can be built from the Learning with Errors (LWE) problem [53].
Following this template, Choudhuri, Jain and Jin [38] built a SNARG for languages in P
only based on the LWE problem with polynomial modulus. Moreover, the LWE assump-
tion can be used to construct non-interactive succinct (and batched) arguments without
the Fiat–Shamir transformation, but via somewhere extractable hash functions [40,57].
We believe that naturally, due to relying on more assumptions, constructions based on
the random oracle model should perform much better in terms of concrete efficiency.

1.4. Concurrent and Subsequent Works

Recently, Bootle et al. [25] and Cini et al. [39] independently proposed variants of
the lattice Bulletproofs protocol that achieve polylogarithmic verification time. The
former work proposes a new delegation algorithm inspired from [62], which requires an
additional pre-processing step. The latter one introduces more (power-like) structure on
the Ajtai commitment [2] which allows for fast verification, at the cost of relying on a new
assumption called Vanishing-SIS (vSIS). We note that there is a close similarity between
vSIS and the PRISIS, and we leave the concrete relationship between the two for the
future work. Nevertheless, the aforementioned work inherit the issue from the original
construction [26] that the soundness error is non-negligible and parallel repetitions are
required.

Fisch et al. [47] recently presented a polynomial commitment scheme, as an applica-
tion of their linear functional commitment. Following the work of [3], the construction
relies on the knowledge k-M-ISIS assumption, which appears to be morally invalidated
in [82].

As a subsequent work, Albrecht et al. [4] proposed a new polynomial commitment
scheme with polylogarithmic communication and verification complexity under stan-
dard assumptions. To this end, the authors construct a new commitment scheme that
combines our PowerBASIS construction together with the Merkle tree paradigm. Con-
sequently, the committing runtime becomes quasilinear in the length of the message,
while the size crs shrinks to only polylogarithmic. The binding property of the commit-
ment relies on a “multi-instance” version of the PRISIS assumption. Finally, using the
exact strategy from Lemma 3.7, security of the aforementioned assumption is further
reduced to Module-SIS.

2. Preliminaries

Notation. We denote the security parameter by λ, which is implicitly given to all algo-
rithms unless specified otherwise. Further, we write negl(λ) (resp. poly(λ)) to denote
an unspecified negligible function (resp. polynomial) in λ. In this work, we implicitly
assume that the vast majority of the key parameters, e.g. the ring dimension, and the
dimensions of matrices and vectors, are poly(λ). However, the modulus used in this
work may be super-polynomial in λ.
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For a, b ∈ N with a < b, write [a, b]:={a, a + 1, . . . , b}, [a]:=[1, a]. For q ∈ N

writeZq for the integers modulo q. We denote vectors with lowercase boldface (i.e. u, v)
and matrices with uppercase boldface (i.e. A,B). For a vector x we write xi or x[i] for
its i-th entry.

Norms. We define the �p norm on C
n as ‖x‖p =

(∑
i |xi |p

)1/p for p < ∞ and
‖x‖∞ :=maxi |xi |. Unless otherwise specified, we use ‖·‖ for the �2 norm. We let the
norm of a matrix be defined as the norm taken over the concatenation of columns of the
matrix.

Linear algebra. We let ei be the vector with 1 in its i-th entry, 0 everywhere else. For
B ∈ R

n×m we let s1(B) = sup{‖Bv‖ : v ∈ R
m ∧ ‖v‖ = 1} be the spectral norm of B.

We also denote by B̃ the Gram-Schmidt orthonormalization of B. The Gram-Schmidt
norm of B is defined as

‖B̃‖:=max
i∈[m] ‖b̃i‖

where b̃i is the i-th column of B̃.
For a ring R, we define GL(n, R) to be the group of n× n invertible matrices over R.

2.1. Lattices

A subset � ⊆ R
m is a lattice if the following conditions hold:

• 0 ∈ �, and for x, y ∈ �, x + y ∈ �.
• For every x ∈ �, there exists ε > 0 such that {y ∈ R

m : ‖x − y‖ < ε} ∩� = {x}.
We say B ∈ R

m×k is a basis for � if its columns are linearly independent and � =
L(B):={Bz : z ∈ Z

k}. If k = m then we say that � is full-rank. The span (as a vector
space) of the basis of a lattice is the span of a lattice denoted as Span(�). We also let
�∗ be the dual lattice defined as �∗ = {w ∈ Span(�) : 〈�,w〉 ⊆ Z}. If � ⊆ Z

m , we
call it an integral lattice. For I an ideal of Rm , we let I · � = {i · x : i ∈ I, x ∈ �},
which is also a lattice. For a lattice � we denote

λ1(�):= min
0 �=x∈� ‖x‖ and λ∞1 (�):= min

0 �=x∈� ‖x‖∞ .

For t ∈ Span(�), we also define the shifted lattice t + �:={t + x : x ∈ �}. We also
consider q-ary lattices, namely those with qZ ⊆ �. For an arbitrary A ∈ Z

n×m
q we

define the full rank q-ary lattice

�⊥(A) = {z ∈ Z
m : Az = 0 (mod q)}

�(A) = {z ∈ Z
m : ∃s ∈ Z

n
q ,Az = s (mod q)}

For any u ∈ Z
n
q such that there exists x with Ax = u, we define �⊥u (A):={z ∈ Z

m :
Az = u (mod q)} = �⊥(A)+ x.
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2.2. Power-of-Two Cyclotomic Rings

Let N be a power-of-two and K = Q[X ]/(XN + 1) be the 2N -th cyclotomic field.
Denote R = Z[X ]/(XN + 1) to be the ring of integers of K. For an odd prime q, we
write Rq :=R/(q). We denote R×q to be the set of invertible elements in Rq .

We recall the following well-known inequality, which allows to bound norms on
products in the ring R.

Lemma 2.1. Let u, v ∈ R. Then ‖uv‖ ≤ ‖u‖1 · ‖v‖.

Proof. Let u:=u0 + u1X + · · · + uN−1XN−1 ∈ R. Then, by the triangle inequality
we get

‖uv‖ ≤
N−1∑

i=0

‖uiv · Xi‖ =
N−1∑

i=0

‖uiv‖ =
N−1∑

i=0

|ui | · ‖v‖ = ‖u‖1 · ‖v‖ .

�

Coefficient embedding . For x ∈ K, we can consider the additive group isomorphism

vec : K→ Q
N

a0 + a1X + · · · + aN−1X
N−1 �→ (a0, . . . , aN−1)

�

and we refer this as the coefficient embedding of K. Note that, for f, g ∈ K, 〈 f, g〉 =
〈vec( f ), vec(g)〉 and thus ‖vec( f )‖ = ‖ f ‖. Furthermore, vec restricts to an isomor-
phism between Rq ∼= Z

N
q and R ∼= Z

N . We also extend this to a mapping Km → Q
mN

by applying it component-wise. For f ∈ K, we let

rot( f ):=(vec( f ), vec(X · f ), . . . , vec(XN−1 · f )) ∈ Q
N×N ,

noting that rot( f )vec(g):=vec( f g) and rot( f )rot(g) = rot( f g). We extend this to
matrices B ∈ Km×n by writing

rot(B):=
⎡

⎢
⎣

rot(b1,1) . . . rot(b1,n)
...

. . .
...

rot(bm,1) . . . rot(bm,n)

⎤

⎥
⎦ ∈ Q

mN×nN .

Module lattices. For A ∈ Rn×m
q , x ∈ Rm

q , u = Ax, define

�⊥(A):={z ∈ Rm : Az = 0 mod q}
�⊥u (A):={z ∈ Rm : Az = u mod q} = �⊥(A)+ x .

Then, �⊥(A) = vec−1(�⊥(rot(A))) and �⊥u (A) = vec−1(�⊥vec(u)(rot(A))).
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Spectral norm. Let s1(R):= sup{‖Rv‖ : v ∈ Kw ∧ ‖v‖ = 1} be the spectral norm of
R ∈ Rm×w. Clearly, s1(rot(R)) = s1(R), where the spectral norm of the left-hand side
is over R. Here, we recall a simple bound.

Lemma 2.2. Let R ∈ Rm×t
q . Then s1(R) ≤ √N · ‖R‖.

Proof. Let r1, . . . , rm be the rows of R. Note that by the Cauchy–Schwarz inequality,
for any u with ‖u‖ = 1 we have that

‖〈ri ,u〉‖2 ≤
⎛

⎝
∑

j∈[t]
‖ri, j s j‖

⎞

⎠

2

≤ N

⎛

⎝
∑

j∈[t]
‖ri, j‖ · ‖s j‖

⎞

⎠

2

≤ N‖ri‖2·‖u‖2 ≤ N‖ri‖2 .

Thus, ‖Ru‖2 ≤ N‖R‖2 which concludes the proof. �

In this work we will work with q ≡ 5 (mod 8). In this setting, the probability that a
uniformly random matrix is full-rank is overwhelming.

Lemma 2.3. (Appendix C.3 of [29]). Let q ≡ 5 (mod 8) be prime, N = O(λ) and
m ≥ n ≥ 1. Then, for a uniformly random matrix A← Rn×m

q , the probability that A is
not full-rank is negl(λ).

2.3. Discrete Gaussian Distributions

Let σ > 0 be a parameter and � be a m-dimensional lattice. We then define the discrete
Gaussian distribution Dσ,c,� over a lattice coset c +� as follows.

ρσ,c(z):= exp

(

−π ‖z− c‖2
σ 2

)

and Dσ,c,�(z):= ρσ,c(z)
∑

x∈� ρσ,c(x)
.

When c = 0 or � = Z
m , we will omit it from the notation. We naturally extend this

notion for lattices over the ring of integersR, and for matrices by sampling column-wise.

Smoothing parameter. The smoothing parameter ηε(�) of a lattice is the smallest
s > 0 such that ρ1/s(�

∗) ≤ 1 + ε. Below we recall the standard upper-bounds on the
smoothing parameter [50,73].

Lemma 2.4. Let � ⊆ R
m be a lattice, and let ε > 0. Then,

ηε(�) ≤ 1

λ∞1 (�∗)
·
√

ln(2m(1+ 1/ε))

π

and in fact, for every basis B of �,

ηε(�) ≤ ˜‖B‖ ·
√

ln(2m(1+ 1/ε))

π
.
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We also recall the bound from [50, Lemma 5.3] and [83, Lemma 2.5] for the block-
diagonal matrices. Here, we consider the ring setting which can be easily adapted from
the aforementioned results.

Lemma 2.5. Let �, δ > 1 and suppose q is prime and m ≥ 2n logδ q. Then, there
exists a negligible function ε such that for all A2, . . . ,A� ∈ Rn×m

q :

Pr
[
ηε(�

⊥(diag(A1,A2, . . . ,A�)) ≤ δ · log(�mN ) : A1 ← Rn×m
q

]
≥ 1− q−nN .

Further, we recall the regularity lemma from [69].

Lemma 2.6. (Regularity Lemma). Let q ≡ 5 (mod 8) be a prime, N = poly(λ) and
k, n be positive integers such that poly(λ) ≥ m ≥ n. Take s > 2N · qn/m+2/(Nm). Then,
the following distributions are statistically close:

{

(A,Ax)

∣
∣
∣
∣
A← Rn×m

q

x← DmN
s

}

and

{

(A,u)

∣
∣
∣
∣
A← Rn×m

q
u← Rn

q

}

.

This is slightly modified from the original result in [69, Corollary 7.5] and [29, Lemma
4.2] in a sense that A might not be full-rank. However, Lemma 2.3 makes sure the event
happens with negligible probability.

Tail bounds. When sampling over a sufficiently wide discrete Gaussian distribution,
a small portion of the probability mass will be in the tail of the distribution, and thus
with overwhelming probability the sampled lattice elements will have short norm. The
following lemma from [73] formalises this intuition.

Lemma 2.7. For any 0 < ε < 1, lattice� ⊆ R
m, center c ∈ Span(�) and σ > ηε(�),

Pr
[‖z‖ ≥ σ · √m : z← Dσ,�,c

] ≤ 1+ ε

1− ε
2−m .

We also recall the tail bounds for the regular discrete Gaussian distribution over inte-
gers [66].

Lemma 2.8. Let z← Dm
s . Then Pr

[
‖z‖ > t · s

√
m
2π

]
<

(

te
1−t2

2

)m

.

By setting t = √2π , the right-hand side can be upper-bounded by 2−2m .

Preimage sampling for module lattices. Let A ∈ Rn×m
q be a matrix over Rq and take

any u ∈ Rn
q . We write s ← A−1

σ (u) to denote sampling s ← DmN
σ conditioned on

As = u. Assuming there is some x ∈ Rm
q which satisfies Ax = u, this is the same as

sampling s← Dσ,x,�⊥(A).
We will need the following lemma from [83, Lemma 2.7] for proving hiding property

of the commitment scheme.
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Lemma 2.9. Let n,m, q > 0. Take any matrices A ∈ Rn×m
q ,B ∈ Rn×�

q where � =
poly(n, log q). Suppose the columns of A generate Rq and let C:=[A | B]. Then, for
every target vector t ∈ Rn

q and any σ ≥ ηε(�
⊥(A)) for some ε = negl(λ), the following

distributions are statistically close:

{
v
∣
∣v← C−1

σ (t)
}
and

{[
v1
v2

]∣
∣
∣
∣v2 ← D�N

σ , v1 ← A−1
σ (t − Bv2)

}

.

Module-SIS. We recall the standard lattice-based Module-SIS assumption [61]

Definition 2.10. (Module-SIS). Let q = q(λ), n = n(λ), m = m(λ), β = β(λ) and
N = N (λ). We say that the MSISn,m,N ,q,β assumption holds if for any PPT adversary
A, the following holds:

Pr

[

As = 0 ∧ 0 < ‖x‖ ≤ β

∣
∣
∣
∣
A← Rn×m

q
s← A(A)

]

≤ negl(λ) .

2.4. NTRU Lattices

As defined before, let N be a power of two, q a positive integer and h ∈ Rq . The NTRU
lattice associated to h is defined as

�h :={(u, v) ∈ R2 : u + vh = 0 mod q} .

Recall that there is an efficient algorithmNTRU.TrapGen [43,48,52,80], which given
modulus q, the ring dimension N and the parameter s, outputs h ∈ Rq and a short basis
of �h . Below, we assume that XN + 1 splits into two factors modulo q and we apply
the main result of Stehlé and Steinfeld [80].

Lemma 2.11. (NTRU Trapdoor). Let q = ω(N ) be a prime such that q ≡ 5 (mod 8).
Take ε ∈ (0, 1/3) and s ≥ max(

√
N ln(8Nq) · q1/2+ε, ω(N 3/2 ln3/2 N )). Then, there

is a PPT algorithm NTRU.TrapGen(q, N , s) which with an overwhelming probabil-
ity outputs h ∈ Rq and a basis TNTRU of �h such that ‖T̃NTRU‖ ≤ Ns. Further,
the statistical distance between the distribution of h and uniform over R×q is at most

210Nq−�εN	.

2.5. Gadget Trapdoors

In this section, we recall the notion of gadget trapdoors as in [72], reformulate them
for the module setting and state the key results on efficient sampling preimages using
trapdoors.

We say that a matrix G ∈ Rn×t
q is primitive if its columns generate Rn

q , i.e. if G ·Rt =
Rn

q . Note that if G is primitive, then rot(G) also is w.r.t. ZnN
q (i.e. rot(G)Zt N = Z

nN
q ).

We also recall the notion of a gadget trapdoor.
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Definition 2.12. Let A ∈ Rn×m
q ,H ∈ Rn×n

q ,G ∈ Rn×t
q with t ≥ n and H invertible

over Rq . A G-trapdoor for A with tag H is a matrix R ∈ Rm×t
q with AR = HG. The

quality of a trapdoor is s1(R).

When not specified, we set the tag H:=I. In fact, all the theorems in this section can be
generalised with a tag.

In this work, we consider one particular primitive matrix that naturally represents
δ-base decomposition which we call the gadget matrix.

Definition 2.13. (Gadget Matrix). Let δ ≥ 2. We set q̃:=�logδ q	 + 1, and g� =
[1, δ, . . . , δq̃−1] ∈ R1×q̃

q and Gn :=In ⊗ g� ∈ Rn×nq̃
q . When the dimension are clear

from context we simply write G. Write G−1
n : Rn×t

q → Rnq̃×t
q for the inverse function

that takes a matrix of entries in Rq , and decomposes each entry w.r.t. the base δ. We
also write g−1 for G−1

1 .

[72, Lemma 5.3] says that having a G-trapdoor for some matrix A enables to translate
any nice basis of G’s induced lattice into one for A’s, whose shortness is proportional
to the quality of the trapdoor.

Lemma 2.14. Let A ∈ Rn×m
q , G ∈ Rn×t

q be the gadget matrix with decomposition
base δ, and suppose there exists a G-trapdoor R for A. Then, there is a basis SA of

�⊥(A) which satisfies
∥
∥
∥S̃A

∥
∥
∥ ≤ (s1(R)+ 1)

√
δ2 + 1. In particular, if ‖R‖ ≤ β then for

ε = negl(λ):
ηε(�

⊥(A)) ≤ βδ · ω(
√
N log(mN )) .

We now give crucial properties about the trapdoor generation from [72].

Lemma 2.15. (Trapdoor Generation). Let q ≡ 5 (mod 8) be a prime, N , n > 0, t =
nq̃ and Gn ∈ Rn×t

q be the gadget matrix. Take m > t + n. Then, there is a PPT
algorithm TrapGen(n,m) that with an overwhelming probability returns two matrices
(A,R) ∈ Rn×m

q × Rm×t
q such that AR = Gn and ‖R‖ ≤ s

√
2t (m − t)N where

s > 2N · q n
m−t+ 2

N (m−t) . Moreover, A is statistically close to a uniformly random matrix
inRn×m

q .

Proof. Let m′ = m − t . Consider the following algorithm [72, Alg 1]:

1. Sample Ā← Rn×m′
q .

2. Sample a matrix R̄← Dm′N×t N
s from a discrete Gaussian distribution.

3. Return A:=[Ā|Gn − ĀR̄] and R:=
[
R̄
It

]

First, AR = G as desired and ‖R‖ ≤ √
t (s2m′N + 1) ≤ s

√
2t (m − t)N with an

overwhelming probability by Lemma 2.8 for t = √2π . To argue pseudorandomness,
we apply Lemma 2.6 and the hybrid argument to get that ĀR̄ is statistically close to
uniform over Rn×t

q , and thus so is A. �
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The next lemma states that given a short G-trapdoor matrix R for A, one can efficiently
sample preimages of A according to the discrete Gaussian distribution.

Lemma 2.16. (Preimage Sampling). Let N , n,m > 0 and t = nq̃. Then, there exists
a PPT algorithm SamplePre(A,R, v, σ ) that takes as input a matrix A ∈ Rn×m

q , a
Gn-trapdoor R ∈ Rm×t

q for A with a tag H, a target vector v ∈ Rn
q in the column-span

of A, and a Gaussian parameter σ , and outputs a vector s ∈ Rm
q such that As = v.

Further, if σ ≥ δs1(R) ·ω(
√

log nN ), then the statistical distance between the following
distributions is negligible:

{s← SamplePre(A,R, v, σ )} and
{
s← A−1

σ (v)
}

.

We extend this algorithm for matrices, i.e. for a matrix V ∈ Rn×�
q with columns

v1, . . . , v�, we define SamplePre(A,R,V, σ ) to be the algorithm which returns a ma-
trix S ∈ Rm×�

q , where the i-th column is the output of SamplePre(A,R, vi , σ ).

Subtractive sets for monomials. We recall the following widely-used result from [19],
which says that the (scaled) inverse of two distinct monomials in R has coefficients in
{−1, 0, 1}.

Lemma 2.17. Let C:={Xi : i ∈ Z} ⊆ R. Then, for any two distinct x, y ∈ C, we have
‖ 2
x−y ‖∞ = 1.

Short elements are invertible. For κ > 0, we define Sκ :={x ∈ Rq : ‖x‖∞ ≤ κ} to
be the set of ring elements in Rq with infinity norm at most κ . We recall the following
invertibility result by Lyubashevsky and Seiler [70].

Lemma 2.18. Let 1 ≤ l < N be a power-of-two and suppose q ≡ 2N/ l + 1
(mod 4N/ l). Then, every non-zero element in Sκ is invertible over Rq as long as
κ <
√
l/N · ql/N .

We will use this lemma for q ≡ 5 (mod 8) and thus � = N/2.

Rejection sampling. A crucial component in proving the zero-knowledge property of
lattice-based (non-interactive) arguments is a rejection sampling procedure [66]. We
recall the generalised version introduced recently by Boschini et al. [29] (specifically,
[29, Lemma 3.1] for t :=α/π ) for discrete Gaussian over arbitrary lattices (here we omit
the case for ellipsoidal Gaussians).

Lemma 2.19. (Rejection Sampling [29]). Take any α, T > 0 and ε ≤ 1/2. Let � ⊆
Rm be a lattice overR and σ ≥ max(αT, ηε(�)) be a parameter. Let h : Rm ×Rm →
[0, 1] be a probability distribution which returns (u, v) where the vector v satisfies
‖v‖ ≤ T . Further, define M := exp( π

α2 + 1) and ε:=2 1+ε
1−ε

exp(−α2 · π−1
π2 ). Then, the

statistical distance between distributions RejSamp and SimRS defined in Fig. 3 is at
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Fig. 3. Rejection sampling [29].

most ε
2M + 2ε

M . Moreover, the probability that RejSamp outputs something is at least
1−ε
M

(
1− 4ε

(1+ε)2

)
.

2.6. Commitment Scheme

We recall the notion of a commitment scheme, which is a crucial component of various
proof systems. As folklore in lattice-based cryptography, we introduce the slack space,
which has a role in the binding property.

