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Abstract. As an addition to proper points of the real plane, we introduce
a representation of improper points, i.e. points at infinity, in terms of
Geometric Algebra for Conics (GAC) and offer possible use of both types
of points. More precisely, we present two algorithms fitting a conic to
a dataset with a certain number of points lying on the conic precisely,
referred to as the waypoints. Furthermore, we consider inclusion of one
or two improper waypoints, which leads to the asymptotic directions of
the fitted conic. The number of used waypoints may be up to four and
we classify all the cases.
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1. Introduction

Geometric Algebra for Conics (GAC), originally introduced in [12], and con-
sequently elaborated in [5], is already acknowledged to be useful for conic
manipulation, e.g. for intersections [1], and for simple conic fitting [6], as well
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as conic fitting with additional geometric constraints such as axial alignment
[9,10].

In the current paper, we present two conic fitting algorithms with vari-
ous numbers of waypoints, meaning that besides a given dataset to be fitted
we prescribe a set of points that should lie on the conic in question precisely.
Both algorithms are modifications of the simple conic fitting algorithm using
GAC as formulated in [6]. Let us also note that the first of the two algorithms
for conic fitting through given waypoints in GAC has already been presented
in [8], while the latter is new and removes some of the shortcomings of the
first one. In particular, the first algorithm for conic fitting through waypoints
does not necessarily fit the conic through all the given waypoints (even in
geometrically meaningful cases) while the second algorithm does.

Additionally, we make a distinction between proper points, i.e. the points
of the real plane R2, and improper points, i.e. the points at infinity (also called
ideal points), and offer their representations in GAC. Consequently, we use
both types of points as the waypoints for the conic fitting problem in GAC,
thus allowing us to prescribe asymptotic direction(s) of the fitted conic in
case of using the improper waypoint(s).

All our considerations follow from the description of conics in GAC, yet
they can be used in the standard algorithms, such as Fitzgibbon’s [3], too.
On the other hand, we found only one reference to an algorithm imposing
similar conditions on the fitted conic, more precisely, the conic centre was
supposed to lie on a certain line [14]. The reason why GAC is suitable for
designing similar algorithms is its geometric nature. Especially the improper
waypoints are easily handled in the same way as proper points, i.e. as null
vectors in Clifford algebra Cl(5, 3).

We note that the advantage of a GAC-oriented algorithm is again in
the property that geometric objects are understood as elements of a Clifford
algebra, i.e. vectors or multivectors, as well as their Euclidean transformations
which are represented by bivectors. Object manipulation is then performed
by sandwich product, i.e. geometric product intrinsic to GAC. Indeed, our
motivation for conic fitting in GAC lies in the consequent simplicity of conic
transformations, as shown, e.g. in [2] for the control of specific dynamical
systems. On the other hand, actual Clifford algebra implementations do not
provide great computational improvement, yet there exist some tools that
promise computational acceleration in the future [4].

2. Proper and Improper Points in GAC

To clarify the significance of improper points, let us briefly recall the term
real projective plane RP

2 [13]:
Let E = (PE,LE, IE) be a usual Euclidean plane with points PE = R

2,
lines LE, and the usual incidence relation IE ⊆ PE × LE of the Euclidean
plane. Subsequently, by including elements at infinity, the Euclidean plane
can be extended to the real projective plane.
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Figure 1. Parallel lines and their common improper points
in RP

2 (taken from [13])

First, let us assume line l and the equivalence class [l] of all the lines
parallel to l. An improper point p[l] is then defined as a common point of all
the parallels contained in the equivalence class [l], i.e. a point where all the
parallels of the class meet. Moreover, all the improper points of RP2 form a
line at infinity l∞. Therefore, the definition of the real projective plane is as
follows:

Definition 2.1. Real projective plane RP
2 is a triple (P, L, I), where

• P = PE ∪ {
p[l] : l ∈ LE

}
,

• L = LE ∪ l∞,
• I = IE ∪ {

(p[l], l) : l ∈ LE

} ∪ {
(p[l], l∞) : l ∈ LE

}
.

An example of three distinct bundles (equivalence classes) of parallel
lines is illustrated in Fig. 1—on the left, the lines are depicted in plane R

2;
whereas on the right, we can see the situation in RP

2: all the parallels from
a particular bundle intersect at one common improper point situated on the
line at infinity l∞ (this line is drawn as a circle, since it can be thought of
as a circle with an infinite radius). Moreover, despite the first sight, every
bundle has exactly one improper point where all the parallels meet, not two;
the two common antipodal points of each bundle depicted in Fig. 1 (right)
are, in fact, geometrically coincident.

Unlike the proper points, the improper points are not elements of the
plane R

2, so an improper point is mostly depicted as a direction (vector)
of the associated bundle of parallels, as shown in Fig. 2. Let us also note
that sometimes the direction arrow points both ways to emphasise that the
corresponding parallel lines stretch to both sides and their common improper
point is—in a sense—infinitely distant on both sides, even though there is
still only one.