Definition 2.20. Let CM = (Setup,Commit,Open) be a triple of PPT algorithms.
We say that CM is a commitment scheme over M with slack space S if it has the
following syntax:

• Setup(1λ)→ crs takes a security parameter λ (specified in unary) and outputs a
common reference string crs.
• Commit(crs,m) → (C, st) takes a common reference string crs a message m ∈
M and outputs a commitment C and decommitment state st.
• Open(crs,C,m, st, c) takes a common reference string crs, a commitment C , a

message m ∈ M, a decommitment state st and a relaxation factor 12 c ∈ S and
outputs a bit indicating whether C is a valid commitment to m under crs.

We define the key properties of the commitment scheme: correctness, (relaxed) binding
and hiding. In the following, we denote the message space as M and the slack space as
S.

Definition 2.21. (Completeness). We say that a commitment scheme CM = (Setup,

Commit,Open) satisfies completeness if there exists a global relaxation factor c∗ ∈ S
such that for every m ∈M:

Pr

[

Open(crs,C,m, st, c∗) = 1

∣
∣
∣
∣

crs← Setup(1λ)

C, st← Commit(crs,m)

]

≥ 1− negl(λ) .

12We implicitly assume that if c �∈ S then Open automatically returns 0.
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Definition 2.22. (Relaxed Binding). A commitment scheme CM = (Setup,Commit,
Open) satisfies relaxed binding if for every PPT adversary A:

Pr

⎡

⎣
m �= m′ ∧ m,m′ ∈M∧

Open(crs,C,m, st, c) = 1 ∧
Open(crs,C,m′, st′, c′) = 1

∣
∣
∣
∣
∣
∣

crs← Setup(1λ)(

C,
(m, st, c),
(m′, st′, c′)

)

← A(crs)

⎤

⎦ = negl(λ) .

Definition 2.23. (Hiding). A commitment scheme CM = (Setup,Commit,Open)

satisfies hiding if for every (stateful) PPT adversary A:

Pr

⎡

⎢
⎢
⎣b
′ = b

∣
∣
∣
∣
∣
∣
∣
∣

crs← Setup(1λ), (m0,m1)← A(crs)
b← {0, 1}

C, st← Commit(crs,mb)

b′ ← A(C)

⎤

⎥
⎥
⎦ ≤

1

2
+ negl(λ) .

2.7. Polynomial Commitment Scheme

We also recall the notion of polynomial commitment schemes [58]. Polynomial commit-
ment schemes extend commitments with the ability to prove evaluations of the committed
polynomial.

Definition 2.24. Let PC = (Setup,Commit,Open,Eval,Verify) be a tuple of algo-
rithms. PC is a polynomial commitment scheme over a ring R with degree bound d and
slack space S if:

• (Setup,Commit,Open) is a commitment scheme over

M:=
{

( f0, f1, . . . , fd) ∈ Rd+1 :
d∑

i=0

fiXi ∈ R[X]
}

with slack space S.
• Eval(crs,C, u, st) → π takes a common reference string crs, a commitment C ,

an evaluation point u ∈ R, auxiliary state st and outputs an evaluation proof π .
• Verify(crs,C, u, z, π)→ 0/1 takes a common reference string crs, a commitment
C , an evaluation point u ∈ R, a claimed image z ∈ R, an evaluation proof π , and
outputs a bit indicating whether π is a valid evaluation proof that the polynomial
committed to in C evaluates to z at the point u.

We also consider a setting in which Eval and Verify are replaced with an interactive two-
party protocol between a prover and a verifier, and refer to that setting as an interactive
polynomial commitment scheme.

Additionally, we require that the evaluations procedure satisfy some additional prop-
erties that we detail next. For simplicity, we give these definitions for non-interactive
polynomial commitments, the interactive variant follows similarly.
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Definition 2.25. (Evaluation Completeness). We say that a polynomial commitment
scheme PC = (Setup,Commit,Open,Eval,Verify) satisfies completeness if for ev-
ery polynomial f ∈ R≤d [X] and any evaluation point u ∈ R:

Pr

⎡

⎣Verify(crs,C, u, f (u), π) = 0

∣
∣
∣
∣
∣
∣

crs← Setup(1λ)

C, st← Commit(crs, f )
π ← Eval(crs,C, u, st)

⎤

⎦ = negl(λ) .

Definition 2.26. (Knowledge Soundness). We say that a polynomial commitment scheme
PC = (Setup,Commit,Open,Eval,Verify) is knowledge sound with knowledge er-
ror κ if for all stateful PPT adversaries P∗, there exists an expected PPT extractor E such
that

Pr

⎡

⎢
⎢
⎣b = 1 ∧

(
Open(crs,C, f, st, c) �= 1∨

f (u) �= z

)
∣
∣
∣
∣
∣
∣
∣
∣

crs← Setup(1λ)

(C, u, z, π)← P∗(crs)
b = Verify(crs,C, u, z, π)

( f, st, c)← EP∗ (crs,C, u, z, π)

⎤

⎥
⎥
⎦ ≤ κ(λ) .

Here, the extractor E has a black-box oracle access to the (malicious) prover P∗ and can
rewind it to any point in the interaction.

2.8. Interactive Proofs

Let R ⊆ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ be a ternary relation. If (i,x,w) ∈ R, we say that
i is an index, x is a statement and w is a witness for x. We denote R(i,x) = {w :
R(i,x,w) = 1}. In this work, we only consider NP relations R for which a witness w

can be verified in time poly(|i|, |x|) for all (i,x,w) ∈ R.
A proof system � = (Setup,P,V) for relation R consists of three PPT algorithms:

the Setup algorithm, prover P, and the verifier V. The latter two are interactive and
stateful. We write (tr, b)← 〈P(i,x,w),V(i,x)〉 for running P and V on inputs i,x,w
and i,x respectively and getting communication transcript tr and the verifier’s decision
bit b. We use the convention that b = 0 means reject and b = 1 means accept the
prover’s claim of knowing w such that (i,x,w) ∈ R. If tr contains a ⊥ then we say
that P aborts. Unless stated otherwise, we will assume that the first and the last message
are sent from a prover. Hence, the protocol between P and V has an odd number of
rounds. A �-protocol is a three-round protocol. Further, we say a protocol is public coin
if the verifier’s challenges are chosen uniformly at random independently of the prover’s
messages.

We recall a few basic properties of interactive proof systems: completeness and knowl-
edge soundness.
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Definition 2.27. (Completeness). A proof system � = (Setup,P,V) for the relation
R has statistical completeness with correctness error ε if for all adversaries A,

Pr

⎡

⎣b = 0 ∧ (i,x,w) ∈ R

∣
∣
∣
∣
∣
∣

i← Setup(1λ)

(x,w)← A(i)
(tr, b)← 〈P(i,x,w),V(i,x)〉

⎤

⎦ ≤ ε(λ) .

Definition 2.28. (Knowledge Soundness). A proof system � = (Setup,P,V) for the
relation R is knowledge sound with knowledge error κ if there exists an expected PPT
extractor E such that for any stateful PPT adversary P∗:

Pr

⎡

⎢
⎢
⎣b = 1 ∧ (i,x,w) �∈ R

∣
∣
∣
∣
∣
∣
∣
∣

i← Setup(1λ)

(x, st)← P∗(i)
(tr, b)← 〈P∗(i,x, st),V(i,x)〉

w← EP∗(i,x)

⎤

⎥
⎥
⎦ ≤ κ(λ) .

Here, the extractor E has a black-box oracle access to the (malicious) prover P∗ and can
rewind it to any point in the interaction.

2.9. Coordinate-Wise Special Soundness

We generalise the notion of special soundness in the following way. Let S be a set and
�, k ∈ N. Namely, take two vectors x:=(x1, . . . , x�), y:=(y1, . . . , y�) ∈ S�. Then, we
define the following relation “≡i” for fixed i ∈ [�] as:

x ≡i y ⇐⇒ xi �= yi ∧ ∀ j ∈ [�]\{i}, x j = y j .

That is, vectors x and y have the same values in all coordinates apart from the i-th
one. For � = 1, the relations boil down to checking whether two elements are distinct.
Further, we can define the set

SS(S, �, k):=
⎧
⎨

⎩
{x1, . . . , xK } ⊆ (S�)K :

∃e ∈ [K ],∀i ∈ [�],
∃J = { j1, . . . , jk−1} ⊆ [K ] \ {e},
∀ j ∈ J, xe ≡i x j

⎫
⎬

⎭
,

where K :=�(k−1)+1. To develop an intuition of the meaning of SS(S, �, k), consider
a set X = {x1, . . . , xK } ∈ SS(S, �, k). There is a “central” vector xe ∈ X such that for
each coordinate of xe, there are k − 1 other vectors in X that differ from xe only in that
coordinate. In other words, for each coordinate, there are k vectors in X that differ from
each other only in that coordinate, and xe is always one of them. As a simple example,

{(2, 0, 0), (0, 1, 0), (0, 0, 0), (0, 0, 5), (0, 0, 4), (0, 2, 0), (3, 0, 0)} ∈ SS(Z7, 3, 3)

– the “central” vector (0, 0, 0) differs in, and only in, each coordinate from two other
vectors in the set. Note that SS(S, 1, k) simply contains k-sets of distinct elements in S.
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We are ready to define the notion of coordinate-wise special soundness. We start with
the case for �-protocols.

Definition 2.29. (CWSS for �-protocols). Let � = (Setup,P,V) be public-coin
three-round interactive proof system for relation R, and suppose the challenge space
of V is C = S�. We say that � is �-coordinate-wise k-special sound if there exists
a polynomial time algorithm that on input an index i, statement x and �(k − 1) + 1
accepting transcripts (a, ci , zi )i∈[�(k−1)+1], with {c1, . . . , c�(k−1)+1} ∈ SS(S, �, k) and
common first message a, outputs a witness w ∈ R(i,x).

Clearly, we obtain the standard k-special soundness property if � = 1. Next, we extend
this notion to multi-round protocols via a tree of transcripts. For simplicity, we assume
that in each round the verifier picks challenge uniformly at random from the same
challenge space S�, which will be the case for most of our protocols.

Definition 2.30. (CWSS for Multi-Round Protocols). Let � = (Setup,P,V) be
public-coin (2μ + 1)-round interactive proof system for relation R, where in each
round the verifier picks a uniformly random challenge from S�. A tree of transcripts
is a set of K = (�(k − 1) + 1)μ arranged in the following tree structure. The nodes in
the tree correspond to the prover’s messages and the edges correspond to the verifier’s
challenges. Each node at depth i has exactly �(k − 1) + 1 children corresponding to
�(k − 1) + 1 distinct challenges which, as a set of vectors, lie in SS(S, �, k). Every
transcript corresponds to exactly one path from the root to a leaf node.

We say that � is �-coordinate-wise k-special sound if there is a polynomial time
algorithm that given an index i, statement x and the tree of transcripts, outputs a witness
w ∈ R(i,x).

In this paper, we only focus on �-coordinate-wise 2-special sound protocols, which we
will call �-coordinate-wise special sound.

We prove in Sect. 7 that coordinate-wise special soundness implies knowledge sound-
ness in the interactive setting.

Lemma 2.31. Let� = (Setup,P,V) be public-coin (2μ+1)-round interactive proof
system for relation R and suppose the challenge space of V in each round is S�. If �

is �-coordinate-wise k-special sound and (�(k − 1))μ = poly(λ), then it is knowledge
sound with knowledge error μ�(k − 1)/|S|.

The resulting knowledge extractor runs the malicious prover (�(k − 1) + 1)μ times in
expectation. Hence, in order to keep the knowledge extractor expected PPT, we need
(�(k − 1))μ = poly(λ).

The result can be easily extended to the case, where in each i-th round the challenges
from the verifier are picked from S�i for �i > 0. Then, the knowledge error becomes
(�1+. . .+�μ)(k−1)/|S| and the extractor runs the malicious prover at most

∏μ
i=1(�i (k−

1)+ 1) times.
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Finally, using the exact methodology as in [10], in Sect. 8 we show that coordinate-
wise special soundness implies (adaptive) knowledge soundness of the Fiat–Shamir
transformed protocol in the random oracle model.

Lemma 2.32. (Informal). Let � = (Setup,P,V) be public-coin (2μ + 1)-round in-
teractive proof system for relationR and suppose the challenge space of V in each round
is S�. If � is �-coordinate-wise k-special sound and (�(k − 1))μ = poly(λ), then the
Fiat–Shamir transformation of � is knowledge sound in the random oracle model with
knowledge error (Q+1)μ�(k−1)/|S|, where Q is the number of random oracle queries
made by an adversary.

3. Power-BASIS Assumption

Our construction of the polynomial commitment will rely on a new lattice-based as-
sumption PowerBASIS which is a special case of the BASIS assumption13 introduced
by Wee and Wu [83]. We begin by adapting the latter assumption to the ring setting.
Recall that Gn is a gadget matrix with base δ as in Definition 2.13 and N is the ring
dimension of R. We fix the prime modulus q ≡ 5 (mod 8) and set q̃:=�logδ q	 + 1.

Definition 3.1. (BASIS). Letq, n,m, n′,m′, �, N , σ, β be lattice parameters. LetSamp
be a PPT algorithm, which given a matrix A ∈ Rn×m

q , outputs a matrix B ∈ Rn′×m′
q

along with auxiliary information aux. We say the BASISn,m,n′,m′,N ,q,�,σ,β assumption
holds w.r.t. Samp if for any PPT adversary A:

Pr

⎡

⎣ As = 0
0 < ‖s‖ ≤ β

∣
∣
∣
∣
∣
∣

A← Rn×m
q , (B,aux)← Samp(A)

T← B−1
σ (Gn′)

s← A(A,B,T,aux)

⎤

⎦ ≤ negl(λ) .

Intuitively, the BASIS assumption says that it is hard to find a short solution for A, even
when given a trapdoor for a matrix B related to A. The trapdoor allows the adversary
to sample preimages of B, and thus it is easy to break the assumption if B contains too
much information about A, e.g. when B = A.

Furthermore, we provide three concrete instantiations of the sampling algorithm
Samp.

Definition 3.2. (BASIS Instantiations). We consider three concrete instantiations of
the BASIS assumption:

• StructBASISn,m,N ,q,�,σ,β : The sampling algorithm Samp(A) first generates a row
aᵀ ← Rm

q and sets

A�:=
[
aᵀ
A

]

∈ R(n+1)×m
q . (11)

13BASIS stands for Basis-Augmented Shortest Integer Solution.
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Further, it samples Wi ← GL(n + 1,Rq) for all i ∈ [�], and outputs

B�:=
⎡

⎢
⎣

W1A� −Gn+1
. . .

...

W�A� −Gn+1

⎤

⎥
⎦ and aux:=(W1, . . . ,W�) .

• PowerBASISn,m,N ,q,�,σ,β : Here, Samp(A) generates a row aᵀ ← R�
q and sets A�

as in (11). Then, it samples W← GL(n + 1,Rq), and outputs

B�:=
⎡

⎢
⎣

W0A� −Gn+1
. . .

...

W�−1A� −Gn+1

⎤

⎥
⎦ and aux:=W .

• PRISISn,m,N ,q,�,σ,β : Samp(A) samples a row aᵀ ← R�
q and sets A� as in (11).

Then, it samples w← GL(1,Rq), and outputs

B�:=
⎡

⎢
⎣

w0A� −Gn+1
. . .

...

w�−1A� −Gn+1

⎤

⎥
⎦ and aux:=w .

Informally, theStructBASIS variant corresponds to the structured version of theBASIS
assumption used to build functional commitments [83].PowerBASIS is the special case,
where instead of picking � uniformly random invertible matrices Wi , one takes a single
invertible matrix, and sets Wi :=Wi−1 for i ∈ [�]. Finally, PRISIS is the instance where
each Wi :=wi−1In+1 for i ∈ [�] and w ∈ Rq is an invertible element.

Intuitively, StructBASIS seems to be the hardest variant to break out of the three
since it carries the least structure. Then, PowerBASIS should be an easier problem
due to the very specific relation between matrices Wi . Finally, PRISIS carries a lot
of structure, since it introduces commutativity between the matrices Wi and A�, i.e.
wi−1A� = A�(wi−1 · Im), which can somehow be useful for the adversary to break the
assumption.

Remark 3.3. To simplify reductions in the paper, we explicitly require the matrices
Wi to be invertible (unlike in [83]). Note that this condition can be dropped by arguing
that, depending on the parameters q and N , with overwhelming probability a uniformly
random matrix W is invertible over Rq (cf. Lemma 2.3).

Remark 3.4. In the PowerBASIS assumption, an adversary is given a trapdoor to the
structured matrix B�. The most intuitive and standard way to attack lattice problems is
to perform certain linear operations. In one way or another, here we would end up with
obtaining (many) short solutions s1, . . . , s� such that: W0A�s1 + . . .+W�−1A�s� = 0.
The intuition why this should not help to find a short non-zero solution to A� (or A)
is two-fold. Firstly, since W is an invertible matrix, the adversary is not able to use
any commutative properties, e.g. WA� = A�W, thus limiting the adversary’s algebraic
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capabilities to find short solutions to A�. Even if this is the case (as in PRISIS), the
matrix W does contain arbitrarily large Rq elements. Hence, obtaining a short non-zero
solution to A�, which involves W, seems unlikely.

Falsifiable version of PowerBASIS. Note that the challenger in the PowerBASIS
game from Sect. 3 is not efficient since it needs to sample a random trapdoorT according
to a discrete Gaussian distribution. In order to make the assumption falsifiable, one could
let the challenger sample efficiently using theSamplePre algorithm, e.g. as in theSetup
algorithm of Fig. 4. Further, for efficiency we can ensure that the sampled matrix A from
(A,R)← TrapGen(n,m) is computationally indistinguishable from random14.

3.1. Hardness of BASIS for Low Dimensions

We analyse the relationship between the three newly introduced instantiations for the
dimension � = 2. To this end, we analyse the following technical lemma which will
be used in all our results of this section. Intuitively, it says that if one can find a short
solution to a specific linear equation, then one can also build a BASIS trapdoor.

Lemma 3.5. Let n,m, N > 0 and α ≥ 1. Denote t = nq̃. Then, there exists an
efficient deterministic algorithm, that given as input a matrix A� ∈ Rn×m

q , invertible
W1,W2,H ∈ GL(n,Rq) and twomatricesT1,T2 ∈ Rm×t

q , which satisfy ‖(T1,T2)‖ ≤
α for i = 1, 2 and

W1A�T1 −W2A�T2 = HGn ,

outputs a tag H∗ ∈ GL(2n,Rq) and a G2n-trapdoor S for the matrix B defined as:

B:=
[
W1A� 0 −G
0 W2A� −G

]

with a tag H∗, where ‖S‖ ≤ √2(α2 + t2N ).

Proof. Define the following matrices:

S1,3:=G−1(W1A�T1 −HGn) = G−1(W2A�T2)

S2,3:=G−1(−W1A�T2 −HGn) = G−1(−W1A�T1).

Then, by construction we get:

[
W1A� 0 −G
0 W2A� −G

]
⎡

⎣
T1 −T1
T2 −T2
S1,3 S2,3

⎤

⎦ =
[
HG 0
0 HG

]

=
[
H 0
0 H

]

·
[
G 0
0 G

]

.

14Concretely, in the proof of Lemma 2.15 we would rely on the argument that ĀR̄ is pseudorandom based
on Module-LWE [61] rather than Lemma 2.6.
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By setting

S:=
⎡

⎣
T1 −T1
T2 −T2
S1,3 S2,3

⎤

⎦ and H∗:=
[
H 0
0 H

]

,

we observe that S is a G2n-trapdoor for B with a tag H∗ and ‖S‖2 ≤ 2α2+2t2N , which
concludes the proof. �

Our first result says that StructBASIS and PowerBASIS are equivalent for the dimen-
sion � = 2.

Lemma 3.6. (StructBASIS ⇐⇒ PowerBASIS). Let n, N , β ≥ 1 and t :=(n+1)q̃ .

Suppose m > t+n and s > 2N ·q n+1
m−t+ 2

N (m−t) . If σ0, σ1 satisfy the following inequalities:

σ0 ≥ δsN · ω(
√
t (m − t) log(mN )), σ1 ≥ δ

√
2t N (σ 2

0 m
′ + t)N · ω(

√
log nN ),

where m′ = 2m + t , then the following statements are true:

1. StructBASISn,m,N ,q,2,σ0,β assumptionholds under thePowerBASISn,m,N ,q,2,σ1,β

assumption.
2. PowerBASISn,m,N ,q,2,σ0,β assumptionholds under theStructBASISn,m,N ,q,2,σ1,β

assumption.

Proof. We only show the first statement since the other direction follows identically.
LetA be a PPT adversary for theStructBASISn,m,N ,q,2,σ,β problem and suppose it wins
with probability ε. We provide a PPT algorithmB for solvingPowerBASISn,m,N ,q,2,σ,β

which does the following. First, B is given a tuple (A,B,T,W) where

B:=
[
A� 0 −G
0 WA� −G

]

and T:=
⎡

⎣
T1,1 T1,2
T2,1 T2,2
T3,1 T3,2

⎤

⎦ .

First, we claim that the following probability is negligible:

εsmooth:=Pr

[

σ0 < ηε(�
⊥(B))

∣
∣
∣
∣A

� ← R(n+1)×m
q

]

.

Indeed, note that by Lemma 2.15 we obtain:

Pr

[

σ0 < ηε(�
⊥(B))

∣
∣
∣
∣(A

�,R)← TrapGen(n + 1,m)

]

≥ εsmooth − negl(λ) .
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If (A�,R)← TrapGen(n+ 1,m) then the following matrix R∗ is a G2n-trapdoor for B
with a tag H∗, where:

R∗:=
⎡

⎣
R 0
0 R
0 0

⎤

⎦ and H∗:=
[
In+1 0
0 W

]

.

Moreover, ‖R∗‖ ≤ 2s
√
t (m − t)N with an overwhelming probability (cf. Lemma 2.7).

If this is the case then by assumption σ0 ≥ δ · ‖R∗‖ ·ω(
√
t (m − t) log(mN )). Then, by

combining Lemma 2.14 with Lemma 2.2, we obtain

negl(λ) = Pr

[

σ0 < ηε(�
⊥(B))

∣
∣
∣
∣(A

�,R)← TrapGen(n + 1,m)

]

≥ εsmooth−negl(λ)

and thus σ0 ≥ ηε(�
⊥(B)) with an overwhelming probability, where B is the matrix

received by B. Thus, we can apply Lemma 2.7 to deduce that with an overwhelming
probability15

∥
∥
∥
∥

[
T1,1
T1,2

]∥
∥
∥
∥ ≤ α:=σ0

√
m′t N .

Further, by simple calculation we can deduce that

A�T1,1 −WA�T1,2 = G .

The reduction B now samples a uniformly random W1 ← GL(n + 1,Rq) and defines
W2:=W1W. Thus

W1A�T1,1 −W2A�T1,2 =W1G .

By applying Lemma 3.5, B can obtain a G2(n+1)-trapdoor S for

B′:=
[
W1A� 0 −G
0 W2A� −G

]

with the tag H∗:=I2⊗W1 where ‖S‖ ≤ √2(α2 + t2N ) ≤
√

2t N (σ 2
0 m
′ + t). Then, the

algorithm B runs T′ ← SamplePre(B′,S,G2(n+1), σ1). Finally, B sends (A,B′,T′,
aux′:=(W1,W2)) to A and returns what A outputs.

To argue correctness of the reduction, first note that aux′ and B′ are correctly gen-
erated. Further, by assumption we have σ1 ≥ δ‖S‖ · ω(

√
N log nN ) and thus by

Lemma 2.16, the distribution of SamplePre(B′,S,G2(n+1), σ1) is statistically close to
B′−1

σ1
(G2(n+1)). Consequently,A outputs a valid answer toBwith probability ε−negl(λ).

Finally, a valid solution for StructBASIS implies a valid solution for PowerBASIS,
which concludes the proof. �

The next result focuses on thePRISIS variant. It turns out that the commutative property
of the assumption allows to reduce to standard assumptions.

15We note that the bound is not tight.
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Lemma 3.7. (PRISIS "⇒ MSIS). Let n > 0,m ≥ n and denote t = (n + 1)q̃ . Let
q = ω(N ). Take ε ∈ (0, 1/3) and s ≥ max(

√
N ln(8Nq) · q1/2+ε, ω(N 3/2 ln3/2 N ))

such that 210Nq−�εN	 is negligible. Let

σ ≥ δ
√
t N · (N 2s2m + 2t) · ω(

√
N log nN ).

Then, PRISISn,m,N ,q,2,σ,β is hard under the MSISn,m,N ,q,β assumption.

Proof. Suppose there is a PPT algorithm A which wins PRISISn,m,N ,q,2,σ,β with
probability ε. We revisit the PRISIS security game and introduce a single game hop.
The purpose of the hybrid argument will be to plug in the NTRU trapdoor inside the
auxiliary information w. We define εi to be the probability that A wins Game i .
Game 1: This is the standardPRISIS security game. To recall, the challenger samples

a ← Rm
q , A ← Rn×m

q and sets A� as in (11). Then, it generates an invertible element
w← R×q and computes the matrix:

B:=
[
A� 0 −G
0 WA� −G

]

.

where W := w · In+1. Then, it samples T ← B−1
σ1

(G2(n+1)) and outputs (A,B,T, w)

to the adversary A. By definition, ε1 = ε.
Game2: In this game, we obtainw by running (w,TNTRU)← NTRU.TrapGen(q, N , s)

algorithm. By Lemma 2.11, ε2 ≥ ε1 − 210Nq−�εN	.
Suppose there is an adversary which wins Game2. We now show how to build a

PRISIS trapdoor T given the Module-SIS matrix A and the NTRU trapdoor TNTRU. To
this end, we will show how to find short matrices S1,S2 such that:

A�S1 − wA�S2 = G .

Let gi be the i-th column of G. Assuming that A� is full-rank (cf. Lemma 2.3) and using
linear algebra, we can find a (possibly large) vector t such that A�t = gi . Now, using
the NTRU trapdoor TNTRU (such that ‖T̃NTRU‖ ≤ Ns by Lemma 2.11) and the nearest
plane algorithm [63], we can find vectors (s1,i , s2,i ) ∈ Rm

q ×Rm
q such that:

s1,i − ws2,i = t and ‖(s1,i , s2,i )‖ ≤ Ns
√
mN/2.

Therefore
A�s1,i − wA�s2,i = A�(s1,i − ws2,i ) = A�t = gi .

Thus, we obtain the matrices S1,S2 by concatenation where

∥
∥
∥
∥

[
S1
S2

]∥
∥
∥
∥ ≤ α:=Ns

√
mtN/2 .
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Consequently, by Lemma 3.5, we can build a G2(n+1)-trapdoor S for B such that

‖S‖ ≤
√

2(α2 + t2N ) =
√
t N · (N 2s2m + 2t) .

Hence, the reduction B can construct the trapdoor S as above and then randomise the
trapdoor forB by runningT← SamplePre(B,S,G2(n+1), σ ). Finally it sends the tuple
to A and returns what it outputs. By Lemma 2.16, B wins the Module-SIS game with
probability at least ε2 − negl(λ), which concludes the proof. �

3.2. Higher Dimensions

One could hope that the techniques to analyse hardness of the BASIS assumption can
be translated to higher dimensions. This could be promising especially for the PRISIS
assumption, which we managed to reduce to standard lattice assumptions for the � = 2
case. Unfortunately, the reduction falls flat when considering higher dimensions.

We showcase this for � = 3. Following the approach for the smaller dimension, the
goal is to find short matrices S1,S2,S3 such that

A�S1 − wA�S2 = Z1

A�S2 − wA�S3 = Z2 (12)

for any Z1,Z2 given the NTRU trapdoor for w. If this is possible, we could set Z1 = G
and Z2 = 0 which would give us:

A�S1 − wA�S2 = G

wA�S2 − w2A�S3 = 0.

Set S4:=G−1(A�S1 −G). Then, we have:

⎡

⎣
A� 0 0 −G
0 wA� 0 −G
0 0 w2A� −G

⎤

⎦

⎡

⎢
⎢
⎣

S1
S2
S3
S4

⎤

⎥
⎥
⎦ =

⎡

⎣
G
0
0

⎤

⎦ .

We proceed similarly for

(Z1,Z2) = (−G, w−1G) and (Z1,Z2) = (0,−w−1G) .

Thus, we managed to build a G3(n+1)-trapdoor for B. What is left to do is to produce
short S1,S2,S3 which satisfy (12). To this end, consider the q-ary lattice

� =
⎧
⎨

⎩
(s1, s2, s3) :

[
1 −w 0
0 w −w2

]
⎡

⎣
s1
s2
s3

⎤

⎦ = 0 mod q

⎫
⎬

⎭
.
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Suppose we can build a short basis for � given the NTRU trapdoor for w. Let z1,i , z2,i be
the i-th column of Z1 and Z2. Now, assuming that A� is full-rank, we can find (possibly
large) t1 and t2 such that A�t j = z j,i for j = 1, 2. Now, using the short basis for �, we
can sample short vectors s1,i , s2,i , s3,i such that:

s1,i − ws2,i = t1
s2,i − ws3,i = t2.

Hence,

A�s1,i − wA�s2,i = A�(s1,i − ws2,i ) = A�t1 = z1,i

A�s2,i − wA�s3,i = A�(s2,i − ws3,i ) = A�t2 = z2,i .

Therefore, we obtain the matrices S1,S2,S3 by concatenation.
Unfortunately, we are only aware of the following two bases of �:

⎡

⎣
w2 w 1
q 0 0
0 q 0

⎤

⎦ and

⎡

⎣
u2 uv v2

ū2 ūv̄ v̄2

ūu ūv v̄v

⎤

⎦ ,

where TNTRU:=((u, v), (ū, v̄)) is the short NTRU basis. Since ‖u‖, ‖v‖ ≈ √q , the
latter basis cannot have short coefficients. We leave further analysis of this approach for
future work.

4. Power-BASIS Commitment Scheme

In this section we define a compressing commitment scheme which stems from the vector
commitment construction of Wee and Wu [83]. We inherit a crucial property from the
aforementioned work that we support committing to arbitrarily large ring elements. Let
�:=d + 1 be the length of the committed vectors over Rq . Thus, the message space
is M:=Rd+1

q . We let γ, βs be the parameters controlling the norm of various vectors.
Further, we define the slack space as the vector of short polynomials:

S:={(c0, . . . , cd) : ∀i ∈ [0, d], ci ∈ R×q ∧ ‖ci‖1 ≤ βs} .

Informally, we say that a slack is a single element c ∈ Rq if (c, . . . , c) ∈ S. Finally, we
define t = nq̃ and G:=Gn ∈ Rn×t

q .
We now give intuition on the construction, and provide a formal description in

Fig. 4. The setup algorithm uses the TrapGen and SamplePre algorithms defined
in Sect. 2.5. Namely, it first generates the two matrices (A,R) ← TrapGen(n,m)

along with a uniformly random invertible W ← GL(n,Rq). Then, AR = G, where

‖R‖ ≤ s
√

2t (m − t)N and s > 2N · q n
m−t+ 2

N (m−t) (c.f. Lemma 2.15). Further, it com-
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Fig. 4. PowerBASIS commitment scheme for arbitrary messages in the message space M = Rd+1
q with the

slack space S:={(c0, . . . , cd ) : ∀i ∈ [0, d], ci ∈ R×q ∧‖ci‖∞ ≤ βs }. Here, G ∈ Rn×nq̃
q is the gadget matrix

of height n.

putes Ri :=RG−1(W−iG) for i = 0, 1, . . . , d. Note that

WiARi =WiARG−1(W−iG) =WiGG−1(W−iG) = G

and thus Ri is a G-trapdoor for WiA and by Lemma 2.2:

‖Ri‖ ≤ ‖R‖ · N
√
nt ≤ sNt

√
2n(m − t)N .
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Then, the algorithm computes the PowerBASIS matrix along with its trapdoor:

B:=
⎡

⎢
⎣

A −G
. . .

...

WdA −G

⎤

⎥
⎦ , R̃:=

⎡

⎢
⎢
⎢
⎣

R0
. . .

Rd

0

⎤

⎥
⎥
⎥
⎦

. (13)

Indeed, one can check that BR̃ = Gn(d+1) and ‖R̃‖ ≤ sNt
√

2(d + 1)n(m − t)N .
Finally, the setup algorithm re-randomises the trapdoor R̃ by running

T← SamplePre(B, R̃,Gn(d+1), σ0) ,

and thus BT = Gn(d+1). Finally, the public parameters crs:=(A,W,T) are returned.
Suppose we want to commit to a vector ( f0, f1, . . . , fd) of length d + 1. To this end,

we use crs to compute

⎡

⎢
⎢
⎢
⎣

s0
...

sd
t̂

⎤

⎥
⎥
⎥
⎦
← SamplePre

⎛

⎜
⎝

⎡

⎢
⎣

A −G
. . .

...

WdA −G

⎤

⎥
⎦ ,

⎡

⎢
⎣

− f0W0e1
...

− fdWde1

⎤

⎥
⎦ ,T, σ1

⎞

⎟
⎠ .

By definition, this means that s0, s1, . . . , sd ∈ Rm
q and t:=Gt̂ satisfy:

Asi + fie1 =W−i t for i = 0, 1, . . . , d . (14)

The commitment and the decommitment state are C :=t and st:=(si )i∈[0,d].
Finally, the opening function takes the public parameters crs, the commitment t, a

message vector f :=( f0, . . . , fd), the decommitment state (si )i∈[0,d] and a relaxation
factor (c0, . . . , cd) ∈ S, and accepts if and only if (14) holds and ‖ci si‖ ≤ γ for all
i = 0, 1, . . . , d.

4.1. Security Analysis

In the following, we show that the PowerBASIS commitment scheme satisfies com-
pleteness, relaxed binding and hiding. As before, we assume q ≡ 5 (mod 8) is a prime.

Lemma 4.1. (Completeness). Suppose n, N , βs ≥ 1 and denote t :=nq̃. Let m > t+n,
m′:=m(d + 1)+ nq̃, n′:=nq̃(d + 1) and t ′:=max(n′,m′). Take s > 2N · q n

m−t+ 2
N (m−t) ,

σ0 ≥ δsNtω(
√

2(d + 1)n(m − t)N log t ′N ) and σ1 ≥ δσ0N · ω(
√
m′n′ log t ′N ) .

If γ ≥ σ1
√
m′N then the PowerBASIS commitment scheme satisfies completeness.
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Proof. In the discussion above, we already showed that Eq. (14) is true. We will show
that ‖si‖ ≤ γ for all i , and thus we can pick the global relaxation to be (1, . . . , 1) ∈ S.

First, note that the matrix R̃ ∈ Rm′×n′
q satisfies ‖R̃‖ ≤ sNt

√
2(d + 1)n(m − t)N

with high probability by Lemma 2.8. Hence σ0 ≥ δ‖R̃‖ · ω(
√
N log t ′N ) for t ′ =

max(n′,m′) and thus we can apply both Lemma 2.16 and Lemma 2.7 to deduce that
with an overwhelming probability ‖T‖ ≤ σ0

√
m′n′N . Similarly, we have σ1 ≥ δ‖T‖ ·

ω(
√
N log t ′N ) and thus ‖si‖ ≤ σ1

√
m′N ≤ γ with an overwhelming probability for

all i = 0, 1, . . . , d, which concludes the proof. �

Based on the parameters above, we would require σ0 = Õ(
√
d) and σ1 = Õ(d3/2),

ignoring the polynomial factors related to the security parameter.

Lemma 4.2. (Relaxed Binding). Let t = nq̃, m > t + n and n′ = nq̃(d + 1). Take

s > 2N · q n
m−t+ 2

N (m−t) . If σ0 ≥ δsNtω(
√

2(d + 1)n(m − t)N log n′N ) then under
the PowerBASISn−1,m,N ,q,d+1,σ0,2βsγ assumption, PowerBASIS commitment scheme
satisfies relaxed binding.

Proof. Let A be an adversary for the relaxed binding game which succeeds with prob-
ability ε. We prove the statement using an hybrid argument. We define εi to be the
probability that A wins Game i .
Game 0: This is the standard relaxed binding game. By definition ε0 = ε.
Game1: Here, we swap theSamplePre algorithm with sampling truly from a discrete

Gaussian distribution. Since σ0 ≥ δsNtω(
√

2(d + 1)n(m − t)N log n′N ), we can argue
as in Lemma 4.1 that ε1 ≥ ε0 − negl(λ).
Game 2: In this game we do not run TrapGen anymore, but instead the matrix

A ← Rn×m
q is selected uniformly at random. By Lemma 2.6, we deduce that ε2 ≥

ε1 − negl(λ).
We claim that ε2 = negl(λ) under the PowerBASIS assumption. First, by definition

of the PowerBASIS assumption, our goal is to extract a short non-zero solution for the
matrix A∗, where

A:=
[
a�
A∗
]

.

Denote the tuple A outputs as:

t, (f, (v0 . . . , vd), (c0, . . . , cd)), (f ′, (v′0 . . . , v′d), (c′0, . . . , c′d)).

By definition, whenever A wins, it must be that openings are valid and f �= f ′, which
implies there is at least an index j with f j �= f ′j . Thus, by subtracting the verification
equations, we have that

A(v j − v′j ) =

⎡

⎢
⎢
⎢
⎣

f ′j − f j
0
...

0

⎤

⎥
⎥
⎥
⎦

.



Lattice-Based Polynomial Commitments: Towards Asymptotic… Page 41 of 92 31

Since f ′j − f j �= 0, this implies that v̄:=(v j − v′j ) �= 0. Consequently, A∗v̄ = 0. Now,
v̄ might not be short. Hence, we consider c j c′j v̄ instead. Clearly, this is still a non-zero
solution for A∗ since c j , c′j are invertible. Further,

‖c j c′j v̄‖ ≤ ‖c′j (c jv)‖ + ‖c j (c′jv′)‖ ≤ 2βsγ .

Therefore, c j c′j v̄ is a valid solution to PowerBASIS. �

Lemma 4.3. (Hiding).Supposen, N ≥ 1anddenote t :=nq̃. Letm > t+n,m′:=m(d+
1)+ nq̃, n′:=nq̃(d + 1) and t ′:=max(n′,m′). Take

σ0 ≥ δsNtω(
√

2(d + 1)n(m − t)N log t ′N ),

σ1 ≥ δ ·max
(

log((d + 1)mN ), σ0N · ω(
√
m′n′ log t ′N )

)
.

Then, the PowerBASIS commitment scheme satisfies hiding.

Proof. Take an unbounded adversary A which wins the hiding game with probability
ε. We prove the statement via a sequence of games, where in each game we change the
algorithm of Commit. Let εi be the advantage of the adversary against Game i .
Game 1: This is the original hiding game where Commit is defined in Fig. 4. For

the purpose of the proof, we assume Commit does not output st. Then, by definition
ε1 = ε.

Game 2: In this game, Commit (inefficiently) samples

⎡

⎢
⎢
⎢
⎣

s0
...

sd
t̂

⎤

⎥
⎥
⎥
⎦
← B−1

σ1

⎛

⎜
⎝

⎡

⎢
⎣

− f0W0e1
...

− fdWde1

⎤

⎥
⎦

⎞

⎟
⎠

and outputs t:=Gt̂. By our assumption on σ0, σ1 we can argue similarly as in Lemma 4.1
to deduce that |ε2 − ε1| = negl(λ).

Game 3: Here we make use of the fact that B:=[E | F] where

E:=
⎡

⎢
⎣

A
. . .

WdA

⎤

⎥
⎦ and F:=

⎡

⎢
⎣

−G
...

−G

⎤

⎥
⎦

Concretely, the Commit algorithm first samples t̂← Dt N
σ1

, sets

⎡

⎢
⎣

t
...

t

⎤

⎥
⎦ :=Ft̂
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and then generates ⎡

⎢
⎣

s1
...

sd

⎤

⎥
⎦← E−1

σ1

⎛

⎜
⎝

⎡

⎢
⎣

− f0W0e1
...

− fdWde1

⎤

⎥
⎦−

⎡

⎢
⎣

t
...

t

⎤

⎥
⎦

⎞

⎟
⎠ .

Finally, the algorithm outputs t.
By Lemma 2.5, there is a negligible function ε such that σ1 ≥ ηε(�

⊥(E)). Further,
by Lemma 2.3 the matrix A is full-rank (and so is E) with an overwhelming probability.
Hence, we can apply Lemma 2.9 to conclude |ε3 − ε2| = negl(λ).

Game 4: The Commit algorithm simply samples t̂ ← Dt N
σ1

and outputs t:=Gt̂.
Clearly, there is no difference between the outputs of Game 3 and 4, thus ε4 = ε3.

Finally, the output of Commit in Game 4 does not depend on the challenge messages
m0,m1 from A. Hence, we get that ε4 = 1/2. By the hybrid argument we obtain
ε = 1/2+ negl(λ), which concludes the proof. �

Efficiency. The main bottleneck of the Commit algorithm is the trapdoor sampling
procedure, which asymptotically takes O(d2) operations over Rq . On the other hand,
the opening algorithm makes O(d) operations in Rq .

Remark 4.4. Wee and Wu [83] proposed an alternative approach, which allows for
linear-time commitment generation. This comes at the cost of (i) losing the hiding
property, and (ii) the message space inherently must only contain short vectors. Since
both properties are important in our polynomial commitment scheme, we do not describe
the more efficient method in this work and refer to [83, Remark 4.12] for more details.

5. Efficient Proofs of Polynomial Evaluation

In this section we illustrate how to prove evaluations of a polynomial that is committed
using the PowerBASIS commitment scheme from Fig. 4. We start by presenting a
general framework for proving polynomial evaluations in Sect. 5.1, and then we describe
two distinct instantiations in Sects. 5.2 and 5.3. For clarity, we give an overview of
frequently used parameters in Table 3. We implicitly assume that lattice dimension
parameters, such as n,m, N , are poly(λ).

5.1. Framework for Proving Evaluations

The main intuition can be described as follows. We design a relation that captures
statements of the form: “the commitment t has an opening f ∈ Rd+1

q (with respect to a

given crs) such that f (u) = v, where f ∈ R≤dq [X] is now interpreted as polynomial”.
The core observation is that there exists a Σ-protocol that interactively reduces an
instance of that relation to a related one, in which the size of the committed polynomial
is decreased. This new relation is with respect to a different common reference string,
that can be efficiently computed from the previous one. We then exploit this recursion
to shrink to a commitment with a constant-size opening.
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Table 3. Overview of parameters and notation .