Using the concept of improper points, it is easy to see that some types of
conics pass through one or two improper points. In particular, a parabola has
one improper point corresponding to the direction of its axis of symmetry,
while a hyperbola has two improper points in the directions of its asymptotes,
as illustrated in Fig. 3.
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Figure 2. Depiction of an improper point P∞ as a direction
of parallel lines

Figure 3. Improper points of parabola and hyperbola

2.1. Homogeneous Coordinates

Not only does the projective plane RP
2 enable us to discern proper and

improper points, it also allows us to perform computations with both types
of points as if proper and improper points did not differ at all. Employing
homogeneous coordinates, each point of RP

2 (proper or improper) can be
represented as a line in R

3 in accordance with the following definition.

Definition 2.2. Let x = (x, y),x ∈ RP
2, be a proper point, then its homoge-

neous coordinates are

x = k(x, y, 1), k ∈ R \ {0},

while the homogeneous coordinates of an improper point x∞ = (s, t),x∞ ∈
RP

2, are

x∞ = k(s, t, 0), k ∈ R \ {0}.

Remark 2.3. The triple (0, 0, 0) does not represent any point of RP2.

Remark 2.4. As stated in Definition 2.2, homogeneous coordinates (a, b, c)
represent the same point in RP

2 as the triple k(a, b, c) for every non-zero k.
On the other hand, when one wants to assign homogeneous coordinates to
the points of RP2, it is convenient to set k = 1. Consequently, to facilitate
the future computations, we can consider the homogeneous coordinates of a
proper point x = (x, y) and of an improper point x∞ = (s, t), respectively,
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to be assigned by the mapping

(x, y) �→ (x, y, 1),

(s, t) �→ (s, t, 0).
(2.1)

2.2. Projectivisation of GAC

Let us recall that GAC comprises a Clifford algebra Cl(5, 3) with an embed-
ding C : R2 → R

5,3 of a proper point x = xe1 + ye2 from the plane R
2 to a

six-dimensional subspace of one-vectors in GAC, in the form

C(x, y) = n̄+ + xe1 + ye2 +
1
2
(x2 + y2)n+ +

1
2
(x2 − y2)n− + xyn× (2.2)

where {n̄×, n̄−, n̄+, e1, e2, n+, n−, n×} is the eight-dimensional vector basis of
C�(5, 3) [6], together with an associated bilinear form of the inner product of
vectors in GAC given by the matrix

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 −1
0 0 0 0 0 0 −1 0
0 0 0 0 0 −1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 −1 0 0 0 0 0
0 −1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.3)

Note that the meaning of the basis vectors is standard as in any geometric
algebra, i.e. n̄’s denote the origins, e1 and e2 denote the basis vectors of the
Euclidean plane and n’s stand for infinities, respectively. Also note that the
central 4 × 4 submatrix of the matrix B, i.e.

Bc =

⎛

⎜
⎜
⎝

0 0 0 −1
0 1 0 0
0 0 1 0

−1 0 0 0

⎞

⎟
⎟
⎠ (2.4)

is the one corresponding to the subalgebra CRA. Consequently, the inner
product null space (IPNS) representation of a general conic section Q in
GAC is given by

QI = v̄×n̄× + v̄−n̄− + v̄+n̄+ + v1e1 + v2e2 + v+n+. (2.5)

Equations of particular conics in GAC can be found in [1,5]. It is also well
known that the type and features of conic Q can be read off its matrix
representation [7], which is obtained using (2.5) as a matrix

M =

⎛

⎝
− 1

2 (v̄+ + v̄−) − 1
2 v̄× 1

2v1

− 1
2 v̄× − 1

2 (v̄+ − v̄−) 1
2v2

1
2v1 1

2v2 −v+

⎞

⎠ .

Let us also note that a proper point embedded into GAC using mapping
C(x, y) of form (2.2) can be represented as a vector

PI =
(
0 0 1 x y 1

2 (x2 + y2) 1
2 (x2 − y2) xy

)T (2.6)



6 Page 6 of 22 P. Loučka, P. Vaš́ık Adv. Appl. Clifford Algebras

and the IPNS conic section (2.5) as a vector

QI =
(
v̄× v̄− v̄+ v1 v2 v+ 0 0

)T
. (2.7)

Moreover, using the notion of homogeneous coordinates, we will show
that GAC can be used to represent both proper and improper points. Namely,
this GAC representation can be reached by extending the domain of the point
embedding C : R2 → R

5,3 to RP
2 according to the following definition.