Parameter Explanation

q proof system modulus
N degree of the cyclotomic ring R:=Z[X ]/(XN + 1)

l power-of-two such that q ≡ 2N/ l + 1 (mod 4N/ l)
d degree of the committed polynomial f ∈ Rq [X]
n height of the matrix A
m width of the matrix A
δ decomposition base of the gadget matrix G
q̃ �logδ q	 + 1
n′ nq̃(d + 1)

m′ mq̃(d + 1)+ nq̃
t ′ max(n′,m′)
k folding factor of the folding protocol
h 2h + 1 is the number of rounds
β initial norm of the witness openings
w L1 norm of elements in the challenge space C
βC L∞ of elements in C (used in Sect. 5.3)
βh norm of the opening vectors sent in the last round
βs infinity norm of the extracted relaxation factors
γ extracted norm

We formalise this discussion by introducing the opening relation below

Rd,β :=
⎧
⎨

⎩
((A,W), (t, u, z), ( f, (si )i ))

∣
∣
∣
∣

f (u) = z
∀i ∈ [0, d],Asi + fie1 =W−i t

∧‖si‖ ≤ β

⎫
⎬

⎭
. (15)

We describe the Σ-protocol, upon which our main evaluation protocol is built, in Fig. 5.
Roughly speaking, the prover divides the initial polynomial f of degree at most d into
k polynomials g1, . . . , gk of degree at most d ′:=(d + 1)/k − 1 by writing

f (X):=
∑

t∈[k]
Xt−1gt (Xk) . (16)

Then, it “commits” to the partial polynomials by providing their evaluations at the point
u, say zi :=gi (uk). Thus, by construction

z = f (u) =
∑

t∈[k]
ut−1gt (u

k) =
k∑

t=1

ztu
t−1 . (17)

Next, the verifier outputs a challenge (α1, . . . , αk)← C ⊆ Rk
q . Note that by considering

the folded polynomial g =∑k
t=1 αt gt of degree at most d ′, we obtain a new polynomial
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Fig. 5. The Σ-protocol Σ[d, k, C, β] for relation Rd,β in Equation (15). Here, d ′:=(d + 1)/k − 1,
w:=maxα∈C ‖α‖1 and st,i :=ski+t−1 for i ∈ [0, d ′] and t ∈ [k].

evaluation statement about g:

g(uk) =
k∑

t=1

αt zt . (18)

The main strength of the PowerBASIS commitment from Fig. 4 is that the commitment
(resp. openings) to g can be efficiently computed from the commitment t (resp. openings
si ) of f given α1, . . . , αk in time O(k). This is the key idea for achieving succinct
verification. Hence, the prover outputs the polynomial g in the clear, along with its
opening vectors. The verifier eventually checks correctness of the openings with respect
to the message g, as well as (17) and (18).

We first prove that this protocol transforms an instance of Rd,β into a smaller one of
Rd ′,β ′ .
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Lemma 5.1. (Completeness for Σ). Let �:=Σ[d, k, C, β] as in Fig. 5. Then, � is an
interactive protocol with perfect completeness for Rd,β .

Proof. Let (i,x,w) = ((A,W), (t, u, z), ( f, (si )i∈[0,d])) ∈ Rd,β . Since f (u) = z,
the first verification check always succeeds by Equation (17). We are left to show that
the new instance is valid. First, g(uk) =∑t∈[k] αt gt (uk) =∑t∈[k] αt zt . Further, recall
that for i ∈ [0, d ′] and t ∈ [k] we have

st,i = ski+t−1 and gt,i = fki+t−1 ,

where gt,i is the i-th coefficient of the polynomial gt . Hence, the i-th coefficient of g
satisfies gi =∑t∈[k] αt gt,i =∑t∈[k] αt fki+t−1. Therefore,

Azi + gie1 = A

⎛

⎝
∑

t∈[k]
αt st,i

⎞

⎠+
⎛

⎝
∑

t∈[k]
αi fki+t−1

⎞

⎠ · e1

=
∑

t∈[k]
αt (Aski+t−1 + fki+t−1e1)

=
∑

t∈[k]
αt

(
W−(ki+t−1)t

)

=
⎛

⎝
∑

t∈[k]
αtW−(ki+t−1)

⎞

⎠ · t

= (Wk)−i
⎛

⎝
∑

t∈[k]
αtW−(t−1)

⎞

⎠ · t.

Finally, by Lemma 2.1 for α ∈ C, ‖zi‖ ≤ ∑
t∈[k]

∥
∥αt st,i

∥
∥ ≤ ∑

t∈[k] ‖αt‖1 · β ≤ wβ

where w:=maxα∈C ‖α‖1. This shows that the new instance is in Rd ′,β ′ , and thus the
verifier accepts. �

We now apply the Σ-protocol recursively h times, reducing the final opening size to
(d + 1)/kh , while increasing the final norm for verification by a factor wh .

Construction 5.2. Let k, h be integers, and let C ⊆ Rk
q . We let Eval[d, k, h, C, β]:=

(P,V) be the protocol that we describe in Fig. 6.

Completeness of the protocol is easily shown by applying Lemma 5.1 h times.

Lemma 5.3. (Completeness for Eval). Let �:=Eval[d, k, h, C, β]. Then, � is an in-
teractive protocol with perfect completeness for Rd,β .

Proof. Denote by (ir ,xr ,wr ):=((A,Wr ), (tr , ur , zr ), ( fr , (sr,i )i∈[dr ])) for r ∈ [h].
By Lemma 5.1, (ir ,xr ,wr ) ∈ Rdr ,βr implies (ir+1,xr+1,wr+1) ∈ Rdr+1,βr+1 with



31 Page 46 of 92 G. Fenzi et al.

Fig. 6. The protocol Eval[d, k, h, C, β] for Rd,β . As before, we denote w:=maxα∈C ‖α‖1.

probability 1. Since (i0,x0,w0) ∈ Rd,β0 , then (ih,xh,wh) ∈ Rdh ,βh , and thus the
verifier final checks accept. �

Remark 5.4. The protocol that we have described has folding factor k constant across
every round of interaction. In fact, we can gain more flexibility by allowing each round
to use a different folding factor. This can be beneficial, for example, to obtain a constant
polynomial in the last round of the protocol when the original degree is not a h-power.

We analyse the communication complexity of Eval[d, k, h,

C, β] in the next lemma.

Lemma 5.5. (Efficiency for Eval). The total communication complexity of Eval[d, k,
h, C, β] (in bits) can be bounded by

h · (kN#log q$ + #log |C|$)+ d + 1

kh
N#log q$ +

(
d + 1

kh
+ 1

)

mN#log(2whβ)$ .
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Further, the provermakes O(md)operations inRq while the verifiermakes O
(
(n + m)2

(hk + d/kh)
)
operations inRq .

Proof. In each round the prover sends k elements of Rq to the verifier, and the verifier
sends 1 element of C. In the final round, the prover sends a polynomial with dh =
(d + 1)/kh coefficients, and dh + 1 opening vectors, each of which has norm at most
βh .

We turn to the prover complexity and first consider Step 2. Every r -th round out of
[h], the prover makes O(mkdr ) = O(mdr−1) operations in Rq . Since d0 = O(d) and
in general dr = O(d/kr ), the total runtime of the prover can be bounded by

O

(
h−1∑

r=0

mdr

)

= O

(

m
h−1∑

r=0

d/kr
)

= O

(

md · 1− 1/kh

1− 1/k

)

= O(md) .

We move to the verifier analysis. In Step 2, for every round r ∈ [h], the verifier makes
at most O(kn2) operations. Hence, the total cost of Step 2 is O(hkn2). The rest of
the algorithm takes O(dh(nm + n2)) steps. Thus, the total runtime can be bounded by
O
(
(n + m)2(hk + d/kh)

)
ring operations. �

Next, we provide two instantiations of the protocol in Fig. 6 which will differ in the
selection of the challenge space C. This has direct impact on the knowledge extraction
strategy.

5.2. Monomial Protocol

In the following, we describe a so-called monomial variant of the protocol, where the
name comes from the description of the challenge space C. Fix k:=2, and C:={1}×{Xi :
i ∈ Z}. Note that by definition w = 2, and α,α′ ∈ C with α �= α′ implies that
α2 − α′2 ∈ R×q . In this section, we also assume that 2 ∈ R×q (which can be enforced if
gcd(2, q) = 1).

We aim to show that �:=Eval[d, 2, h, C, β] is 2-special sound. In fact, we will not be
able to show this exactly, as the extraction will introduce some slack. Rather we show
that � is special sound for the relaxed opening relation that we describe next:

R̃d,c,γ :=
⎧
⎨

⎩

(
(A,W), (t, u, z), ( f, (si )i∈[0,d])

)
∣
∣
∣
∣

∀i ∈ [0, d],Asi + fie1 =W−i t ∧
∧ c ∈ R×q ∧ ‖c · si‖ ≤ γ

∧ f (u) = z

⎫
⎬

⎭
.

(19)
We will directly show that Eval is special sound, which also implies special soundness
of the Σ-protocol by noting that the two protocols are equivalent when h = 1. To argue
soundness we will first prove that there exists an extractor that is able to extract witnesses
of the higher layer of the transcript tree from the children.

Lemma 5.6. (Special Soundness for �). Let c ∈ R×q , and let i = (A,W), x =
(t, u, z). There exists an algorithm that, given two accepting transcripts tr j of the fol-
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lowing form

tr j :=
(
(z1, z2),α j :=(1, α j ) ∈ C,w′j :=(g j , (z j,i )i )

)
for j = 0, 1

where α0 �= α1, outputsw:=( f̄ , (s̄i )i ). Furthermore, let d ′, i′, x′0,x′1 be obtained as in
Fig. 5. If, for i ∈ {0, 1}, (i′,x′i ,w′i ),∈ R̃d ′,c,β , and z = z1+uz2, then (i,x,w) ∈ R̃d,2c,γ
where γ :=2Nβ.

Remark 5.7. We highlight that the g j contained w′j from the statement above are
different from polynomials g1, g2 defined in Fig. 5.

Proof. Consider the following algorithm:

E(tr0, tr1):

1. Set s̄2i :=α1z0,i−α0z1,i
α1−α0

, s̄2i+1:= z0,i−z1,i
α0−α1

for i ∈ [0, (d − 1)/2].
2. Set f̄1:=α1g0−α0g1

α1−α0
, f̄2:= g0−g1

α0−α1
.

3. Set f̄ := f1(X2)+ X f̄2(X2).
4. Return f̄ , (s̄i )i∈[0,d].

Let now ( f̄ , (s̄i )i )← E(tr). Note that

As̄2i + f̄2ie1 =W−2i t

As̄2i+1 + f̄2i+1e1 =W−(2i+1)t .

Now, we have that:

f̄ (u) = f̄1(u
2)+ u f̄2(u

2)

= α1g0(u2)− α0g1(u2)

α1 − α0
+ u

g0(u2)− g1(u2)

α0 − α1

= z1 + uz2

= z .

Finally, we set c∗:=2c. First, note that c∗ ∈ R×q since 2 ∈ R×q . Now, for i ∈ [0, d ′], we
have:

∥
∥c∗ · s̄2i

∥
∥ =

∥
∥
∥
∥

2

α1 − α0
· c · (α1z0,i − α0z1,i )

∥
∥
∥
∥

≤
∥
∥
∥
∥

2

α1 − α0

∥
∥
∥
∥∞

∥
∥c(α1z0,i − α0z1,i )

∥
∥

1

= ∥∥c(α1z0,i − α0z1,i )
∥
∥

1

≤ √N (c
∥
∥α1z0,i

∥
∥+ ∥∥cα0z1,i

∥
∥)

≤ N (‖α1‖ ·
∥
∥cz0,i

∥
∥+ ‖α0‖ ·

∥
∥cz1,i

∥
∥)

≤ 2Nβ = γ
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where the second equality follows by Lemma 2.17 and the last inequality by ‖α‖ = 1
for (1, α) ∈ C. Similarly, ‖c∗ · s̄2i+1‖ ≤ γ . �

Using this extractor, we show that � is (2, . . . , 2)-special sound. The new extractor
will start from the leaves of the tree of transcripts, applying the extractor described in
Lemma 5.6 to obtain witnesses 16 for the upper layer.

Lemma 5.8. (Special Soundness for Eval). Let C:={1} × {Xi : i ∈ Z} and let
�:=Eval[d, 2, h, C, β] be as in Construction 5.2. Set γ :=(2N )h · βh. Then � is a
special sound proof system for R̃d,2h ,γ .

Proof. Let tr be a tree of transcripts, which we index as follows.

• α(r, j) for (r, j) ∈ [h] × [2r ] is the j-th challenge in the r -th layer of the transcript.
• (z(r, j),1, z(r, j),2) for (r, j) ∈ [0, h − 1] × [2r ] is the j-th response in the r -th layer

of the transcript.
• ( f̄(h, j), (s̄(h, j),i )i ) for j ∈ [2h] is the final message sent by the prover.

We introduce the following notation as in the verifier algorithm:

• d0:=d, dr :=dr−1/2 for r ∈ [h]
• W0:=W, Wr :=W2

r−1 for r ∈ [h].
• t(0,1):=t, t(r,2 j−1):=(1+α(r,2 j−1)W

−1
r−1)t(r−1, j), t(r,2 j):=(1+α(r,2 j)W

−1
r−1)t(r−1, j)

for (r, j) ∈ [h] × [2r ].
• β0:=β, βr :=2N · βr−1 for r ∈ [h].
• u0:=u, ur :=u2

r−1 for r ∈ [h].
• z(r,2 j−1):=z(r−1, j),1+ α(r,2 j−1)z(r−1, j),2, z(r,2 j):=z(r−1, j),1+ α(r,2 j)z(r−1, j),2 for

(r, j) ∈ [h] × [2r − 1].
Denote with E(1) the extractor of Lemma 5.6.

E(tr):
1. Set d0:=d, dr :=dr−1/2 for r ∈ [h].
2. For r :=h, . . . , 1:

(a) Set, for j ∈ [2r−1],

tr(r−1, j):=
(

(z(r−1, j),1, z(r−1, j),2),
α(r,2 j−1), ( f̄(r,2 j−1), (s̄(r,2 j−1),i )i )

α(r,2 j), ( f̄(r,2 j), (s̄(r,2 j),i )i )

)

.

(b) Compute f̄(r−1, j), (s̄(r−1, j),i )i∈[0,dr−1] ← E(1)(tr(r−1, j)) for j ∈ [2r−1]
3. Return f̄(0,1), (s̄(0,1),i )i∈[d].

We prove that this extractor yields a valid witness by induction on r . First note that, by
the verifier checks, for (r, j) ∈ [h] × [2r ]

z(r−1, j) = z(r−1, j),1 + ur−1z(r−1, j),2 .

16We also implicitly collect the corresponding relaxation factors, which are the same across the same layer.
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Table 4. Parameters for the interactive polynomial commitment scheme obtained from Fig. 4 and running the
�-parallel repetition of Eval[d, 2, h, C, β] for proofs of evaluation .

Parameters Instantiation

m ≥ n(1+ q̃)

l N/2
δ q1/O(1)

s > 2Nq
n

m−nq̃ + 2
N (m−nq̃)

σ0 ≥ δsNnq̃ · ω(
√

2(d + 1)n(m − nq̃)N log t ′N )

σ1 ≥ δσ0N · ω(
√
m′n′ log t ′N )

β ≥ σ1
√
m′N

k 2
C {1} × {Xi : i ∈ Z}
w 2
βh wh · β
γ (2N )h · βh
βs 2h

Soundness
(

h
2N

)�

Commitment size nN log q

Communication complexity � ·
(

h(2N log q + log N + 1)+
d+1
2h

(N log q + mN log βh)

)

Prover time O(� · md)

Verifier time O(� · (n + m)2 · (2h + d/2h))

We compute the prover and verifier runtime in terms of operations in Rq .

Write i(r, j):=(A,Wr ),x(r, j):=(t(r, j), u(r, j), z(r, j)),w(r, j):=( f̄(r, j), (s̄(r, j),i )i ) for (r, j) ∈
[h] × [2r ]. For r = h, since the transcripts are accepting, (i(h, j),x(h, j),w(h, j)) ∈
Rdh ,βh = R̃dh ,1,βh for j ∈ [2h]. Thus, by Lemma 5.6, (i(h−1, j),x(h−1, j),w(h−1, j)) ∈
R̃dh−1,2,2Nβh .

We can continue with the induction, and this yields that for the extracted witness
w(0,1):=( f̄(0,1), (s̄(0,1),i )i∈[d]) we have that:

(i(0,1),x(0,1),w(0,1)) ∈ R̃d,2h ,(2N )hβh
.

Setting γ :=(2N )hβh , and noting that 2h ∈ R×q , this concludes our proof. �

We can use Eval to construct a polynomial commitment scheme. We detail the construc-
tion in Theorem 5.9 and summarise the parameters and efficiency features in Table 4.

Theorem 5.9. Let PC = (Setup,Commit,Open,P�,V�) where Setup, Commit,
Open are as in Fig. 4 and P�,V� are the �-parallel repetitions of the prover and ver-
ifier of Eval. Then PC is an interactive polynomial commitment scheme with the effi-
ciency properties and parameters shown in Table 4. In particular, when h = O(log d)

and � > λ
log N+1−log h we obtain an interactive polynomial commitment scheme with

negligible knowledge soundness error, polylogarithmic communication complexity, and
polylogarithmic verifier time.
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Proof. Completeness and relaxed binding follow from Lemmata 4.1 and 4.2. Perfect
evaluation completeness follows from Lemma 5.1. For evaluation knowledge sound-
ness, we apply [9, Theorem 4] to Lemma 5.8. Communication complexity follows
from Lemma 5.5. Additionally, claims about the prover and verifier runtime hold by
Lemma 5.5 and the fact that both log q and N are polynomial in λ. �

5.3. Large Sampling Set

We present a second instantiation which allows us to obtain negligible knowledge sound-
ness error without parallel repetition, using coordinate-wise special soundness (c.f.
Sect. 2.9) and a large challenge space. We let t, k ∈ N. Fix also βC > 0. Recall that
Sκ :={α ∈ Rq : ‖α‖∞ ≤ κ}. We define the challenge space and the slack space as

C:=SkβC and St :=
⎧
⎨

⎩

∏

i∈[t]
αi − α′i : αi , α

′
i ∈ SβC , αi �= α′i

⎫
⎬

⎭
.

Note that |C| = (2βC + 1)kN and w ≤ βCkN . We also let βs,t :=maxc∈St ‖c‖∞. Note
that, for c ∈ St ,

‖c‖∞ ≤
∥
∥
∥
∥
∥

∏

i

(αi − α′i )
∥
∥
∥
∥
∥
∞
≤ ∥∥α1 − α′1

∥
∥∞ ·

∏

i �=1

∥
∥αi − α′i

∥
∥

1 ≤ 2βC · (2βCN )t−1 ,

and thus ‖c‖1 ≤ (2βCN )t .
We show a simple invertibility result that will be useful in the proof of soundness.

Lemma 5.10. Let 1 ≤ l < N be a power of two, and suppose that q ≡ 2N/ l + 1
(mod 4N/ l). If 2βC <

√
l/Nql/N , then for any t ≥ 1, St ⊆ R×q .

Proof. Let α �= α′ ∈ SβC . Then, α − α′ �= 0, and
∥
∥α − α′

∥
∥∞ ≤ 2βC. Thus, by

Lemma 2.18, α − α′ ∈ R×q . Elements of St are products of elements of that form, and
since the product of invertible elements is itself invertible, the result follows. �

We will assume thereafter that we are in the regime in which Lemma 2.18 holds (as in
Table 3).

We again aim to show that Eval[d, k, h, C, β] is knowledge sound. As before, we
define an opening relation, which will differ from Equation (19) in that the relaxation
factors will not be the same across openings, but rather will be included as part of the
witness. This will reflect the fact that the extracted opening will have different slack
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derived from the challenges.

R̃d,β,t :=
⎧
⎨

⎩
((A,W), (t, u, z), ( f, (si )i , (ci )i ))

∣
∣
∣
∣
∣
∣

∀i ∈ [0, d],Asi + fie1 =W−i t ∧
∧ci ∈ St ∧ ‖ci · si‖ ≤ β

∧ f (u) = z

⎫
⎬

⎭
.

(20)
As before, to argue that the protocol is knowledge sound, we will first show an extractor
to be used to move between layers of the transcript tree. In this case however, we will
argue using coordinate-wise special soundness instead of special soundness.

Lemma 5.11. (Coordinate-Wise Special Soundness for �). Let c ∈ R×q , and let i =
(A,W), x = (t, u, z). There exists an algorithm that, given k+1 transcripts (tr j ) j∈[0,k]
of the following form:

tr j :=
⎛

⎝
(z1, . . . , zk)

α j

(g j , (s j,i )i∈[0,d ′])

⎞

⎠ with (α j ) j ∈ SS(SβC , 2, k) ,

and slack (c j,i ) j,i outputs w:=( f̄ , (s̄i )i , (c̄i )i ). Furthermore, let i′, (x′j ) j∈[k] be ob-
tained as in Fig. 5 (where x′j is obtained from the j-th leaf of the transcript) and

w′j :=(g j , (s j,i )i , (c j,i )i ). If, for i ∈ [0, k], (i′,x′i ,w′i ),∈ R̃d ′,β,t , and z =∑t∈[k] ut−1zt ,

then (i,x,w) ∈ R̃d,γ,2t+1 where γ :=2β if t = 0 and γ :=2Nβs,tβ otherwise.

Proof. Assume, without loss of generality, that the transcripts are arranged so that, for
j ∈ [k], α0 ≡ j α j . We thus can write α0 = (α1, . . . , αk) and α j :=(α1, . . . , α

′
j , . . . αk)

with α j �= α′j . Consider the extractor

E(tr = (tr0, . . . , trk), (c̃ j,i ) j,i ):

1. For j ∈ [k]:
(a) Set f̄ j := g0−g j

α j−α′j
.

(b) For i ∈ [0, d ′]:
i. Set s̄ki+ j−1:= z0,i−z j,i

α j−α′j
.

ii. Set c̄ki+ j−1:=(α j − α′j )c0,i c j,i .

2. Set f̄ :=∑ j∈[k] X
j−1 f̄ j (Xk).

3. Return ( f̄ , (s̄i )i∈[0,d]), (c̄i )i∈[0,d].
Since the transcript is accepting, for j ∈ [0, k], i ∈ [0, d ′] we have that

Az j,i + g j,ie1 = (Wk)−i
⎛

⎝
∑

t∈[k]
α j,tWt−1

⎞

⎠ t .
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Subtracting the equation for j = 0 from the equation for j ∈ [k] yields that, for
i ∈ [0, d ′]:

A

(
z0,i − z j,i
α j − α′j

)

+
(
g0,i − g j,i

α j − α′j

)

e1 =W−(ki+ j−1)t .

To show that the extracted f̄ evaluates to z at u, note that:

f̄ (u) =
∑

j∈[k]
u j−1 f̄ j (u

k)

=
∑

j∈[k]
u j−1 g0(uk)− g j (uk)

α j − α′j

=
∑

j∈[k]
u j−1

∑
t∈[k](α0,t − α j,t )zt

α j − α′j

=
∑

j∈[k]
u j−1z j = z .

where in the third equality we have used that the verifier check accepts, and for the fourth∑
t∈[k](α0,t − α j,t )zt = (α j − α′j )z j . We argue that the extracted s̄i are (relaxed) short.

∥
∥c̄ki+ j−1 · s̄ki+ j−1

∥
∥ =

∥
∥
∥
∥
∥
(α j − α′j )c0,i c j,i

z0,i − z j,i
α j − α′j

∥
∥
∥
∥
∥

= ∥∥c0,i c j,i (z0,i − z j,i )
∥
∥

≤ ∥∥c j,i c0,iz0,i
∥
∥+ ∥∥c0,i c j,iz j,i

∥
∥

≤ √Nβs,t (
∥
∥c0,iz0,i

∥
∥

1 +
∥
∥c j,iz j,i

∥
∥

1)

≤ 2Nβs,tβ = γ .

If t = 0, then the slacks must have been 1, and thus
∥
∥c̄ki+ j−1s̄ki+ j−1

∥
∥ ≤ ∥∥z0,i − z j,i

∥
∥ ≤

2β as desired. Finally, what is left to show is that the new slack is in the prescribed slack
space. This is easy to show as the previous two slacks are a product of t differences of
challenges, that we then multiply with a new difference, leading to a product of 2t + 1
differences of challenges. Lemma 5.10 guarantees that this new slack is invertible as
long as βC is small enough. �

We then use this extractor recursively to show thatEval is coordinate-wise special sound.

Lemma 5.12. (Coordinate-Wise Special Soundness for Eval). Let k, h ∈ N, βC > 0.
Let �:=Eval[d, k, h, C, β] be as in Construction 5.2. Then, � is a k-coordinate-wise
special sound proof system for the relation R̃d,γ,t where

γ :=2h · (2βCN )2h−h−1 · βh

t :=2h − 1 .



31 Page 54 of 92 G. Fenzi et al.

Proof. We index the transcript as in Lemma 5.8. Denote by E(1) the extractor of
Lemma 5.11. Consider the new extractor

E(tr):
1. Set c̄(h, j) = 1 for j ∈ [(k + 1)h].
2. For r :=h, . . . , 1:

(a) Set for j ∈ [(k + 1)r−1]:
tr(r−1, j)

:=
⎛

⎜
⎝(z(r−1, j),t )t∈[k]

(α(r,( j−1)(k+1)+1), ( f̄(r,( j−1)(k+1)+1), (s̄(r,( j−1)(k+1)+1),i )i ))

.

.

.

(α(r, j (k+1)), ( f̄(r, j (k+1)), (s̄(r, j (k+1)),i )i ))

⎞

⎟
⎠ .

(b) Compute ( f̄(r−1, j), (s̄(r−1, j),i )i , (c̄(r−1, j),i )i ) ← E(1)(tr(r−1, j),

(c̄(r,( j−1)(k+1)+t),i )t,i ).
3. Return f̄(0,1), (s̄(0,1),t ), (c̄(0,1),t )t .

We argue that the extractor yields a valid witness inductively. We again note that for
(r, j) ∈ [h] × [(k + 1)r ], since the transcripts are accepting,

z(r−1, j) =
∑

t∈[k]
uk−1
r−1z(r−1, j),t .

Write i(r, j):=(A,Wr ), x(r, j):=(t(r, j), ur , (z(r, j),i )i ) and w(r, j):=( f̄(r, j), (s̄(r, j),i )i ,
(c̄(r, j),i )i ). Since the leaves are accepting (and the relaxed relation is equivalent to the
exact one when the relaxation factors are one), (i(h, j),x(h, j),w(h, j)) ∈ R̃dh ,βh ,0. Thus,
Lemma 5.11 (in the case t = 0) implies that (i(h−1, j),x(h−1, j),w(h−1, j)) ∈ R̃dh−1,2βh ,1.
Now, we define the recurrence relations:

tr :=
{

1 if r = 1

2tr−1 + 1 otherwise
and γr :=

{
2β if r = 1

2Nβs,tr−1γr−1 otherwise
.

Lemma 5.11 implies exactly that, if (i(r, j),x(r, j),w(r, j)) ∈ R̃dr−i ,γr ,tr , then the extracted

witness (i(r+1, j),x(r+1, j),w(r+1, j)) ∈ R̃dk−r−1,γr+1,tr+1 . Unfolding the recurrence rela-
tions, we note that tr = 2r − 1 and

γr = 2r Nr−1

(
r−1∏

i=1

βs,ti

)

βh

≤ 2r Nr−1

(
r−1∏

i=1

2βC(2βCN )2i−2

)

βh

= 2r Nr−1(2βC)
r−1(2βCN )

∑r−1
i=1 2i−2 · βh

= 2 j Nr−1(2βC)
r−1(2βCN )2r−2r · βh
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Table 5. Parameters for the polynomial commitment scheme obtained from Fig. 4 and the Fiat–Shamir trans-
form of Eval[d, k, h, C, β] for proofs of evaluation.

Parameters Instantiation

m ≥ n(1+ q̃)+ ω(log λ)

l N/2
δ q1/O(1)

s > 2Nq
n

m−nq̃ + 2
N (m−nq̃)

σ0 ≥ δsNnq̃ · ω(
√

2(d + 1)n(m − nq̃)N log t ′N )

σ1 ≥ δσ0N · ω(
√
m′n′ log t ′N )

β ≥ σ1
√
m′N

C SkβC
βC < 1

2
√
l/Nql/N

w kNβC
βh wh · β
γ 2h · (2βCN )2h−h−1 · βh
βs (2βCN )2h−1

Soundness (Q+1)·hk
(2βC+1)N

Commitment size nN log q
Proof size h(kN log q)+ d+1

kh
(N log q + mN log βh)

Prover time O(md)

Verifier time O((n + m)2 · (hk + d/kh))

We let Q be an upper bound on the number of queries an adversary can make to the random oracle.

= 2r (2βCN )2r−r−1 · βh

Taking this to its natural conclusion:

(i(0,1),x(0,1),w(0,1)) ∈ R̃d,γh ,th ,

and setting γ :=γh , t :=th implies the result. �

Again, we can use Eval to construct a polynomial commitment scheme.

Theorem 5.13. Let PC = (Setup,Commit,Open,Eval,Verify) where Setup,

Commit,Open are as in Fig. 4 and Eval,Verify are obtained by applying the Fiat–
Shamir transform to Eval[d, k, h, C, β] when kh = poly(λ)[d]. Then, PC is an polyno-
mial commitment schemewith the efficiency properties and parameters shown in Table 5.

Proof. Completeness and relaxed binding follow from Lemmata 4.1 and 4.2. Perfect
evaluation completeness follows from Lemma 5.1. Communication complexity and run-
times follow from Lemma 5.5. Knowledge soundness follows from Lemma 2.31 and
Lemma 5.12, noting that when kh = poly(λ)[d] and thus the extractor runs in expected
polynomial time. �
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At this point, one might be tempted to instantiate the scheme in Theorem 5.13 with
h = O(log d) and k = O(1) to obtain a protocol with logarithmic communication
complexity as in Theorem 5.9 and small soundness error. This unfortunately does not
succeed, as the extracted norm in this case grows exp(d) and thus log q ≥ poly(d).
The resulting protocol will communicate logarithmically many elements of Rq , but the
overall communication complexity will thus be polynomial in d. Thus, h must be at
most O(log log d). In fact, let 0 < ε < 1 be a constant and set h = 1/ε = O(1),
k = dε . It is easy to see from Table 5 that then the communication complexity will be
O(dε) elements of Rq and we can set log q = polylog(d) to obtain overall sublinear
communication complexity. Accordingly, the verifier time will also be sublinear. In fact,
we can further improve on this. Set now h ≈ log log d, and k ≈ d1/ log log d . It can be
easily verified that in this case we obtain

log q = O

(
log2 d

log log d

)

,

and in terms of communication complexity: O((log log d) · d1/ log log d) elements of
Rq or polylog(d) · d1/ log log d bits (similarly for the verifier complexity). As such, we
can conclude that Theorem 5.13 gives rise to a quasi-polylogarithmic non-interactive
polynomial commitment scheme from lattice assumptions.

5.4. Batching Evaluations

5.4.1. Multiple Evaluations at a Single Point

We show a simple approach to amortise the cost of proving evaluations of multiple
evaluations at a single point. More concretely, we have a list of (committed) polynomials
f1, . . . , fr and want to show that fi (u) = zi . First we define the corresponding relation,
namely:

Rr
d,β :=

{
(A,W), ((t j ) j , u, (z j ) j ), (( f j ) j , (s j,i ) j,i )

∣
∣
∣
∣

∀ j ∈ [r ],
((A,W), (t j , u, z j ), ( f j , (s j,i )i )) ∈ Rd,β

}

.

The intuition of the protocol that we design is to take a random linear combinations
of the polynomials f1, . . . , fr , and prove that its evaluation at u is equal to the linear
combination of the claimed evaluations. The protocol that we describe in Fig. 7 takes
this idea and combines it with one round of Fig. 5, which is useful for better concrete
efficiency.

Lemma 5.14. (Completeness for multiEval). Let �:=multiEval[d, r, k, C, β] be the
protocol in Fig. 7. Then, � is a Σ-protocol with perfect completeness for Rr

d,β .
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Fig. 7. The protocol multiEval[d, r, k, C, β] for proving evaluations of r polynomials at a single point. In the
above w:=maxα∈C ‖α‖1. As before, we define d ′:=(d + 1)/k − 1 and sι,t,i :=sι,ki+t−1 for ι ∈ [r ].

Proof. It is easy to see that g(uk) =∑ι,t αι,t gι,t (uk) =∑αι,t zι,t . Also, for i ∈ [0, d ′],

Azi + gie1 =
∑

ι,t∈[r ]×[k]
αι,t

(
Asι,t,i + gι,t,ie1

)

=
∑

ι,t∈[r ]×[k]
αι,t

(
Asι,ki+t−1 + gι,ki+t−1e1

)

=
∑

ι,t∈[r ]×[k]
αι,tW−(ki+t−1)tι.

Finally, ‖zi‖ =
∥
∥∑

ι,t αι,t sι,t,i
∥
∥ ≤ wβ = β ′ as desired. �
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As before, we define a relaxed opening relation (we use the definition of R̃ from
Equation (20)):

R̃
r
d,β,t :=

⎧
⎨

⎩

⎛

⎝
(A,W),

((tι)ι, u, (zι)ι),
(( fι)ι, (sι,i )ι,i , (cι,i )ι,i )

⎞

⎠

∣
∣
∣
∣

∀ι ∈ [r ],
((A,W), (tι, u, z j ), ( fι, (sι,i )i ), (cι,i )i )) ∈ R̃d,β,t

}

.

We now prove coordinate-wise special soundness for the set C:=SrkβC
⊆ Rrk

q , where each
element has rk coordinates. Then, it is easy to show (e.g. using the composition results
as in [20, Section 3]) that composing multiEval with Eval yields a knowledge sound
protocol for this relaxed relation.

Lemma 5.15. (Coordinate-Wise Special Soundness formultiEval).Let�:=multiEval
[d, r, k, C, β] be the protocol in Fig. 7. Let i:=(A,W), x:=((tι)ι, u, (zι)ι). There exists
an algorithm that, given rk + 1 transcripts (tr j ) j∈[0,rk] of the following form:

tr j :=
⎛

⎝
(zι,t )ι,t

α j

(g j , (z j,i )i∈[0,d])

⎞

⎠ with (α j ) j ∈ SS(SβC , rk) ,

and relaxation factors (c j,i ) j,i , outputs w:=(( f̄ι)ι, (s̄ι,i )ι,i , (c̄ι,i )ι,i ). Now, set i′:=
(A,Wk), x j :=(

∑
ι,t α j,ι,t tι, uk,

∑
ι,t α j,ι,t zι,t ), w j :=(g j , (z j,i )i , (c j,i )i ). If for j ∈

[0, r ], (i′,
x j ,w j ) ∈ R̃d,β,t , and zι = ∑t∈[k] ut−1zι,t for ι ∈ [r ], then (i,x,w) ∈ R̃

r
d,γ,t ′ where

γ :=2Nβs,tβ, t ′:=2t + 1.

Proof. Again, assume without loss of generality that α0 ≡ j α j for j ∈ [rk]. Now,
reindex α1 . . . ,αrk into a r × k matrix α1,1, . . . ,αr,k . We write α0 = (α∗1,1, . . . , α

∗
r,k)

and thus assume that αv,w = (α∗1,1, . . . , α
′
v,w, . . . , α∗r,k) with α′v,w �= α∗v,w. We also

reindex (g j ) j , (z j,i ) accordingly so that gv,w corresponds the αv,w challenge (note that
we skip the 0-th challenge α0).

With these conventions, we let the extractor be the following.

E(tr):
1. For ι ∈ [r ], t ∈ [k]:

(a) Let f̄ι,t := g0−gι,t
α∗ι,t−α′ι,t

.

(b) Let s̄ι,ki+t−1:= z0,i−zι,t,i
α∗ι,t−α′ι,t

for i ∈ [0, d ′].
(c) Let c̄l,ki+t−1:=(α∗ι,t − α′ι,t )c0,i cι,t,i for i ∈ [0, d ′].

2. Set f̄ι:=∑t∈[k] X
t−1 fι,t for ι ∈ [r ].

3. Return ( f̄ι)ι, ((s̄ι,i )i )ι, ((c̄ι,i )i )ι.
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First note that by assumption, g0(uk) = ∑
ι,t α

∗
ι,t zι,t and gv,w(uk) = α′v,wzv,w +

∑
(ι,t) �=(v,w) α∗ι,t zι,t . Thus, f̄v,w(uk) = g0−gv,w

α∗v,w−α′v,w
(uk) = zv,w. Thus, for ι ∈ [r ]:

f̄ι(u) =
∑

t∈[k]
ut−1 f̄ι,t (u

k) =
∑

t∈[k]
ut−1 g0 − gι,t

αι,t − α′ι,t
(uk) =

∑

t∈[k]
ut−1zι,t = zι .

Now, also by assumption:

Az0,i + g0,ie1 =W−i
⎛

⎝
∑

(ι,t)

α∗ι,t tι

⎞

⎠

Azv,w,i + gv,w,ie1 =W−i
⎛

⎝α′v,wtv +
∑

(ι,t) �=(v,w)

α∗ι,t tι

⎞

⎠

⇓

A

(
z0,i − zv,w,i

α∗v,w − α′v,w

)

+
(
g0,i − gv,w,i

α∗v,w − α′v,w

)

· e1 =W−(ki+w−1)tv

⇓
As̄v,ki+w−1 + f̄v,ki+w−1e1 =W−(ki+w−1)tv .

Finally, note that
∥
∥c̄ι,i s̄ι,i

∥
∥ ≤ 2Nβs,tβ by exactly the same reasoning as in Lemma 5.11.

�

5.4.2. Multiple Evaluations at Distinct Points

Next, we consider the dual problem, namely amortising proving many statements of the
form fι(uι) = zι for ι ∈ [r ] where u1, . . . , ur can be potentially distinct. Looking at
Lemma 5.5, a large part of the communication complexity is represented by the last
round, where the prover has to send openings s0, . . . , sdh . We amortise this by taking a
random linear combination of these openings. As before, for concrete efficiency reasons,
we integrate this within a round of compression.

The relation that we consider is the following:

Rr
d,β :=

⎧
⎨

⎩

⎛

⎝
(A,W),

(tι, uι, zι)ι
( fι, sι,i )ι,i

⎞

⎠

∣
∣
∣
∣
∣
∣

∀ι ∈ [r ]
((A,W), (tι, uι, zι), ( fι, sι,i )ι,i ) ∈ Rd,β

⎫
⎬

⎭
.

The protocol is then described in Fig. 8. Now, we show evalMulti has perfect complete-
ness..

Lemma 5.16. (Completeness for evalMulti). Let�:=evalMulti[d, r, k, C, β]. Then�

is a Σ-protocol with perfect completeness for Rr
d,β .
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Fig. 8. The protocolevalMulti[d, r, k, C, β] for proving evaluations of multiple polynomials at multiple points.
In the above w:=maxα∈C ‖α‖1 and d ′:=(d + 1)/k − 1.

Proof. For the first verifier check,

zι = fι(uι) =
∑

t∈[k]
ut−1

ι hι,t (u
k
ι ) =

∑

t∈[k]
ut−1

ι zι,t .

Next, we check that gι evaluates to the correct value.

gι(u
k
ι ) =

∑

t∈[k]
αι,t hι,t (u

k
ι ) =

∑

t∈[k]
αι,t zι,t .

Checking validity of the openings is similarly straightforward:

Azi +
(
∑

ι

gι,i

)

e1 = A

(
∑

ι,t

αι,t sι,t,i

)

+
(
∑

ι,t

αι,t hι,t,i

)

e1

=
∑

ι,t

αι,t
(
Asι,t,i + hι,t,ie1

)

=
∑

ι,t

αι,t
(
Asι,ki+t−1 + fι,ki+t−1e1

)
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=
∑

ι,t

αι,t

(
W−(ki+t−1)tι

)

= (Wk)−i ·
(
∑

ι,t

αι,tW−(t−1)tι

)

.

Finally, ‖zi‖ =
∥
∥∑

ι,t αι,t sι,t,i
∥
∥ ≤ wβ. �

For knowledge soundness, we again define a relaxed opening relation, namely:

R̃
r
d,β :=

⎧
⎨

⎩

⎛

⎝
(A,W),

(tι, uι, zι)ι
( fι, sι,i , cι,i )ι,i

⎞

⎠

∣
∣
∣
∣
∣
∣

∀ι ∈ [r ]
((A,W), (tι, uι, zι), ( fι, sι,i , cι,i )ι,i ) ∈ R̃d,β,1

⎫
⎬

⎭
.

Lemma 5.17. (Coordinate-Wise Special Soundness formultiEval).Let�:=multiEval
[d, r, k, C, β] be the protocol in Fig. 7. Then,� is a rk-coordinate-wise knowledge sound
proof system for R̃

r
d,2β .

Proof. For j ∈ [0, rk], consider transcripts of the following form:

tr j :=
⎛

⎝
(zι,t )ι,t

α j

((g j,ι)ι, (z j,i )i )

⎞

⎠ with (α j ) j ∈ SS(SβC , rk) ,

and again assume, without loss of generality, that the transcripts are arranged so that, for
j ∈ [r ], α0 ≡ j α j . Reindex and arrange the challenges as in the proof of Lemma 5.15.

Consider the following extractor:

E(tr0, . . . , trrk):
1. For ι ∈ [r ], t ∈ [k]:

(a) Set f̄ι,t := g0−gι,t
α∗ι,t−α′ι,t

.

(b) Set s̄ι,ki+t−1:= z0,i−zι,t,i
α∗ι,t−α′ι,t

for i ∈ [0, d ′].
(c) Set c̄ι,ki+t−1:=α∗ι,t − α′ι,t for i ∈ [0, d ′].

2. Set f̄ι:=∑t∈[k] X
t−1 f̄ι,t for ι ∈ [r ].

3. Return ( f̄ι)ι, (s̄ι,i )ι,i , (c̄ι,i )ι,i .

Since the transcripts are accepting, we have that zι = ∑
t∈[k] ut−1

ι zι,t for ι ∈ [r ].
Also, g0,ι(ukι ) =

∑
t∈[k] α∗ι,t zι,t and gv,w,ι(ukι ) = α′v,wzv,w + ∑t �=w α∗ι,t zι,t . Thus,

g0,ι−gv,w

α∗v,w−α′v,w
(ukι ) = zv,w. Now,

f̄ι(uι) =
∑

t∈[k]
ut−1

ι f̄ι,t (u
k
ι ) =

∑

t∈[k]
ut−1

ι

g0 − gι,t

α∗ι,t − α′ι,t
(ukι ) =

∑

t∈[k]
ut−1

ι zι,t = zι .
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We also have that

Az0,i +
(
∑

ι

g0,ι,i

)

e1 =W−ki
(
∑

ι,t

α∗ι,tW−(t−1)tι

)

Azv,w,i +
(
∑

ι

gv,w,ι,i

)

e1 =W−ki
⎛

⎝α′v,wW
−(w−1)tv +

∑

ι,t �=(v,w)

α∗ι,tW−(t−1)tι

⎞

⎠

⇓

A

(
z0,i − zv,w,i

α∗v,w − α′v,w

)

+ f̄v,w,ie1 =W−ki
(
W−(w−1)tv

)

⇓
As̄v,ki+w−1 + f̄v,ki+w−1e1 =W−(ki+w−1)tv .