Definition 2.5. Using the embedding C : R2 → R
5,3 of the form (2.2), we de-

fine the projective embedding CP : RP2 → R
5,3 of a point p = (a, b, c), (a, b, c)

�= (0, 0, 0), of the real projective plane RP
2 as

CP(a, b, c) = c2n̄+ + ace1 + bce2 +
1
2
(a2 + b2)n+ +

1
2
(a2 − b2)n− + abn×.

(2.8)

Theorem 2.6. Projective embedding CP maps proper and improper points of
RP

2, as described with homogenous coordinates in Sect. 2.1, to GAC.

Proof. Let us recall the equation of a conic section in both R
2 and RP

2,
respectively:

QR2 : q11x
2 + 2q12xy + q2y

2 + 2q13x + 2q23y + q33 = 0, (2.9)
QRP2 : q11x

2 + 2q12xy + q2y
2 + 2q13xz + 2q23yz + q33z

2 = 0. (2.10)

Next, let us remember that a conic QI in GAC is the IPNS representation of
a conic QR2 if and only if QR2 =

{
x ∈ R

2 : C(x) · QI = 0
}

, where · denotes
the inner product between vectors in GAC [5]. Consequently, evaluating the
equation

C(x) · QI = 0

from the aforementioned definition yields

− v+ + v1x + v2y − 1
2
v̄+(x2 + y2) − 1

2
v̄−(x2 − y2) − v̄×xy = 0. (2.11)

As shown in [5], there is a direct relationship between the coefficients qij of
QR2 and the coefficients of QI of the form

v̄× = −2q12,

v̄− = −(q11 − q22),

v̄− = −(q11 + q22),

v1 = 2q13,

v2 = 2q23,

v̄× = −q33.

(2.12)

Substituting (2.12) into (2.11) and reordering the result then gives us an
alternative representation of a conic QR2 :

QR2 :
1
2
(q11 + q22)(x2 + y2) + 2q12xy +

1
2
(q11 − q22)(x2 − y2)

+ 2q13x + 2q23y + q33 = 0,
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which is, after simplification, the same as (2.9). It is apparent that a conic
QRP2 of form (2.10) is simply created from QR2 of form (2.9) by multiplying
some of the terms by the third coordinate of a point, i.e. z, or its square, z2.
Analogously to IPNS representation of QR2 , we can say that QI is the IPNS
representation of QRP2 if and only if QRP2 =

{
x ∈ RP

2 : CP(x) · QI = 0
}

.
Therefore, the projective embedding CP must be defined in such a way that
the equation

CP(x) · QI = 0

is the same as (2.10). As in the case of the transition from QR2 to QRP2 ,
embedding CP of the form (2.8) is attained by multiplying particular terms
of the embedding C, (2.2), by the third coordinate of a point or its square.
�

Corollary 2.7. Since a proper point x = (x, y) has homogeneous coordinates
(x, y, 1), both the projective embedding CP and the embedding C maps a proper
point into GAC without difference:

CP(x, y, 1) ≡ C(x, y) = n̄+ + xe1 + ye2 +
1

2
(x2 + y2)n+ +

1

2
(x2 − y2)n− + xyn×.

Besides, an improper point x∞ = (s, t) with homogeneous coordinates
(s, t, 0) is embedded into GAC in a similar way:

CP(s, t, 0) =
1
2
(s2 + t2)n+ +

1
2
(s2 − t2)n− + stn×. (2.13)

Subsequently, creating an analogy with the IPNS vector form (2.6) of a
proper point, we can define an IPNS vector form of an improper point as

P∞I =
(
0 0 0 0 0 1

2 (s2 + t2) 1
2 (s2 − t2) st

)T
. (2.14)

Remark 2.8. Let us also note that, in contrast with embedding of a proper
point, an improper point embedded into GAC according to (2.13) is always
expressed using the basis vectors corresponding to infinities of Witt pairs,
only.

3. Conic Fitting in GAC—Fitting Without Waypoints

Let us briefly recall the usual conic fitting (i.e. fitting without given way-
points) in terms of GAC. Hrdina, Návrat and Vaš́ık [6], define a conic fitting
problem using GAC in the following way: For ND data points embedded into
GAC as vectors Pi of the form (2.6) and for a conic represented by a vector
Q of the form (2.7), let us minimise the objective function

Q �→
∑

i

(Pi · Q)2, (3.1)

i.e. a sum of squared point-to-conic algebraic distances. Since the conic vec-
tor Q = 0 is geometrically meaningless, the authors of [6] also assume the
normalisation constraint

Q2 = 1. (3.2)
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Applying the matrix of the bilinear form (2.3), the objective function
(3.1) can be rewritten as

Q �→
∑

i

(PiBQ)2 =
∑

i

QT BPiP
T
i BQ = QT PQ, (3.3)

and thus, it is a quadratic form on R
5,3 with the matrix

P =
∑

i

BPiP
T
i B.

Moreover, the normalisation constraint (3.2) is equivalently expressed as

QT BQ = 1. (3.4)

Consequently, conic fitting in GAC can be treated as an optimisation
problem and formulated using vector–matrix notation as

min
Q

QT PQ

s.t. QT BQ = 1.
(3.5)

To formulate the solution to this problem, the authors decided to de-
compose matrix P into matrix blocks as follows:

P =

⎛

⎝
P0 P1 02×2

PT
1 Pc 04×2

02×2 02×4 02×2

⎞

⎠ . (3.6)

As in matrix Bc of the form (2.4), the “c” subscript in matrix Pc signifies a
central 4 × 4 part of matrix P , i.e. a corresponding CRA part of GCA.

Finally, using the vectors and matrices defined before, the solution to
the conic fitting problem is obtained in the following way.

Proposition 3.1. The solution to the optimisation problem (3.5) for conic fit-
ting in GAC is given by Q =

(
wT vT 0 0

)T
, where v

=
(
v̄+ v1 v2 v+

)T is an eigenvector corresponding to the minimal non-
negative eigenvalue of the operator

Pcon = Bc(Pc − PT
1 P−1

0 P1)

and w =
(
v̄× v̄−)T is a vector acquired as

w = −P−1
0 P1v.

The proof of Proposition 3.1 and the corresponding algorithm imple-
mented in MATLAB together with the experimental results can be found in
[6,9,10].

4. Conic Fitting in GAC—Fitting with Given Waypoints

To fit a conic among the data points as closely as possible and to simultane-
ously guarantee its passage through given waypoint(s), we can make use of
the vector–matrix formulation of conic fitting in terms of GAC, as described
in Sect. 3. Indeed, the conic fitting problem without prescribed waypoints and
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with them are similar in structure; thus, as will be shown further, both types
of problems can be solved using a certain eigenproblem.

Following the example of conic fitting without waypoints, we consider
ND data points represented by vectors Pi of the form (2.6) and we want to
obtain a conic vector Q of the form (2.7) that minimises the objective function
(3.1) and satisfies the normalisation constraint (3.2). Let us also stress that
proper points only will be further used as the data points Pi, as fitting a conic
among the improper points and not through them is geometrically unjustified.

Additionally, we require the conic Q to pass through NW waypoints Wj ,
which can be—in contrast with data points Pi—both proper and improper.
Hence, each of them is either of the form (2.6) or (2.14). A conic Q passes
through waypoint W if and only if their inner product vanishes, i.e.

W · Q = 0.

After defining the matrix Ψ of waypoints Wj , where the j-th column is
waypoint Wj , the condition of conic Q passing through all the waypoints Wj

can be expressed as

Ψ · Q = 0,

or, equivalently, using vectors and matrices, as

ΨT BQ = 0. (4.1)

Consequently, the examined conic fitting problem takes the form

min
Q

QT PQ

s.t. QT BQ = 1,

ΨT BQ = 0.

(4.2)

In the following subsection, let us describe two conic fitting algorithms
solving the given optimisation problem.

4.1. Algorithms

4.1.1. Algorithm QW-pseudoinv. First, let us recapitulate and further de-
scribe Algorithm QW-pseudoinv, which has already been introduced in [8] as
Algorithm QW.1

To express the solution to the given optimisation problem, let us define
the matrix

B0 =
(

0 −1
−1 0

)
,

1The renaming of the algorithm was done in order to distinguish it from a new algorithm

which fits a conic through given waypoint(s) as well. Moreover, the new name of the

algorithm stresses that it reaches the solution using the Moore–Penrose pseudoinverse.
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and decompose the matrix Ψ of waypoints Wj as

Ψ =

⎛

⎜
⎜
⎜
⎝W1 W2 · · · WNW

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

0

Ξ

X

⎞

⎟
⎟
⎟
⎠

,

where 0 denotes a 2 × NW zero matrix, and Ξ, X stand for matrices of types
4 × NW and 2 × NW , respectively.

Next, we consider the matrix

Bw =
(
BT

0 X
)+T

ΞT Bc, (4.3)

where “+” signifies the Moore–Penrose pseudoinverse, as the matrix BT
0 X is

necessarily not square.
Similarly to Proposition 3.1, Algorithm QW-pseudoinv reaches a solu-

tion to the conic fitting problem (4.2) using an eigenproblem given in the
following statement.

Proposition 4.1. The solution to the optimisation problem (4.2) for conic fit-
ting in GAC is given by Q =

(
wT vT 0 0

)T
, where v =

(
v̄+ v1 v2 v+

)T is
an eigenvector corresponding to the minimal non-negative eigenvalue of the
operator

PW
con = Bc

[
BT

wP0Bw − (
BT

wP1 + PT
1 Bw

)
+ Pc

]
(4.4)

and w =
(
v̄× v̄−)T is a vector acquired as

w = −Bwv.