Finally,
∥
∥c̄ι,ki+t−1s̄ι,ki+t−1

∥
∥ ≤ ∥∥z0,i

∥
∥+ ∥∥zι,t,i

∥
∥ ≤ 2β as desired. �

We can combine these two newly presented protocols with Eval to obtain a protocol
for multiple evaluations. Let u1, . . . , ur ∈ Rq , and suppose we want to show that
fι,m(uι) = zι,m for ι ∈ [r ],m ∈ [rι] for committed polynomials ( fι,m)ι,m . Write
ws :=maxα←SsβC

‖α‖1. The combined protocol runs (in parallel) multiEval[d, rι, k,

Srι·kβC
, β] with input ( fι,m)m∈[ri ] for ι ∈ [r ]. This outputs r claims, which we handle

by running Eval[d/k, k, SkβC , wrιk · β] r -times into parallel. Finally, we run a single in-

stance of multiEval[d/kh+1, r, k, SrkβC
, (maxι wrιk) · wh

kβ]. The final complexity of this
protocol is summarised in Table 6.

5.5. Honest-Verifier Zero-Knowledge

We provide a linear-sized �-protocol for the relation Rd,β (c.f. Equation (15)) which
satisfies honest-verifier zero-knowledge. Combined with the recursive methodology de-
scribed above, we can achieve zero-knowledge succinct proofs of polynomial evaluation.
The strategy can identically be applied when proving knowledge of multiple polynomials
at the same query point, which brings resemblance to [14].

Recall that we want to prove knowledge of the polynomial f ∈ Rq [X] of degree at
most d, and the openings (si )i∈[0,d] such that f (u) = z and Asi + fie1 = W−i t and
‖si‖ ≤ β for i = 0, 1, . . . , d. In addition to the public matrices (A ∈ Rn×m

q ,W ∈
Rn×n

q ), this time the index i contains a short basis T such that BT = Gn(d+1) where 17

B:=
⎡

⎢
⎣

A −G
. . .

...

WdA −G

⎤

⎥
⎦ and ‖T‖ ≤ βT . (21)

17See Lemma 4.1 on how to obtain the bound on ‖T‖. For presentation, we assume the bound βT is known.
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Table 6. Parameters and complexity of the multi-evaluation protocol .

Parameters Instantiation

m ≥ n(1+ q̃)+ ω(log λ)

δ q1/O(1)

s > 2Nq
n

m−nq̃ + 2
N (m−nq̃)

σ0 ≥ δsNnq̃ · ω(
√

2(d + 1)n(m − nq̃)N log t ′N )

σ1 ≥ δσ0N · ω(
√
m′n′ log t ′N )

β ≥ σ1
√
m′N

βC < 1
2
√
l/Nql/N

ws sNβC
βh

(
maxι wrιk

)
wh
kwrk · β

γ 2h+2 · (2βCN )2h+2−h−3 · βh
βs (2βCN )2h+2−1

Soundness (Q + 1) ·
(

(maxι rι+h+r)k
(2βC+1)N

)

Commitment size nN log q ·∑ι rι
Proof size

(∑
ι rιkN log q

)+ r(h + 1) · (kN log q)+ d+1
kh+2 (r N log q + mN log βh)

This is the case when generating the PowerBASIS commitment in Sect. 4 since the
public parameters are indeed of the form crs:=(A,W,T).

We present the protocol in Fig. 9. The strategy follows the Fiat–Shamir with Aborts
paradigm [65] using the generalised rejection sampling from [29]. That is, the prover
starts by sampling uniformly random masking vector g:=(g0, . . . , gd)← Rd+1

q , which
corresponds to coefficients of a uniformly random polynomial g ∈ Rq [X] of degree
at most d. Then, the prover runs the PowerBASIS commitment algorithm for g (c.f.
Fig. 4). Namely, it samples

⎡

⎢
⎢
⎢
⎣

y0
...

yd
t̂y

⎤

⎥
⎥
⎥
⎦
← SamplePre(B,u,T, σ ), where u:=

⎡

⎢
⎣

−g0W0e1
...

−gdWde1

⎤

⎥
⎦ ,

and sets ty :=Gt̂y . The first message sent by the prover is (ty, v) where v:=∑d
i=0 giu

i

is the evaluation of g at the point u. Then, the verifier picks a challenge α from the
challenge space C:=SβC of short polynomials of infinity norm at most βC.

Next, given a challenge α← C from the verifier, the prover computes

zi :=yi + αsi and hi :=gi + α fi for i = 0, 1, . . . , d ,
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and outputs (zi , hi ) after performing the rejection sampling procedure. Note that the
distribution of zi can be written alternatively as:

⎡

⎢
⎢
⎢
⎣

z0
...

zd
t̂z

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

y0
...

yd
t̂y

⎤

⎥
⎥
⎥
⎦
+ α

⎡

⎢
⎢
⎢
⎣

s0
...

sd
t̂

⎤

⎥
⎥
⎥
⎦

(22)

where

⎡

⎢
⎢
⎢
⎣

y0
...

yd
t̂y

⎤

⎥
⎥
⎥
⎦
← SamplePre

⎛

⎜
⎝

⎡

⎢
⎣

A −G
. . .

...

WdA −G

⎤

⎥
⎦ ,

⎡

⎢
⎣

−g0W0e1
...

−gdWde1

⎤

⎥
⎦ ,T, σ

⎞

⎟
⎠ (23)

and t̂ = G−1(t). Hence, this vector comes from a shifted discrete Gaussian distribution
(over a coset of �⊥(B)), where the norm of the shifted vector can be bounded by:

∥
∥
∥
∥
∥
∥
∥
∥
∥

α

⎡

⎢
⎢
⎢
⎣

s0
...

sd
t̂

⎤

⎥
⎥
⎥
⎦

∥
∥
∥
∥
∥
∥
∥
∥
∥

≤ βCN ·
√

(d + 1)β2 + nq̃N . (24)

This interpretation will be useful when analysing the rejection sampling algorithm.
Finally, the verifier checks whether

Azi + hie1 =W−i (ty + αt) for i = 0, 1, . . . , d

‖zi‖ ≤ βz for i = 0, 1, . . . , d

d∑

i=0

hiu
i = v + αz.

In the following, we give a brief reasoning about completeness, special soundness and
honest-verifier zero-knowledge.

Completeness. By careful inspection, we can deduce from the third verification check:

d∑

i=0

hiu
i =

d∑

i=0

giu
i + α

d∑

i=0

fi u
i = v + αz ,

and from the second verification check:

Azi + hie1 = Ayi + gie1 + α(Asi + f ie1) =W−i ty + αW−i t =W−i (ty + αt).
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Fig. 9. The honest-verifier zero-knowledge Σ-protocol for Rd,β . Here, m′:=(d + 1)m + nq̃ is the width of
the matrix B in (21).

What we have left to show is shortness of zi . Take the standard deviation

σ ≥ max

(

O(
√

λ) · βCN ·
√

(d + 1)β2 + nq̃N , βT · ω(
√
N log t N )

)

(25)

where t = max(n,m). By Lemma 2.16, we can swap the SamplePre algorithm with
truly sampling from a discrete Gaussian. Further, since σ is larger than the shifted vector
in (24) by a factor of O(

√
λ), using rejection sampling (c.f. Lemma 2.19) we enforce

the distribution of (z0, . . . , zd , t̂z) from (22) to be from a discrete Gaussian on �⊥u (B)
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where

u:=
⎡

⎢
⎣

−(g0 + α f0)W0e1
...

−(gd + α fd)Wde1

⎤

⎥
⎦ .

Thus, by Lemma 2.8, we can set βz :=σ
√

(d + 1)mN + nq̃N . The correctness error
becomes ≈ 1/M .

Special soundness. Given two valid transcripts (ty, v, α, (zi , hi )), (ty, v, α′, (z′i , h′i ))
with distinct challenges α, α′ ∈ C, we can define

s̄i :=zi − z′i
α − α′

and f̄i :=hi − h′i
α − α′

for i = 0, 1, . . . , d .

Note that ‖α − α′‖∞ ≤ 2βC. If βC is chosen according to Lemma 2.18 then we deduce
that the difference is invertible over Rq . Further, by construction

f̄ (u) =
d∑

i=0

f̄i u
i = 1

α − α′
d∑

i=0

(hi − h′i )ui =
αz − α′z
α − α′

= z .

Furthermore, for i = 0, 1, . . . , d we have ‖(α − α′)si‖ ≤ 2βz and

As̄i + f̄ie1 = 1

α − α′
(
Azi + hie1 − (Az′i + h′ie1)

)

= 1

α − α′
(
αW−i t − α′W−i t

)
=W−i t .

Thus, (s̄0, . . . , s̄d) along with the message ( f̄0, . . . , f̄d) is a relaxed opening for the
PowerBASIS commitment t with the relaxation factor α − α′. Hence, we can extract
the witness for the relaxed relation R̃d,2βz ,1 in (20).

Honest-verifier zero-knowledge. We show how to simulate the transcripts when the
verifier behaves honestly. To this end, we prove the following lemma which is almost
analogous to [29, Lemma B.8].

Lemma 5.18. (Honest-Verifier Zero-Knowledge). Let σ be chosen as in (25) where
t = max(n,m). Then, the output distributions of T and S in Fig. 10 are statistically
indistinguishable.

Proof. We prove the statement via a standard hybrid argument.

• Hyb0 is identical to T as in Fig. 10.
• Hyb1 is identical to Hyb0, but now we define t̂z :=t̂y + αt̂, where t̂:=G−1(t), and

compute ty :=Gt̂z−αt. By construction, the output distribution ofHyb1 is identical
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Fig. 10. Simulating the transcripts from the �-protocol described in Fig. 10.

to Hyb0 and

⎡

⎢
⎢
⎢
⎣

z0
...

zd
t̂z

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

y0
...

yd
t̂y

⎤

⎥
⎥
⎥
⎦
+ α

⎡

⎢
⎢
⎢
⎣

s0
...

sd
t̂

⎤

⎥
⎥
⎥
⎦

where

⎡

⎢
⎢
⎢
⎣

y0
...

yd
t̂y

⎤

⎥
⎥
⎥
⎦

← SamplePre

⎛

⎜
⎝

⎡

⎢
⎣

A −G
. . .

...

WdA −G

⎤

⎥
⎦ ,

⎡

⎢
⎣

−g0W0e1
...

−gdWde1

⎤

⎥
⎦ ,T, σ

⎞

⎟
⎠ .
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• Hyb2 is identical to Hyb1, but now we compute

⎡

⎢
⎢
⎢
⎣

z0
...

zd
t̂z

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

y0
...

yd
t̂y

⎤

⎥
⎥
⎥
⎦
+ α

⎡

⎢
⎢
⎢
⎣

s0
...

sd
t̂

⎤

⎥
⎥
⎥
⎦

where

⎡

⎢
⎢
⎢
⎣

y0
...

yd
t̂y

⎤

⎥
⎥
⎥
⎦

←
⎡

⎢
⎣

A −G
. . .

...

WdA −G

⎤

⎥
⎦

−1

σ

⎛

⎜
⎝

⎡

⎢
⎣

−g0W0e1
...

−gdWde1

⎤

⎥
⎦

⎞

⎟
⎠ .

By Lemma 2.16, Hyb1 and Hyb2 are statistically close.
• Hyb3 is identical to Hyb2, but here we directly sample

⎡

⎢
⎢
⎢
⎣

z0
...

zd
t̂z

⎤

⎥
⎥
⎥
⎦
←
⎡

⎢
⎣

A −G
. . .

...

WdA −G

⎤

⎥
⎦

−1

σ

⎛

⎜
⎝

⎡

⎢
⎣

−(g0 + α f0)W0e1
...

−(gd + α fd)Wde1

⎤

⎥
⎦

⎞

⎟
⎠

and with probability 1−1/M we output z:=⊥. By the generalised rejection sampling
(c.f. Lemma 2.19), Hyb3 and Hyb2 are statistically close.
• Hyb4 is identical to Hyb3, except now we efficiently sample:

⎡

⎢
⎢
⎢
⎣

z0
...

zd
t̂z

⎤

⎥
⎥
⎥
⎦
← SamplePre

⎛

⎜
⎝

⎡

⎢
⎣

A −G
. . .

...

WdA −G

⎤

⎥
⎦ ,

⎡

⎢
⎣

−(g0 + α f0)W0e1
...

−(gd + α fd)Wde1

⎤

⎥
⎦ ,T, σ

⎞

⎟
⎠ .

As before, by Lemma 2.16 we deduce that Hyb4 and Hyb3 are statistically close.
• Hyb5 is identical to Hyb4, except now we define hi :=gi + α fi for i = 0, 1, . . . , d.

Thus,

⎡

⎢
⎢
⎢
⎣

z0
...

zd
t̂z

⎤

⎥
⎥
⎥
⎦
← SamplePre

⎛

⎜
⎝

⎡

⎢
⎣

A −G
. . .

...

WdA −G

⎤

⎥
⎦ ,

⎡

⎢
⎣

−h0W0e1
...

−hdWde1

⎤

⎥
⎦ ,T, σ

⎞

⎟
⎠ .

Furthermore, we set v:=h(v) − αz. Clearly, the output distributions of Hyb5 and
Hyb4 are identical.
• Hyb6 is identical to Hyb5, but now we sample each hi ← Rq uniformly at random.

Since in Hyb5 each gi was sampled uniformly at random from Rq , we conclude
that the output distributions of Hyb6 and Hyb5 are identical.
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Finally, the output distribution of Hyb6 is identical to the one by S which ends the
proof. �

Remark 5.19. We obtain a succinct zero-knowledge proof of evaluation by modifying
the �-protocol from Fig. 9, where instead of sending the last message (zi , hi )i∈[0,d]
in the clear, we prove knowledge of the last message which satisfies the verification
equations of the aforementioned protocol using the methodology from Sect. 5.1.

Remark 5.20. Similarly as in Sect. 5.4, we can combine the HVZK protocol with one
round of folding to minimise the total round complexity, and thus the extracted norm
growth. This yields an almost identical protocol as in [14].

5.6. Polynomial Commitments over Finite Fields

So far we showed how to commit and prove evaluations of polynomials over the cyclo-
tomic ring Rq . We now present how to build polynomial commitments over finite fields
of specific form. This will be useful when combining with Polynomial IOPs to obtain
succinct arguments of knowledge.

Suppose q is a prime which satisfies q ≡ 2N/ l + 1 (mod 4N/ l) for some positive
divisor l of N . Then by [70, Corollary 1.2], the polynomial XN + 1 factors as:

XN + 1 ≡
N/ l∏

i=1

(Xl − ri ) (mod q)

for distinct ri ∈ Z
∗
q where all Xl − ri are irreducible in the ring Zq [X ]. Further, by the

Chinese Remainder Theorem, there exists a ring isomorphism ϕ : FN/ l → Rq where
F is a finite field of size ql . Consider the restricted function:

ϕF : F→ Rq

x �→ ϕ(x, 0, . . . , 0).

By construction, the image of ϕF can be described as

Sq :=Im(ϕF) = {ϕ(x, 0, . . . , 0) : x ∈ F} .

The following simple lemma states that Sq is an ideal of Rq .

Lemma 5.21. The set Sq ⊆ Rq defined above is an ideal.

Proof. The fact that Sq is an additive subgroup of Rq follows directly from the addi-
tively homomorphic properties of ϕ. Now let a ∈ Sq , i.e. ϕ(x, 0, . . . , 0) = a for some
x ∈ F. Further, take arbitrary γ ∈ Rq and let (γ1, . . . , γN/ l):=ϕ−1(γ ). Then, by the
multiplicative homomorphism of ϕ we get

γ · a = ϕ(γ1, . . . , γN/ l) · ϕ(x, 0, . . . , 0) = ϕ(γ1x, 0, . . . , 0) = ϕF(γ1x) ∈ Sq ,
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which concludes the proof. �

Suppose we want to commit to a polynomial F :=∑d
i=0 FiX

i ∈ F[X] of degree at most
d, and prove evaluation F(x) = y for x, y ∈ F. By the homomorphic property of ϕF,
this is equivalent to proving f (u) = z over Rq where

⎧
⎪⎨

⎪⎩

f [X] =∑d
i=0 ϕF(Fi )Xi ∈ Sq [X]

u = ϕF(x) ∈ Sq

z = ϕF(y) ∈ Sq

.

Hence, we can commit to the polynomial f ∈ Rq [X] and prove evaluation of u at the
point z as before. What is new is that we additionally need to prove that coefficients of
f indeed lie in Sq . Therefore, we are interested in a stronger relation:

⎧
⎨

⎩
((A,W), (t, u, z), ( f, (si )i ))

∣
∣
∣
∣

f (u) = z ∧ f ∈ Sq [X]
∀i ∈ [0, d],Asi + fie1 =W−i t

∧‖si‖ ≤ β

⎫
⎬

⎭
. (26)

We show how to modify the protocol in Fig. 6 to accommodate for this change. Actually,
the interaction between the prover and the verifier stays the same but the verifier addi-
tionally performs a check whether the final polynomial fh ∈ Rq [X] sent by the prover
has coefficients in Sq .

Completeness follows by induction. We start with the initial polynomial f0:= f ∈
Sq [X]. Then for each r ∈ [h], the prover computes the polynomial fr ∈ Rq [X] as a
linear combination of “partial terms” of fr−1:

fr :=
∑

t∈[k]
αr,t fr−1,t .

If fr−1 ∈ Sq [X], then by Lemma 5.21 we deduce that fr ∈ Sq [X].
To argue (coordinate-wise) special soundness, consider the extractor in the proof of

Lemma 5.6. The coefficients of the extracted polynomial f are computed as

f2i :=α1g0,i − α0g1,i

α1 − α0
, f2i+1:=g0,i − g1,i

α0 − α1
for i ∈ [0, d/2] .

If polynomials g0 and g1 have coefficients in Sq , then again by Lemma 5.21 we can
deduce that f ∈ Sq [X]. Identical argument holds when analysing Lemma 5.11.

Finally, to support honest-verifier zero-knowledge in Fig. 9, we let the prover pick uni-
formly random elements gi from Sq instead of Rq in order to fully mask the coefficients
fi . Thus, by construction and Lemma 5.21, hi = gi + α fi ∈ Sq for all i = 0, . . . , d.
Hence, the verifier additionally performs the check whether coefficients hi lie in Sq .

Remark 5.22. This technique can be extended to simultaneously prove N/� polynomial
evaluations and it was recently used in [25, Section 7].
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6. Concrete Instantiation and Applications to Marlin

As described in Sect. 2, we pick a prime modulus q ≡ 5 (mod 8), and thus � = N/2.

Hardness of PowerBASIS. In parameter selection, we make a heuristic assumption
that PowerBASIS is exactly as hard as MSIS. Hence, one should treat our computed
sizes only as intuition on how practical the polynomial commitment is.

In the literature, hardness of the MSIS problems is often analysed identically as the
plain SIS since, so far, the best known attacks do not make use of the algebraic structure
of the polynomial ring [6]. We follow the methodology from Dilithium [42, Appendix
C]. That is, MSISn,m,N ,q,β for matrix A is equivalent to finding a non-trivial vector of
norm smaller than β in the lattice �:=�⊥(A). In order to find short non-trivial vectors
in �, we apply the Block-Korkine-Zolotarev algorithm (BKZ) [36,77]. As a subroutine,
BKZ uses an algorithm for the shortest vector problem (SVP) in lattices of dimension
b, where b is called the block size. If we apply the best known algorithm for solving
SVP with no memory constraints by Becker et al. [16], the time required by BKZ to run
on the mN -dimensional lattice � with block size b is given by 8mN · 20.292b+16.4 (one
also considers a more conservative variant with runtime 20.292b). The algorithm outputs

a vector of norm δmN
rhf det(�)

1
mN where δrhf is the root Hermite factor and it is given by

δrhf =
(
b(πb)1/b

2πe

) 1
2(b−1)

. (27)

For our usual parameter selection, the probability that a random matrix A ∈ Rn×m
q is

of full rank is overwhelming (see [45, Appendix C]) and thus det(�) = qnN . Next,
Micciancio and Regev [74] show that

δmN
rhf det(�)

1
mN = δmN

rhf q
nN
mN ≥ 22

√
nN log q log δ

and the equality holds when mN = √nN log q/ log δ. Hence, given a bound β < q
we compute δrhf from the equation β = 22

√
nN log q log δ . Next, we calculate the mini-

mum block size b from Equation (27), and thus we get the total time for BKZ to solve
MSISn,m,N ,q,β . Hereafter, we will refer to the “aggressive strategy” to setPowerBASIS
as the one using the estimate from Becker et al. [16], and to the the “conservative strategy”
as the one using 20.292b.

Parameters. Using a combination of randomised and exhaustive search, we found
parameters for the schemes in Theorem 5.9 and Theorem 5.13. In Table 7 we detail the
parameters obtained for the scheme presented in Theorem 5.13 and in Table 8 for that in
Theorem 5.9. We also make use of the techniques in [4, Sec 5.5, Sec 6] to further optimise
the parameters. Namely, we use the transformation therein to convert our polynomial
commitment scheme to one that supports prime order fields, and we use deterministic
preimage sampling (since in this section we are not concerned with zero-knowledge). All
the tables use the “aggressive strategy” to set parameters. We stress that these parameters
are presented to give the reader an indication of the concrete efficiency of the scheme.
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Table 7. Parameters and concrete sizes for the polynomial commitment described in Theorem 5.13 .

k h d λ Q n m N δ log q 2γβs β s βC βh |t| |π |

128 2 214 80 64 87 1697 64 17 204 203 148 34 1 166 139 KB 2.6 MB
256 3 230 80 64 139 2919 64 24 322 322 196 49 1 225 350 KB 6.9 MB
128 2 220 128 64 117 2106 64 20 229 222 163 42 2 182 209 KB 3.4 MB
256 3 230 128 64 168 3528 64 25 339 338 202 53 2 234 445 KB 8.3 MB

δ, norms and standard deviation given in log form.

Table 8. Parameters and concrete sizes for the interactive polynomial commitment in Theorem 5.9 .

h d λ n m N δ log q 2γβs β s βh t |t| |cc|

11 220 80 17 383 512 22 314 314 170 48 192 13 333 KB 64.1 MB
21 230 80 27 608 512 38 548 523 249 78 291 15 925 KB 183.7 MB
8 220 128 3 54 4096 27 320 320 191 65 207 13 480 KB 105.4 MB
20 230 128 17 408 1024 33 515 515 234 72 274 20 1.07 MB 324.4 MB

δ, norms and standard deviation given in log form.

The commitments have sizes on the order of hundreds of kilobytes, while evaluation
proofs are on the order of a few megabytes, and so are larger than desirable in most
applications. We also emphasise that the assumption that the hardness of PowerBASIS
is as hard as MSIS is an heuristic, and thus, until this heuristic is backed or disproved
by sufficient cryptanalysis, the sizes should be considered as an optimistic lower bound.

Applications to Polynomial IOPs. Marlin [37] is a widely deployed preprocessing
zkSNARK. As many modern constructions, Marlin is constructed by combining two
ingredients:

• a polynomial interactive oracle proof (PIOP) (therein a algebraic holographic proof);
• and a polynomial commitment scheme.

An interactive oracle proof (IOP) is a generalisation of both probabilistically checkable
proofs and interactive proofs. Informally, they are interactive protocols between a prover
and a verifier, in which the prover sends oracle messages, which the verifier is allowed
to not read in their entirety. A PIOP is simply an IOP where the prover messages are
guaranteed to be (low degree) polynomials. IOPs and PIOPs are information theoretic
object, and as such inherit a number of efficiency limitations (for example, IOP proof
length are required to be at least linear in the size of the instance), but can be compiled
using cryptography (see [18]) to obtain arguments that are both asymptotically and
concretely efficient. Informally, to compile a PIOP into an interactive argument, the
prover can commit to each polynomial oracle using a polynomial commitment scheme,
and then prove to the verifier that the evaluations (at points chosen by the verifier) are
as claimed. Then, to obtain a NARK, we can apply the Fiat–Shamir transformation to
this interactive protocol. We can thus aim to use our polynomial commitment scheme
in Theorem 5.13 as an ingredient of Marlin to obtain a zkSNARK for R1CS. Let d
denote the size of the R1CS instance that we aim to prove. As detailed in [37, Section
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Table 9. Parameters and concrete sizes for Marlin when instantiated with the commitment described in The-
orem 5.13 with amortisation as in Table 6.

k h d λ Q n m N δ log q 2γβs β s βC βh |t| |π |

[32, 32, 48] 1 220 80 64 138 2691 64 27 324 321 181 50 1 224 6.1 MB 6.6 MB
[32, 128, 128, 192] 2 230 80 64 224 5376 64 34 517 517 231 66 1 292 15.9 MB 19.6 MB
[32, 32, 48] 1 220 128 64 186 3627 64 28 343 339 189 54 2 234 8.8 MB 8.6 MB
[32, 128, 128, 192] 2 230 128 64 271 6504 64 36 562 552 244 74 2 309 20.9 MB 23.6 MB

k in this case reports the folding factors at different rounds of the protocol. δ, norms and standard deviation
given in log form. Folding factor varies across rounds as mentioned in Remark 5.4.

9], Marlin after compilation has commitments to 19 total polynomials of degree at most
6d. The prover has then to produce 19 evaluations proofs for these polynomials, at
three distinct points. We can thus apply the techniques in Sect. 5.4 to batch evaluations
together and amortise the cost of the last round. In Table 9 we compute parameters
for Marlin instantiated using our polynomial commitment scheme and the PIOP therein
described. Again, these sizes are meant to give a rough estimate of the concrete efficiency
of the scheme, and the same caveats apply as with the polynomial commitment scheme.
We also note that Marlin operates over fields with a large multiplicative (or additive)
subgroup with smooth order, which imposes an additional requirement on the size of q.
Since our moduli are again quite large, this additional requirement is immaterial.

7. Coordinate-Wise Special Soundness Implies Knowledge Soundness

In this section we show that coordinate-wise special soundness implies knowledge
soundness for multi-round protocols by extending the techniques presented in [7,8]
(cf. Lemma 2.31). We also show that our knowledge extractor is exponentially more
efficient than the generic extractor introduced by Attema et al. [11]. The intuition be-
hind this efficiency is that the extractor samples challenges in a certain way that is the
most plausible for having a monotone structure. For reference, we will use identical
terminology as in [7, Section 6.4]. We always use � to denote the number of coordinates,
and we define a challenge space C:=S� for this and the following section.

7.1. �-Protocols

We start by considering three-round public coin interactive proofs, i.e. �-protocols.
Namely, let A : C → {0, 1}∗ be an arbitrary (probabilistic) algorithm, and V : C ×
{0, 1}∗ → {0, 1} be the verification function. Then, A has naturally defined success
probability:

εV (A):= Pr
c←C
[V (c,A(c)) = 1].

The standard interpretation is that A is a malicious prover, which tries to convince the
verifier of the underlying �-protocol.
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Fig. 11. Knowledge extractor for the proof of Lemma 7.1.

The following lemma describes how to extract from CWSS �-protocols. The proof
methodology is identical to [7, Lemma 6.5].

Lemma 7.1. Let k, � ∈ N, and S be a finite set of cardinality N . Define C:=S� and
take any verification function V : C × {0, 1}∗ → {0, 1}. Then there exists an oracle
algorithm E with the following properties: the algorithm EA, given oracle access to a
(probabilistic) algorithm A : C → {0, 1}∗, requires an expected number of at most
�(k − 1)+ 1 queries to A and with probability at least

εV (A)− �(k − 1)

N

outputs �(k − 1) + 1 pairs (c0, y0), . . . , (c�(k−1), y�(k−1)) such that V (ci , yi ) = 1 for
all i ∈ [0, �(k − 1)] and {c0, . . . , c�(k−1)} ∈ SS(S, �, k).

Proof. The extractor EA is defined in Fig. 11. We denote by C0:=(C0,1, . . . ,C0,�) the
random variable for the first challenge sampled byE. Also, we denote� = V (C0,A(C0)).
In particular, Pr[� = 1] = εV (A).

Let T be the number of A-queries made by E. For i ∈ [�], define Ti to be the number
of queries made during the i-th iteration of the loop. By linearity of expectation, we have
E [T ] = 1 +∑�

i=1 E [Ti ]. Also, if � = 0 then Ti = 0. Moreover, to bound E [Ti ], we
reuse the results from [7] and write E [Ti ] ≤ k − 1. Therefore, E [T ] ≤ 1+ �(k − 1).

We now move to the success probability of EA. Define the random variable Xi :=|{x ∈
S : V (Ci (x),A(Ci (x)) = 1}|, where Ci (x):=(C0,1, . . . ,C0,i−1, x,C0,i+1, . . . ,C0,�).
Note that the extractor succeeds with probability Pr[� = 1 ∧ (∧�

i=1Xi ≥ k)]. Now, by
the union bound we have
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Pr[� = 1 ∧ (∧�
i=1Xi ≥ k)] = Pr[� = 1] − Pr[� = 1 ∧ (∨�

i=1Xi ≤ k − 1)]

≥ Pr[� = 1] −
�∑

i=1

Pr[� = 1 ∧ Xi ≤ k − 1]

≥ Pr[� = 1] −
�∑

i=1

Pr [� = 1 | Xi ≤ k − 1] · Pr [Xi ≤ k − 1]

≥ Pr[� = 1] − �(k − 1)

N
.

The statement follows by recalling that Pr[� = 1] = εV (A). �

7.2. Multi-Round Protocols

Next, we move on to (2μ + 1)-round interactive proofs. To this end, we consider an
arbitrary probabilistic algorithm A : C× · · · × C→ {0, 1}∗, and a verification function
V : C× · · · × C× {0, 1}∗ → {0, 1}. Similarly as before, we define

εV (A):=Pr [V (c̄,A(c̄))] ,

where c̄← Cμ.
Now, the goal of the extractor is, given oracle access to A, to efficiently extract a tree

of transcripts, as in Definition 2.30. We will follow the footsteps of [7, Lemma 6.6] and
recursively use Lemma 7.1 for the �-protocol case.

Lemma 7.2. Let k, �, μ ∈ N, and S be a finite set of cardinality N . Define C:=S� and
take any verification function V : C× · · · × C× {0, 1}∗ → {0, 1}. Then there exists an
oracle algorithm E with the following properties: the algorithm EA, given oracle access
to a (probabilistic) algorithm A : C× · · · × C→ {0, 1}∗, requires an expected number
of at most K :=(�(k − 1)+ 1)μ queries to A and with probability at least

εV (A)− μ · �(k − 1)

N

outputs K pairs (ci , yi )i∈[K ] such that V (ci , yi ) = 1 for all i ∈ [K ] and (ci )i∈[K ] form
a tree of challenges as described in Definition 2.30.

Proof. We prove the statement by induction on μ ≥ 1. For μ = 1, we can apply
Lemma 7.1. Hence, assume the lemma holds for μ = M ≥ 1 and focus on the case
μ = M + 1.

For c ∈ C, we define Ac to be the algorithm, which takes input (c(2), . . . , c(μ)) ∈
Cμ−1, and outputs A(c, c(2), . . . , c(μ)). We similarly define a verification function Vc as
Vc(c(2), . . . , c(μ), y):=V (c, c(2), . . . , c(μ), y). By the induction hypothesis, there exists
an extractorEAc

μ−1, that given oracle access toAc, outputs a setY of K ′:=(�(k−1)+1)μ−1

pairs (ci , yi ) ∈ Cμ−1 × {0, 1}∗, such that Vc(ci , yi ) = 1 for all i ∈ [K ′] and (ci )i∈[K ′]
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form a tree of challenge vectors of level μ− 1, with probability at least

εVc(Ac)− (μ− 1) · �(k − 1)

N
,

and makes at most K ′ queries to Ac. Now, we define W : C × {0, 1}∗ → {0, 1}
as W (c,Y) = 1 if and only if Y satisfies all the properties above. Further, define
BA : C → {0, 1}∗ to be the algorithm, which takes as input c ∈ C, and runs EAc

μ−1.

By Lemma 7.1, there is an extractor EBA
1 that aims to output �(k − 1) + 1 pairs

(c(1)
0 ,Y0), . . . , (c

(1)
�(k−1),Y�(k−1)) such that W (c(1)

i ,Yi ) = 1 for i ∈ [0, �(k − 1)] and

(c(1)
i )i∈[0,�(k−1)] ∈ SS(S, �, k). Note that such a set of �(k − 1)+ 1 trees of challenges

is also a tree of challenges of level μ. Thus, we define the extractor EA to simply run

EBA
1 .

We first discuss the expected number of queries to A made by E. By Lemma 7.1, EAc
μ−1

makes at most �(k−1)+1 queries to BA in expectation. Then, by induction hypothesis,
BA makes at most K ′ calls to A in expectation. Hence, the total expected number of
A-queries is at most (�(k−1)+1)K ′ = (�(k−1)+1)μ. As for the success probability,

we know from Lemma 7.1 and induction hypothesis that EBA
1 succeeds with probability

at least ε′ where

ε′ ≥ εW (BA)− �(k − 1)

N

≥ Ec

[
Pr[EAc

μ−1 �= ⊥]
]
− �(k − 1)

N

≥ Ec

[

εVc(Ac)− (μ− 1)
�(k − 1)

N

]

− �(k − 1)

N

≥ εV (A)− μ
�(k − 1)

N
,

which concludes the proof. �

Finally, Lemma 2.31 follows straightforwardly from Lemma 7.2.

7.3. Comparison with the Generic Extractor

The notion of coordinate-wise special soundness is a specific case of general notion of
Γ -out-of-C special soundness introduced by Attema et al. [11]. We refer to their notation
and definitions in this section. In their work, a generic knowledge extractor for Γ -out-
of-C special-sound protocols is presented. As they note, as long as the expected runtime
of the generic knowledge extractor is polynomial, Γ -out-of-C special soundness implies
knowledge soundness. Although the generic extractor can be useful in many settings,
we show that, for a set S and �, k ∈ N, � > 1, when the generic extractor runs to get a
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set of accepting challenges C ∈ Γ ⊆ 2C, where challenge set C:=S� and

Γ := {C : ∃X ∈ SS(S, �, k), X ⊆ C} ,

it is not guaranteed that the generic extractor can output the witness in expected poly-
nomial time. Notice that Γ denotes the monotone structure here.

To that end, let us first recall two crucial definitions from [11]: the set of useful
elements and t-value. Then, we prove a lower bound on t-value, which shows the upper
bound on the expected runtime of the generic extractor fails to be useful in the proof of
knowledge soundness.

Definition 7.3. (Useful Elements, [11]). For a monotone structure (Γ, C), we define
the following function:

UΓ : 2C→ 2C, X �→ {c ∈ C \ X : ∃A ∈ Γ s.t. X ⊂ A ∧ A \ {c} /∈ Γ } .

Definition 7.4. (t-value, [11]). Let (Γ, C) be a monotone structure and S ⊆ C. Then

tΓ (X):=max

{

t ∈ N0 : ∃c1, . . . , ct ∈ C s.t.
∀i, ci ∈ UΓ (X ∪ {c1, . . . , ci−1})

}

.

Further,

tΓ :=tΓ (∅) .

We aim to find a bound for tΓ since Lemma 5 from [11] states that the expected runtime
of the generic extractor is upper bounded by 2tΓ −1. For simplicity, let k = 2. We claim
that tΓ ≥ |S|�−1 + 1.

For d, d ′ ∈ S, d �= d ′, and v = (v2, . . . , v�) ∈ S�−1, consider the sets

Ad := {d} × S�−1 and Bd ′,v:=
{
(d ′, v)

}
.

Although Bd ′,v has only one member, it is convenient for our proof to use set notation.
Now, notice that tΓ is defined on the longest possible sequence of challenges such that
each challenge is in the set of useful elements of all the previous ones. We argue that,
for d, d ′ ∈ S, d �= d ′, and v = (v2, . . . , v�) ∈ S�−1, the challenge sequence

c1, . . . , ct , ∀i ∈ [t − 1], ci ∈ Ad , ct ∈ Bd ′,v,

fulfills the mentioned conditions, where t :=|Ad |+1. This implies that tΓ ≥ |Ad |+1 =
|S|�−1 + 1 ≥ |C||S| . We are left to prove that the specified sequence meets the constraint
in the definition of tΓ . First, observe that,

∀d, d ′ ∈ S, d �= d ′,∀(d, v) ∈ Ad "⇒ Ad ∪ Bd ′,v ∈ Γ ∧Ad ∪ Bd ′,v \ {(d, v)} /∈ Γ .
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Hence, Ad ⊆ UΓ (∅). Similarly, for any T ⊆ Ad ,

∀d, d ′ ∈ S, d �= d ′,∀(d, v) ∈ Ad \ T "⇒ Ad ∪ Bd ′,v ∈ Γ ∧Ad ∪ Bd ′,v \ {(d, v)} /∈ Γ .

So, Ad \ T ⊆ UΓ (T ). Finally, given that |Bd ′,v| = 1, for any v ∈ S�−1,

∀d, d ′ ∈ S, d �= d ′,∀v ∈ S�−1 "⇒ Ad ∪ Bd ′,v ∈ Γ ∧Ad /∈ Γ .

Therefore, Bd ′,v ⊆ UΓ (Ad). So, a sequence of all members of Ad (with any order)
followed by the only member of Bd ′,v is a valid sequence for tΓ .

In summary, we proved that the expected runtime of the generic extractor can be
almost as big as the challenge space for a coordinate-wise special-sound protocol (and
thus it could be super-polynomial in the security parameter). Consequently, we cannot
argue knowledge soundness for the protocol by leveraging Γ -out-of-C special soundness
and the generic extractor.

8. Knowledge Soundness of a Fiat–Shamir-Transformed Coordinate-Wise
Special-Sound Multi-round Protocol

In this section, we show there is an efficient knowledge extractor for the non-interactive
protocol obtained by applying Fiat–Shamir transformation on a �-coordinate-wise k-
special-sound multi-round protocol.

In the following, we leverage the approach presented by Attema et al. [10]. Namely,
we define and analyze an abstract sampling game where the extractor plays the role
of a sampler who tries to find “good” entries. In the meantime, we elaborate on how
this game relates to knowledge extraction. For reference, we use notation from [10].
Furthermore, we prove a slightly different version of Lemmata 2 and 5 from [10] for
our specific reprogramming of the random oracle. As Lemmata 3 and 6 from [10] are
independent of how the random oracle gets reprogrammed, we only use them as they
are.

8.1. Analysis of the Abstract Sampling Game

Figure 12 shows the mentioned sampling game. Similar to [10], the sequence of j1, . . . ,
jU ∈ {1, . . . , N }� specifies the function table of the random oracle. Notice that the
cardinality of the input space of the random oracle is U . Each entry of M determines
what the first message chosen by the deterministic prover would be and if it would
be an accepting transcript. For a given sequence of j1, . . . , jU , we can extract when
the following happens. First, M( j1, . . . , jU ) = (1, i) for some i ∈ {1, . . . ,U }, and
second, by reprogramming ji to some j ′i (which is different from ji coordinate-wisely)
for enough many times, M( j1, . . . , j ′i , . . . , jU ) = (1, i). In other words, the prover
chooses the same first message when given each of these different functional tables of
the random oracle, and by coordinate-wise special soundness, it is feasible to extract.
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Fig. 12. Abstract sampling game.

Similar to [10], we define the functions ai , ai,l :
({1, . . . , N }�)U → N≥0 where

ai,l : j �→
∣
∣
∣
{
j ′ :

(
∀(i ′, l ′) ∈ [U ] × [�] \ {(i, l)}, j ′i ′,l ′ = ji ′,l ′

)
∧ M( j ′) = (1, i)

}∣
∣
∣ and

(28)

ai : j �→
∣
∣
∣
{
j ′ :

(
∀(i ′, l ′) ∈ [U ] × [�], i ′ �= i, j ′i ′,l ′ = ji ′,l ′

)
∧ M( j ′) = (1, i)

}∣
∣
∣ .

(29)

The value of ai,l( j) shows how many “good” entries there are on a 1-dimensional
subarray of M where only ji,l is not fixed. Similarly, ai ( j) determines how many “good”
entries there are on a �-dimensional subarray of M where the entire tuple of ji is not fixed.
Having these two functions, in the following lemma, we find two essential properties
of this game: the probability of “success” and the expected runtime (i.e., number of
samples).

Remark 8.1. We essentially reuse the techniques from [10]. As it is not trivial how
one can plug those techniques in, Lemmata 8.2 and 8.3 try to reduce the problem to the
problems tackled in [10].

Lemma 8.2. (Abstract Sampling Game). Consider the game in Fig. 12. Let J =
(J1, ..., JU ) be uniformly distributed in

({1, . . . , N }�)U , indicating the first entry sam-
pled, and let (V, I ) = M(J1, . . . , JU ). Further, for all 1 ≤ i ≤ U and 1 ≤ l ≤ �, let
Ai,l = ai,l(J ) and Ai = ai (J ). Moreover, let X be the number of entries of the form
(1, i) with i = I sampled (including the first one), and let Λ be the total number of
entries sampled in this game. Then,

E [Λ] ≤ 1+ �(k − 1)P and
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Pr [X = k] ≥ N

N − k + 1

(

Pr [V = 1]− P · �(k − 1)

N

)

,

where P =∑U
i=1 Pr [Ai > 0].

Proof (of Lemma 8.2). Expected Number of Samples. Let us first derive the upper
bound on the expected value of Λ. To this end, let X ′l be the number of sampled entries
of the form (1, i) with i = I in the lth iteration of the for loop. Similarly, let Y ′l denote
the number of sampled entries of the form (v, i) with v = 0 or i �= I , again in the lth

iteration. Then Λ = 1+∑�
l=1 X ′l +

∑�
l=1 Y

′
l and for all 1 ≤ l ≤ �

Pr
[
X ′l = 0

∣
∣ V = 0

] = Pr
[
Y ′l = 0

∣
∣ V = 0

] = 1 .

Hence, for all 1 ≤ l ≤ �, E
[
X ′l
∣
∣ V = 0

] = E
[
Y ′l
∣
∣ V = 0

] = 0. Let us consider the
expected value E

[
Y ′l
∣
∣ V = 1

]
for any 1 ≤ l ≤ �. Notice that, conditioned on the event

V = 1∧ I = i ∧ Ai,l = a with a > 0, Y ′l follows a negative hypergeometric distribution
with parameters N − 1, a − 1, and k − 1. Hence, using Lemma 1 from [10],

E
[
Y ′l
∣
∣ V = 1 ∧ I = i ∧ Ai,l = a

] ≤ (k − 1)
N − a

a
,

and thus, using that Pr
[
X ′l ≤ k − 1|V = 1

] = 1,

E
[
X ′l + Y ′l

∣
∣ V = 1 ∧ I = i ∧ Ai,l = a

] ≤ (k − 1)+ (k − 1)
N − a

a
= (k − 1)

N

a
.

On the other hand,

Pr
[
V = 1 ∧ I = i

∣
∣ Ai,l = a

] = a

N
,

and thus,

Pr
[
V = 1 ∧ I = i ∧ Ai,l = a

] = Pr
[
Ai,l = a

] a

N
. (30)

Since Pr
[
V = 1 ∧ I = i ∧ Ai,l = 0

] = 0, we write

Pr [V = 1] · E [X ′l + Y ′l
∣
∣ V = 1

] =
U∑

i=1

N∑

a=1

Pr
[
V = 1 ∧ I = i ∧ Ai,l = a

]

· E [X ′l + Y ′l
∣
∣ V = 1 ∧ I = i ∧ Ai,l = a

]

≤
U∑

i=1

N∑

a=1

Pr
[
Ai,l = a

]
(k − 1)

= (k − 1)

U∑

i=1

Pr
[
Ai,l > 0

]
.
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Consequently,

E [Λ] = E

[

1+
�∑

l=1

(X ′l + Y ′l )
]

= 1+
�∑

l=1

(
Pr [V = 0] · E [X ′l + Y ′l

∣
∣ V = 0

]+ Pr [V = 1] · E [X ′l + Y ′l
∣
∣ V = 1

])

≤ 1+ (k − 1)

�∑

l=1

U∑

i=1

Pr
[
Ai,l > 0

]

≤ 1+ �(k − 1)

U∑

i=1

Pr [Ai > 0]

≤ 1+ �(k − 1)P ,

where we used the fact that for all 1 ≤ l ≤ �, Pr
[
Ai,l > 0

] ≤ Pr [Ai > 0]. Hence, the
claimed upper bound on E [Λ] is proven.