Proof. Using the method of Lagrange multipliers and applying it on problem
(4.2), we would obtain a Lagrange function with two multipliers and the cor-
responding system of linear equations that, unfortunately, would be difficult
to solve.

To reduce the complexity of the problem, we chose to incorporate the
waypoints constraint (4.1) into both the objective function (3.3) and the
normalisation constraint (3.4). We can see that

ΨT BQ = 0 ⇐⇒ ΞT Bcv + XT B0w = 0,

thus

XT B0w = −ΞT Bcv, (4.5)

and, using matrix Bw defined in (4.3), we get

w ≈ −Bwv

Next, if the waypoints constraint is omitted in the optimisation problem and
only the objective function and the normalisation constraint are assumed,
then the corresponding Lagrange function has one multiplier only and takes
the form

Pλ(Q) = QT PQ + λ(1 − QT BQ).
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Using the vectors w and v, the acquired Lagrange function can be further
expanded as

Pλ(w, v) = wT P0w + 2wT P1v + vT Pcv + λ(1 − vT Bcv).

After the substitution of −Bwv for w, we obtain

Pλ(v) = vT BT
wP0Bwv − 2vT BT

wP1v + vT Pcv + λ(1 − vT Bcv).

Differentiation of this Lagrange function with respect to v and λ results in
the system of linear equations

∂Pλ

∂v
= 2

[(
BT

wP0Bw − (
BT

wP1 + PT
1 Bw

)
+ Pc

)
v − λBcv

]
= 0,

∂Pλ

∂λ
= 1 − vT Bcv = 0.

(4.6)

The first of the two equations further implies that
[
BT

wP0Bw − (
BT

wP1 + PT
1 Bw

)
+ Pc

]
v = λBcv.

Since matrix Bc squares to identity, multiplying the equation by this matrix
from left yields

Bc

[
BT

wP0Bw − (
BT

wP1 + PT
1 Bw

)
+ Pc

]
v = λv,

which constitutes a standard eigenproblem for v and λ. Furthermore, v must
be normalised according to the second equation in (4.6), i.e.

vT Bcv = 1. (4.7)

Therefore, the v-part of each stationary point of the Lagrange function is
an eigenvector of the matrix (4.4). Unfortunately, this is not always possible
because Bc is not positive definite. To find the minimum among the stationary
points, let us compute the values of objective function (3.1): Let vλ be the
eigenvector corresponding to eigenvalue λ and Qλ be the corresponding conic
Qλ = (−Bwvλ vλ 0)T . Using the blocks of matrix P , the system of linear
equations 4.6 and the normalisation constraint (4.7), we obtain

Pλ(Qλ) = QT
λ PQλ = vT

[
BT

wP0Bw − (
BT

wP1 + PT
1 Bw

)
+ Pc

]
v = λvT Bcv =

= λ > 0.

Consequently, the eigenvectors corresponding to non-positive eigenvalues can-
not be normalised as in (4.7) and are not stationary points. Moreover, the
minimum of the objective function (3.3) is achieved if v is the eigenvector
associated with the least positive eigenvalue of operator PW

con. �

4.1.2. Algorithm QW-null. To also cover the cases in which Algorithm QW-
pseudoinv fails to fit the conic through all the waypoints (as will be further
elaborated later) we introduce a new conic fitting algorithm, Algorithm QW-
null. As indicated by its name, the algorithm computes the fitted conic pass-
ing through given waypoint(s) using a null space of a certain matrix.

As in the case of the previous algorithm, we need to define a few aux-
iliary vectors and matrices first. It can be seen that some of the vectors and
matrices have elements that equal zero by definition—in some cases, though,
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we can omit these elements since they may result in unnecessary compu-
tational operations, and, moreover, omitting them may also greatly help in
expressing the solution to the optimisation problem. For example, by omit-
ting the two last zero elements in the IPNS vector representation of a conic
Q of the form (2.7), we can define a reduced IPNS conic vector as

Q̂ =
(
v̄× v̄− v̄+ v1 v2 v+

)T
.

Analogously, we can omit the first two zero elements in the IPNS vector
of a proper point P of the form (2.6) and an improper point P∞ of the form
(2.14) and create reduced points

P̂I =
(
1 x y 1

2 (x2 + y2) 1
2 (x2 − y2) xy

)T
,

P̂∞I =
(
0 0 0 1

2 (x2 + y2) 1
2 (x2 − y2) xy

)T
.

Thus, the matrix of reduced waypoints reads

Ψ̂ =

⎛

⎜
⎜
⎜
⎝ Ŵ1 Ŵ2 · · · ŴNW

⎞

⎟
⎟
⎟
⎠

=

⎛

⎝
Ξ

X

⎞

⎠ .