Success Probability. Success happens when for all 1 ≤ l ≤ �, we have X ′l = k − 1.
For all 1 ≤ l ≤ �, let Xl be the number of sampled entries of the form (1, i) in the
lth iteration of for loop and the single sampled entry outside of the loop. Notice that
if V = 1, for all 1 ≤ l ≤ �, we have Xl ≥ 1 even if we do not sample any other
entries of the form (1, i) in the for loop. We are interested in finding a lower bound for

Pr
[∧�

l=1 Xl = k
]
.

For all 1 ≤ l ≤ �, V = 0 implies Xl = 0. Therefore, using k > 0, for all 1 ≤ l ≤ �, we

write Pr [Xl = k] = Pr [Xl = k ∧ V = 1] and Pr
[∧�

l=1 Xl = k
]

=
Pr
[∧�

l=1 Xl = k ∧ V = 1
]
. Therefore, we have

Pr

[
�∧

l=1

Xl = k

∣
∣
∣
∣
∣
V = 1

]

=
Pr
[∧�

l=1 Xl = k
]

Pr [V = 1]
and

Pr [Xl = k | V = 1] = Pr [Xl = k]

Pr [V = 1]
. (31)

Furthermore, since we sample at most k − 1 entries of the form (1, i) in each iteration,
we can write

Pr

[
�∧

l=1

Xl = k

∣
∣
∣
∣
∣
V = 1

]

=
(

1− Pr

[
�∨

l=1

Xl < k

∣
∣
∣
∣
∣
V = 1

])

≥
(

1−
�∑

l=1

Pr [Xl < k | V = 1]

)
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=
(

1−
�∑

l=1

(1− Pr [Xl = k | V = 1])

)

=
(

1−
�∑

l=1

(

1− Pr [Xl = k]

Pr [V = 1]

))

, (32)

where we obtain the first inequality by using a union bound. We need to find a lower
bound on Pr [Xl = k] for all 1 ≤ l ≤ �. Since we have Equation (30), we can reuse the
bound shown by Attema et al. [10]. Hence,

Pr [Xl = k] ≥ N

N − k + 1

(

Pr [V = 1]− Pl · k − 1

N

)

,

where Pl = ∑U
i=1 Pr

[
Ai,l > 0

]
. By putting this bound back into Equation (32), we

obtain

Pr

[
�∧

l=1

Xl = k

∣
∣
∣
∣
∣
V = 1

]

≥
(

1−
�∑

l=1

(
Pl · (k − 1)

Pr [V = 1] · (N − k + 1)
− k − 1

N − k + 1

))

≥
(
N + (�− 1)(k − 1)

N − k + 1
− � · P · (k − 1)

Pr [V = 1] · (N − k + 1)

)

≥
(

N

N − k + 1
− � · P · (k − 1)

Pr [V = 1] · (N − k + 1)

)

≥ N

N − k + 1

(

1− P
�(k − 1)

Pr [V = 1] · N
)

,

where P =∑U
i=1 Pr [Ai > 0]. To get the second inequality, we use that for all 1 ≤ l ≤ �,

Pr
[
Ai,l > 0

] ≤ Pr [Ai > 0], and consequently, Pl ≤ P . Also, (�− 1)(k− 1) ≥ 0 leads
us to the third inequality. Using Equation (31), we have

Pr

[
�∧

l=1

Xl = k

]

≥ N

N − k + 1

(

Pr [V = 1]− P
�(k − 1)

N

)

,

which completes the proof. �

Lemma 8.2 states bounds that are sufficient for bounding the knowledge error and
the runtime of the knowledge extractor in the case of a Fiat–Shamir-transformed Σ-
protocol. However, as noted by Attema et al. [10], to show the knowledge extractor
of a Fiat–Shamir-transformed multi-round protocol runs in expected polynomial time,
we need a refined analysis of expected runtime of the game. The sub-tree knowledge
extractor may have an expensive runtime Γ or a cheap runtime γ . We now prove a
better bound on runtime for the weighted version of this game which models the cost of
sub-tree extractors.
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Lemma 8.3. (Abstract Sampling Game - Weighted Version). Consider the game in

Fig. 12, aswell a cost functionΓ : ({1, . . . , N }�)U → R≥0 anda constant costγ ∈ R≥0.

Let J = (J1, ..., JU ) be uniformly distributed in
({1, . . . , N }�)U , indicating the first

entry sampled, and let (V, I ) = M(J ). Further, for all 1 ≤ i ≤ U, let Ai = ai (J ),
where the function ai is as defined in Equation (29).
We define the cost of sampling an entry M( j) = (v, i) with i = I to be Γ ( j) and the

cost of an entry M( j) = (v, i) with i �= I to be γ . Let Δ be the total cost of playing this
game. Then

E [Δ] ≤ (1+ �(k − 1)) · E [Γ (J )]+ �(k − 1) · T · γ ,

where T =∑U
i=1 Pr [I �= i ∧ Ai > 0] ≤ P.

Proof. Let us break the cost Δ down to Δ1, Δ2, and Δ3, defined as follows. Δ1 denotes
cost of sampling entries of the form (1, i) with i = I , and Xl denotes the number of such
entries in the lth iteration. Similarly, Δ2 denotes cost of sampling entries of the form
(0, i) with i = I , and Yl denotes the number of such entries in the lth iteration. Finally,
Δ3 denotes cost of (v, i) where i �= I , and Zl denotes the number of such entries in the
lth iteration. We use Δ′1,l (resp. Δ′2,l ) for denoting the part of Δ1 (resp. Δ2) that is added

during the lth iteration. Clearly, Δ = Δ1 +Δ2 +Δ3.
For 1 ≤ i ≤ U and 1 ≤ l ≤ �, let us write

J ∗i = (J1, . . . , Ji−1, Ji+1, . . . , JU ) and J †
i,l =

(
Ji,1, . . . , Ji,l−1, Ji,l+1, . . . , Ji,�

)
,

which are respectively uniformly random with support {1, . . . , N }(U−1)� and {1, . . . ,

N }�−1. Moreover, for all 1 ≤ i ≤ U , 1 ≤ l ≤ �,

j∗ = ( j∗1 , . . . , j∗i−1, j
∗
i+1, . . . , j

∗
U ) ∈ {1, . . . , N }(U−1)� , and

j† = ( j†
1 , . . . , j†

l−1, j
†
l+1, . . . , j

†
� ) ∈ {1, . . . , N }�−1 ,

let Λ(i, j∗) denote the event

Λ(i, j∗) = [I = i ∧ J ∗i = j∗]

and Θ(i, j∗, j†) denote the event

Θ(i, j∗, j†) = [Λ(i, j∗) ∧ J †
i,l = j†] .

Notice that conditioned on the event Λ(i, j∗), all samples are picked from subarray

M
(
j∗1 , . . . , j∗i−1, ·, j∗i+1, . . . , j

∗
U

) ;

the first one uniformly at random subject to the index I being i , and the remaining ones
(if V = 1) uniformly at random (without replacement) for each coordinate. Similarly,
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conditioned on the event Θ(i, j∗, j†), the sampling process follows the same criteria,
with samples drawn from subarray

M
(
j∗1 , . . . , j∗i−1,

(
j†
1 , . . . , j†

l−1, ·, j†
l+1, . . . , j

†
�

)
, j∗i+1, . . . , j

∗
U

)
.

Let us first look intoE
[
Δ1 |Λ(i, j∗)

]
. We notice that for all i, and j∗with Pr

[
Λ(i, j∗)

]

> 0,

E
[
Δ1

∣
∣Λ(i, j∗)

] = Pr
[
V = 1

∣
∣Λ(i, j∗)

] · E [Δ1
∣
∣Λ(i, j∗) ∧ V = 1

]

+ Pr
[
V = 0

∣
∣Λ(i, j∗)

] · E [Δ1
∣
∣Λ(i, j∗) ∧ V = 0

]

= Pr
[
V = 1

∣
∣Λ(i, j∗)

] · E [Δ1
∣
∣Λ(i, j∗) ∧ V = 1

]

= Pr
[
V = 1

∣
∣Λ(i, j∗)

] · E
[
∑

l

Δ′1,l

∣
∣
∣
∣
∣
Λ(i, j∗) ∧ V = 1

]

+ Pr
[
V = 1

∣
∣Λ(i, j∗)

] · E [Γ (J )
∣
∣Λ(i, j∗) ∧ V = 1

]

=
∑

l

(
Pr
[
V = 1

∣
∣Λ(i, j∗)

] · E [Δ′1,l

∣
∣Λ(i, j∗) ∧ V = 1

])

+ Pr
[
V = 1

∣
∣Λ(i, j∗)

] · E [Γ (J )
∣
∣Λ(i, j∗) ∧ V = 1

]

=
∑

l

E
[
Δ′1,l

∣
∣Λ(i, j∗)

]

+ Pr
[
V = 1

∣
∣Λ(i, j∗)

] · E [Γ (J )
∣
∣Λ(i, j∗) ∧ V = 1

]
. (33)

In the above, we use linearity of expectation and E

[
Δ′1,l

∣
∣
∣Λ(i, j∗) ∧ V = 0

]
= 0.

Moreover, by conditioning on the value of Xl , we have

E
[
Δ′1,l

∣
∣Λ(i, j∗)

] =
N−1∑

xl=0

Pr
[
Xl = xl

∣
∣Λ(i, j∗)

] · E [Δ′1,l

∣
∣Λ(i, j∗) ∧ Xl = xl

]
.

(34)

Also,

E
[
Δ′1,l

∣
∣Λ(i, j∗) ∧ Xl = xl

]

=
∑

j†

Pr
[
J †
i,l = j†

∣
∣
∣Λ(i, j∗) ∧ Xl = xl

]
· E
[
Δ′1,l

∣
∣
∣Θ(i, j∗, j†) ∧ Xl = xl

]
.

(35)

Let us try to understand E

[
Δ′1,l

∣
∣
∣Θ(i, j∗, j†) ∧ Xl = xl

]
. The condition means that we

are sampling only on coordinate l, the rest of the tuple is fixed on j†, and we sample xl
entries of the form (1, i). In other words, we are looking for a subset of entries of the form
(1, i) with size xl , and also, since J is not fixed, the sampling process is uniform among
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such entries. Notice that the probability of choosing any of them is xl times bigger than
the probability of choosing the same entry when the size of subset was one. Therefore,
the expected total cost is xl times the expected cost of sampling only one such entry. We
can write the expected cost of only one such entry as E

[
Γ (J )

∣
∣Θ(i, j∗, j†) ∧ V = 1

]
.

So, we have

E

[
Δ′1,l

∣
∣
∣Θ(i, j∗, j†) ∧ Xl = xl

]
= E

[
Γ (J )

∣
∣
∣Θ(i, j∗, j†) ∧ V = 1

]
· xl .

Putting this expression back into Equation (35) and Equation (34), we get

E
[
Δ′1,l

∣
∣Λ(i, j∗)

] = E
[
Xl
∣
∣Λ(i, j∗)

] · E [Γ (J )
∣
∣Λ(i, j∗) ∧ V = 1

]
. (36)

Similarly, for Δ2, we have

E
[
Δ2

∣
∣Λ(i, j∗)

] =
∑

l

E
[
Δ′2,l

∣
∣Λ(i, j∗)

]

+ Pr
[
V = 0

∣
∣Λ(i, j∗)

] · E [Γ (J )
∣
∣Λ(i, j∗) ∧ V = 0

]
and

(37)

E
[
Δ′2,l

∣
∣Λ(i, j∗)

] = E
[
Yl
∣
∣Λ(i, j∗)

] · E [Γ (J )
∣
∣Λ(i, j∗) ∧ V = 0

]
. (38)

Now, our goal is to upper bound E
[
Xl |Λ(i, j∗)

]
and E

[
Yl |Λ(i, j∗)

]
. Knowing that

V = 0 implies Xl = 0 and V = 1 implies Xl ≤ k, we write

E
[
Xl
∣
∣Λ(i, j∗)

] = Pr
[
V = 0

∣
∣Λ(i, j∗)

] · E [Xl
∣
∣Λ(i, j∗) ∧ V = 0

]

+ Pr
[
V = 1

∣
∣Λ(i, j∗)

] · E [Xl
∣
∣Λ(i, j∗) ∧ V = 1

]

≤ (k − 1) · Pr
[
V = 1

∣
∣Λ(i, j∗)

]
.

Hence, and using Equation (33) and Equation (36), we have

E
[
Δ1

∣
∣Λ(i, j∗)

] ≤
∑

l

(k − 1) · Pr
[
V = 1

∣
∣Λ(i, j∗)

] · E [Γ (J )
∣
∣Λ(i, j∗) ∧ V = 1

]

+ Pr
[
V = 1

∣
∣Λ(i, j∗)

] · E [Γ (J )
∣
∣Λ(i, j∗) ∧ V = 1

]

≤ (1+ �(k − 1)) · Pr
[
V = 1

∣
∣Λ(i, j∗)

] · E [Γ (J )
∣
∣Λ(i, j∗) ∧ V = 1

]
.

(39)

Bounding E
[
Yl |Λ(i, j∗)

]
is more involved and we need to leverage the functions

defined in Equation (28) and Equation (29). For the fixed choice of the index 1 ≤ i ≤ U
and of j∗ = ( j∗1 , . . . , j∗i−1, j

∗
i+1, . . . , j

∗
U ) ∈ {1, . . . , N }�(U−1), and for all 1 ≤ l ≤ �

and j† ∈ {1, . . . , N }�−1, we define new parameters

a:= ∣∣{ j : (v j , i j ) = M( j∗1 , . . . , j∗i−1, j, j
∗
i+1, . . . , j

∗
U ) = (1, i)

}∣
∣ ,

b:= ∣∣{ j : (v j , i j ) = M( j∗1 , . . . , j∗i−1, j, j
∗
i+1, . . . , j

∗
U ) = (0, i)

}∣
∣ ,
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al, j† :=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

j : (v j , i j ) = M

⎛

⎜
⎜
⎜
⎜
⎝

j∗1 , . . . , j∗i−1,⎛

⎝
j†
1 , . . . , j†

l−1,

j,
j†
l+1, . . . , j

†
�

⎞

⎠

, j∗i+1, . . . , j
∗
U

⎞

⎟
⎟
⎟
⎟
⎠
= (1, i)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, and

bl, j† :=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

j : (v j , i j ) = M

⎛

⎜
⎜
⎜
⎜
⎝

j∗1 , . . . , j∗i−1,⎛

⎝
j†
1 , . . . , j†

l−1,

j,
j†
l+1, . . . , j

†
�

⎞

⎠

, j∗i+1, . . . , j
∗
U

⎞

⎟
⎟
⎟
⎟
⎠
= (0, i)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (40)

Notice that Pr
[
V = 1 |Λ(i, j∗)

] = a
a+b and Pr

[
V = 0 |Λ(i, j∗)

] = b
a+b for all i and

j∗ with Pr
[
Λ(i, j∗)

]
> 0. Observe that if we condition on the event V = 1 ∧Λ(i, j∗)

(resp. V = 1 ∧Θ(i, j∗, j†)), we implicitly assume that a > 0 (resp. al, j† > 0). More-
over,

∑
j† al, j† = a and

∑
j† bl, j† = b. Using the fact that E

[
Yl | V = 0 ∧Λ(i, j∗)

] =
0, we have

E
[
Yl
∣
∣Λ(i, j∗)

] = a

a + b
· E [Yl

∣
∣ V = 1 ∧Λ(i, j∗)

]
.

Conditioned on V = 1∧Θ(i, j∗, j†), Yl follows a negative hypergeometric distribution
with parameters a + b − 1, a − 1, and k − 1. We write

E
[
Yl
∣
∣ V = 1 ∧Λ(i, j∗)

] =
∑

j†

Pr
[
J †
i,l = j†

∣
∣
∣ V = 1 ∧Λ(i, j∗)

]

· E
[
Yl
∣
∣
∣ V = 1 ∧Θ(i, j∗, j†)

]

=
∑

j†

al, j†

a
· E
[
Yl
∣
∣
∣ V = 1 ∧Θ(i, j∗, j†)

]

≤
∑

j†

al, j†

a
· (k − 1)

bl, j†

al, j†
(by [10, Lemma 1])

= (k − 1)
b

a
.

This implies that

E
[
Yl
∣
∣Λ(i, j∗)

] ≤ (k − 1) · Pr
[
V = 0

∣
∣Λ(i, j∗)

]
.

Using Equation (37) and Equation (38), we have

E
[
Δ2

∣
∣Λ(i, j∗)

] ≤
∑

l

(k − 1) · Pr
[
V = 0

∣
∣Λ(i, j∗)

] · E [Γ (J )
∣
∣Λ(i, j∗) ∧ V = 0

]

+ Pr
[
V = 0

∣
∣Λ(i, j∗)

] · E [Γ (J )
∣
∣Λ(i, j∗) ∧ V = 0

]
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≤ (1+ �(k − 1)) · Pr
[
V = 0

∣
∣Λ(i, j∗)

] · E [Γ (J )
∣
∣Λ(i, j∗) ∧ V = 0

]
.

Combining with Equation (39), we have

E
[
Δ1 +Δ2

∣
∣Λ(i, j∗)

] ≤ (1+ �(k − 1)) · E [Γ (J )
∣
∣Λ(i, j∗)

]
.

We can remove the condition Λ(i, j∗) since this inequality holds for all i and j∗ with
Pr
[
Λ(i, j∗)

]
> 0. Therefore,

E [Δ1 +Δ2] ≤ (1+ �(k − 1)) · E [Γ (J )] .

The final step is to show E [Δ3] ≤ �(k − 1)T γ , or equivalently, E [Z ] ≤ �(k − 1)T ,
where Z =∑l Zl . Again, we follow the approach we used previously. We fix a choice
of i and j∗ and set the parameters a, b, al, j† , and bl, j† as defined in Equation (40).
Consequently, we observe that conditioning on the event V = 1 ∧ Θ(i, j∗, j†), Zl

follows a negative hypergeometric distribution with parameters N − b − 1, a − 1, and
k − 1. Therefore, using the bound in Lemma 1 from [10], we have

E
[
Zl
∣
∣ V = 1 ∧Λ(i, j∗)

]

=
∑

j†

Pr
[
J †
i,l = j†

∣
∣
∣ V = 1 ∧Λ(i, j∗)

]
· E
[
Zl

∣
∣
∣ V = 1 ∧Θ(i, j∗, j†)

]

=
∑

j†

al, j†

a
· E
[
Yl
∣
∣
∣ V = 1 ∧Θ(i, j∗, j†)

]

≤
∑

j†

al, j†

a
· (k − 1)

N − al, j† − bl, j†

al, j†

= (k − 1)
N − a − b

a
.

Also, since E
[
Zl | V = 0 ∧Λ(i, j∗)

] = 0, we write

E
[
Zl
∣
∣Λ(i, j∗)

] ≤ a

a + b
· E [Zl

∣
∣ V = 1 ∧Λ(i, j∗)

] = (k − 1)
N − a − b

a + b
.

Using Pr
[
I = i

∣
∣ J ∗i = j∗

] = a+b
N , we have

E
[
Zl
∣
∣Λ(i, j∗)

] ≤ (k − 1) ·
(

Pr
[
I �= i ∧ J ∗i = j∗

]

Pr [Λ(i, j∗)]

)

,

and since Z =∑l Zl ,

E
[
Δ3

∣
∣Λ(i, j∗)

] ≤ �(k − 1)γ ·
(

Pr
[
I �= i ∧ J ∗i = j∗

]

Pr [Λ(i, j∗)]

)

.
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Fig. 13. Knowledge Extractor E.

From this point, using the exact same argument by Attema et al. [10, Lemma 5], we have
E [Δ3] ≤ �(k − 1) · γ · T, and the proof is complete. �

Now, the analysis of the game is complete, and we move forward to knowledge extraction.

8.2. The Knowledge Extractor

This section introduces our knowledge extractor for a Fiat–Shamir-transformed �-
coordinate-wise k-special-sound Σ-protocol. One can generalize this extractor for multi-
round protocols as done by Attema et al. [10, Section 6]. In the following, we use the
notation of Section 4 from [10]. Figure 13 demonstrates our knowledge extractor E.
Instead of, for example, answering the query on the first message with a fresh random
value in C:=S�, E uses new values coordinate by coordinate. Notice that this manner
of answering query on the first message is analogous to our abstract sampling game in
Fig. 12.

Having Lemmata 8.2 and 8.3 along with [10, Lemmata 3 and 6] at hand, and using
the bounds in Sect. 7, we deduce that the knowledge error and the expected runtime of
the extractor for a �-coordinate-wise k-special-sound multi-round protocol degrades by
a factor of Q+ 1 after applying Fiat–Shamir transformation, and it is independent from
the number of rounds.

We note that one can easily generalize this conclusion for a (�1, . . . , �μ)-coordinate-
wise (k1, . . . , kμ)-special-sound (2μ + 1)-move protocol and the corresponding Fiat–
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Shamir-transformed protocol. We omit the details here because they do not contain any
novel aspects.
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