In a similar way, we can omit the two last rows and columns in matrix
P of the form (3.6) and create a reduced matrix

P̂ =
(

P0 P1

PT
1 Pc

)
.

Furthermore, we define two matrices reduced from the matrix of bilinear
form by omitting two rows and columns of matrix B of the form (2.3), in
particular we have

B̂1 =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 −1 0 0 0

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

, B̂2 =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 −1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 −1 0 0 0
0 −1 0 0 0 0

−1 0 0 0 0 0

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

.

Consequently, Algorithm QW-null reaches the solution as follows.

Proposition 4.2. The solution to the optimisation problem (4.2) for conic fit-
ting in GAC is given by Q =

(
Q̂T 0 0

)T
, with Q̂ =

(
v̄× v̄− v̄+ v1 v2 v+

)T

computed as

Q̂ = Nc,

where

N = null
(
Ψ̂T B̂1

)
,

i.e. a matrix of the orthonormal basis of the null space of matrix Ψ̂T B̂1,
and c is an eigenvector corresponding to the least positive eigenvalue of the
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Table 1. Combinations of waypoints by type and total number

1A 1B 2A 2B 2C 3A 3B 3C 3D 4A 4B 4C 4D 4E

Proper 1 0 2 1 0 3 2 1 0 4 3 2 1 0
Improper 0 1 0 1 2 0 1 2 3 0 1 2 3 4

generalised eigenproblem

NT P̂Nc = λNT B̂2Nc.

Proof. For conic Q to pass through all the waypoints given, the constraint
(4.1) must be fulfilled. Moreover, we can express this condition equivalently
as follows:

ΨT BQ = 0 ⇐⇒ Ψ̂T B̂1Q̂ = 0.

Therefore, vector Q̂ must lie in the null space of matrix Ψ̂T B̂1. This implies
that Q̂ must be a linear combination of the columns of matrix N , or, in
vector–matrix notation

Q̂ = Nc.

Thus,

ΨT BQ = 0 ⇐⇒ Q̂ = Nc.

After constructing the corresponding Lagrange function and substituting Q̂ =
Nc to it, the rest of the proof proceeds in a way analogous to Proposition 4.1.
�

4.2. Implementation

We offer MATLAB implementation of the two presented conic fitting algo-
rithms with waypoints in section A of the Appendix.

4.3. Number of Waypoints and Degrees of Freedom of the Fitted Conic

As discussed in detail in [11], a conic is generally determined by five points of
RP

2. Hence, it is not possible to fit a conic through more than four waypoints
and among the data points at the same time. Therefore, a maximum of
four waypoints comes into play. Since we can use either proper or improper
waypoints or even a combination of both types of waypoints, we get 14 cases
of what waypoints to employ in total, as can be seen in Table 1.

Nevertheless, we must also take into account that some of the combina-
tions given by Table 1 are geometrically unreasonable. In particular, no conic
can have more than two improper waypoints. Therefore, cases 3D, 4D and
4E will not be considered further.

4.4. Experimental Results

We applied both of the presented conic fitting algorithms with given way-
point(s) to three different datasets listed in Table 2 (the location of the points
in each dataset was deliberately chosen to resemble the shape of a regular
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Table 2. Datasets used

Elliptical Parabolic

xi 3 4 3 0 −1 −3 −4 −3 −1 −2 −2 −1 −1 0 1 3 5 7
yi −1 1 2 3 3 2 −1 −3 −4 0 3 −2 6 8 −2 −2 −1 0

Hyperbolic

xi −6 −4 −4 −3 −3 1 2 2 4
yi 1 2 −3 1 −1 5 4 7 4

Table 3. Waypoints used and the corresponding cases

1-4A 1B 2B 2C 3B 3C 4B 4C

xj 2 3 −4 −2 4 −7 1 6 1 −7 1 6 5 1 6 −7 6 1 6 −7 6 1 6
yj −3 3 1 −4 5 1 2 1 2 1 4 1 4 2 1 1 4 4 1 1 4 2 1
zj 1 1 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 1 1 0 0

conic; hence, the corresponding datasets were named elliptical, parabolic and
hyperbolic, respectively).

Moreover, by varying the total number and types of the waypoints used,
we offer all 11 plausible cases of fits from Table 1. The particular waypoints
used in the experiments are listed in Table 3.

In Fig. 4 we can see four cases of fitting the elliptical dataset, each fit
being the result of fitting a conic with one more proper waypoint than in the
preceding subfigure (see Table 3). In case 1A, both algorithms fit an ellipse
passing through the waypoint, as expected. Although both algorithms work
in case 2A as well, the result is still somehow unexpected, since both fitted
conics are not only similar, they are actually the same as will be further
discussed below.

A striking difference between the two algorithms can be seen in cases 3A
and 4A—while QW-pseudoinv fails to fit a conic through the given waypoints,
QW-null succeeds in that. This behaviour of the first-mentioned algorithm
is caused by using the Moore–Penrose pseudoinverse in the auxiliary compu-
tation of matrix Bw, (4.3), which generally cannot guarantee the fulfilment
of the waypoints constraint (4.1). In particular, when we employ more than
two waypoints in our conic fitting problem, the LHS of Eq. (4.5) generally
represents the LHS of an overdetermined system of linear equations in terms
of the elements of vector w, and, thus, Eq. (4.5) does not necessarily hold.
On the other hand, conics fitted by QW-null pass (and must pass) through
the given waypoints because of the definition of the solution given as a part
of the null space of matrix Ψ̂T B̂1.

Figure 5 depicts a situation of fitting a conic through one improper
waypoint, and, although not explicitly, it shows another significant difference
between the two algorithms—they fitted two different types of conics. It can
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Figure 4. Conic fits through 1–4 proper waypoints

be proven that in case 1B Algorithm QW-pseudoinv generally fits a parabola
with an axis of symmetry pointing in the direction of the improper waypoint,
while QW-null fits a hyperbola with one asymptote passing through the same
waypoint (the mentioned asymptote lies outside the figure). In contrast with
a hyperbolic fit, obtaining a parabolic fit is, in general, geometrically unusual,
and in the case of QW-pseudoinv it results from the fact that most elements
in matrix Bw are zero when exactly one improper waypoint is used.

Fits through two waypoints are offered in Fig. 6, namely, 2B shows a fit
through one proper and one improper waypoint and 2C through two improper
waypoints. As in case 2A, both algorithms in both cases produce equivalent,
visually overlapping results, and the fitted conics truly pass through their
respective waypoints. Moreover, we can state that both algorithms are equiv-
alent when two waypoints (whether proper or improper) are employed—for
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Figure 5. Fit through one improper waypoint

Figure 6. Fits through two waypoints (without case 2A)

two waypoints the matrix XT B0 from Eq. (4.5) becomes square and the eigen-
problems in the underlying Propositions 4.1 and 4.2 can be further proven
equivalent as well.

Fits through three waypoints given in Fig. 7 are well in accordance
with the result in case 3A; even though it is not entirely obvious, both a
detailed examination of the figure and a computational verification confirm
that, again, Algorithm QW-pseudoinv fails to fit the conics through the given
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Figure 7. Fits through three waypoints (without case 3A)

Figure 8. Fits through four waypoints (without case 4A)

waypoints (even though it approximates them quite closely) while the conics
generated by QW-null indeed pass through the waypoints.

The remaining fits through the four waypoints shown in Fig. 8 only
affirm—if not visually, then definitely by computation—that Algorithm QW-
pseudoinv generally cannot fit a conic through a higher number of points.
Nonetheless, it must be emphasised that while Algorithm QW-null was able
to fit conics through all four waypoints, it came at a high price, namely, quite
a high value of the objective function compared with QW-pseudoinv. This
corresponds to the lower level of the fit’s tightness among the data points,
which is especially apparent in case 4B.
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Table 4. Overview of the ability of algorithms to fit a conic
through all the given waypoints in the respective cases (im-
plausible cases are denoted by “–”)

1A 1B 2A 2B 2C 3A 3B 3C 3D 4A 4B 4C 4D 4E

QW-pseudoinv � � � � � ✕ ✕ ✕ – ✕ ✕ ✕ – –
QW-null � � � � � � � � – � � � – –

All in all, we can say that while Algorithm QW-pseudoinv is gener-
ally not capable of fitting a conic through more than two waypoints, Al-
gorithm QW-null can, by definition, fit a conic passing through up to four
waypoints. Also, let us reiterate that both algorithms produce equivalent con-
ics when fitting through two waypoints. An overview of the success rates of
both algorithms, i.e. their ability to fit a conic through all the given waypoints
in the respective cases, is given by Table 4.

5. Conclusions

We presented two conic fitting algorithms with additional conditions in the
form of a set of prescribed waypoints. This set may contain up to four points
from which up to two can be improper. It turns out that the representation
of improper points in GAC is natural, and thus all the intrinsic operations
of GAC may be carried out in the same way as for proper points.

We recall that our two algorithms differ in the way how the optimisation
problem is treated. One is based on the Moore–Penrose pseudoinverse and
the other on search for the kernel of a linear operator. The latter algorithm
proves itself more appropriate as it works even in the case of more than two
waypoints where the first algorithm fails.

We modified the pseudoinverse-based fitting algorithm from [8] to the
kernel-based one and provided their comparison. Note that we omitted a com-
parison to classical algorithms, see e.g. [6], which would have to be modified
first to work with waypoints. The reason is that we do not expect anything
different from the comparison of the standard algorithms in [6]. Also, the
adaptation of the standard algorithms to our setting is possible but not of
our interest. Indeed, a projectivisation of R2 must be considered leading to
an additional coordinate and the algorithms would have to be modified ac-
cordingly.
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Appendix A. MATLAB Implementation of Conic Fitting
Algorithms

Below, we summarise both presented algorithms for conic fitting with given
waypoints implemented as a MATLAB function. Let us note that the reduced
forms of some vectors and matrices were employed to avoid a few unnecessary
computations with zero elements, similarly to the conic fitting algorithms in
[9,10].

Both algorithms receive the same types of inputs and generate the same
types of outputs, in particular:
Inputs:

a, b, c column vectors of x, y, z homogeneous coordinates of waypoints
px, py column vectors of x, y coordinates of data points

Outputs:

Conic fitted conic in the form (2.7)
obj function value of objective function (3.1) for fitted conic
Let us also reiterate that when given affine coordinates of a proper point or
the elements of a vector corresponding to an improper point, these can be
easily converted into homogeneous coordinates using the mapping (2.1).

function [Conic, obj_function] = QW_pseudoinv(a,b,c,px,py)

ND = length(px);

Xi = [c a.*c b.*c 1/2*(a.^2+b.^2)]';
Chi = [1/2*(a.^2-b.^2) a.*b]';

B = zeros(6);

I3 = [0 0 1;0 1 0; 1 0 0];

B(1:3,4:6) = -I3;

B(4:5,2:3) = eye(2);

B(6,1) = -1;

Bc = B(3:6,1:4);

B0 = [0 -1;
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-1 0];

Bw = (pinv(B0'*Chi))'*Xi'*Bc;

D = ones(6,ND);

D(2,:) = px;

D(3,:) = py;

D(4,:) = 1/2*(px.^2+py.^2);

D(5,:) = 1/2*(px.^2-py.^2);

D(6,:) = px.*py;

P = 1/ND*B*(D*D')*B';
Pc = P(3:6,3:6);

P0 = P(1:2,1:2);

P1 = P(1:2,3:6);

PWcon = Bc*(Bw'*P0*Bw-(Bw'*P1+P1'*Bw)+Pc);
[EV,ED] = eig(PWcon);

EW = diag(ED);

k_opt = find(EW == min(EW(EW>0)));

v_opt = EV(:,k_opt);

kappa = v_opt'*Bc*v_opt;
v_opt = 1/sqrt(kappa)*v_opt;

w = -Bw*v_opt;

Conic = [w;v_opt;0;0];

obj_function = Conic(1:6)'*P*Conic(1:6);
end

function [Conic, obj_function] = QW_null(a,b,c,px,py)

ND = length(px);

NW = length(a);

Psi = zeros(6,NW);

Psi(1,:) = c.^2;

Psi(2,:) = a.*c;

Psi(3,:) = b.*c;

Psi(4,:) = 1/2*(a.^2+b.^2);



Vol. 34 (2024) Algorithms for Conic Fitting Through Given Proper. . . Page 21 of 22 6

Psi(5,:) = 1/2*(a.^2-b.^2);

Psi(6,:) = a.*b;

B = zeros(8);

I3 = [0 0 1;0 1 0; 1 0 0];

B(1:3,6:8) = -I3;

B(4:5,4:5) = eye(2);

B(6:8,1:3) = -I3;

B1 = B(3:8,1:6);

B2 = B(1:6,1:6);

N = null(Psi'*B1);

D = ones(6,ND);

D(2,:) = px;

D(3,:) = py;

D(4,:) = 1/2*(px.^2+py.^2);

D(5,:) = 1/2*(px.^2-py.^2);

D(6,:) = px.*py;

P = 1/ND*B1'*(D*D')*B1;

[EV,ED] = eig(N'*P*N,N'*B2*N);
EW = diag(ED);

k_opt = find(EW == min(EW(EW>0)));

c_opt = EV(:,k_opt);

Q_opt = N*c_opt;

kappa = Q_opt'*B2*Q_opt;
Q_opt = 1/sqrt(kappa)*Q_opt;

Conic = [Q_opt;0;0];

obj_function = Q_opt'*P*Q_opt;
end
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[10] Loučka, P., Vaš́ık, P.: On multi-conditioned conic fitting in geometric algebra
for conics. Adv. Appl. Clifford Algebras 33, 31 (2023). https://doi.org/10.1007/
s00006-023-01277-9

[11] Pamfilos, P.: A gallery of conics by five elements. Forum Geom. 14, 295–348
(2014)

[12] Perwass, C.: Geometric Algebra with Applications in Engineering. Springer,
Berlin (2009)

[13] Richter-Gebert, J.: Perspectives on Projective Geometry: A Guided Tour
Through Real and Complex Geometry. Springer, Berlin (2016)
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