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Abstract. A null vector is an algebraic quantity with the property that
its square is zero. I denote the universal algebra generated by taking all
sums and products of null vectors over the real or complex numbers by
N . The rules of addition and multiplication in N are taken to be the
same as those for real and complex square matrices. A distinct pair of
null vectors is positively or negatively correlated if their inner product is
positive or negative, respectively. A basis of n+1 null vectors, with pair-
wise inner products equal to plus or minus one half, defines the Clifford
geometric algebras G1,n, or Gn,1, respectively, and provides a founda-
tion for a new Cayley–Grassman linear algebra, a theory of complete
graphs, and other applications in pure and applied areas of science.
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1. Introduction

The origin of the ideas in this paper date back most directly to mathematics
that was set down in the nineteenth century by H. Grassmann [4], A. Cayley
(Memoir on the Theory of Matrices 1858), and W. Clifford [2]. It is regret-
table today, after more than 150 years, that Clifford’s geometric algebra has
not found it proper place in the Halls of Mathematics and Science [26]. My
journey in this saga began in 1965, when I starting working in geometric
algebra as a graduate Ph.D. student of Professor David Hestenes at Arizona
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State University [8], and continued with years spent with gracious colleagues
in Poland and Mexico. It is my belief that this paper will bring us closer to
the day when geometric algebra has finally found its proper place in the Mil-
lennial Human Quest for the development of the geometric concept of number
[21].

In Sect. 2, it is shown that the geometric algebras G1,n and Gn,1 have
special bases of all positively, or all negatively correlated null vectors, respec-
tively. In the case of G1,n, the inner products can all be chosen to be +1

2 , and
in the case of Gn,1, − 1

2 . For simplicity, the classification of endomorphisms
on R

n+1 is considered only in the case of a (+ 1
2 )-positively correlated basis

of a geometric algebra G1,n, but the same analysis is valid for studying en-
domorphisms on R

n+1 of a (− 1
2 )-negatively correlated basis of a geometric

algebra Gn,1.
In Sect. 3, basic ideas of linear algebra in R

n+1 are developed in the
symmetric algebra A+

n+1 of a correlated basis of null vectors in G
1
1,n. The

concept of a star conjugation of a geometric number is defined and studied.
The vector derivative ∇ is defined, paying particular attention to its impor-
tant properties.

In Sect. 4, basic properties of lower dimensional geometric algebras are
explored in the correlated basis algebra A+

4 of G1,3. The concept of the star
conjugation suggests that a new classification all geometric algebras is possi-
ble in the correlated null vector algebra A+

n+1 of G1,n, [24].
In Sect. 5, by introducing barycentric coordinates, complete graphs are

studied in which every pair of vertices is connected by an edge. Light Cone
Projective Graph Geometry (LPGG) is built upon the property that for any
dimension n ≥ 1, there exits positively, or negatively correlated light cones,
defined by sets of (n + 1) null basis vectors {a1, . . . , an+1} of G1,n, or Gn,1,
such that a1 ∧ · · · ∧ an+1 �= 0 and ai · aj = ± (1−δij)

2 , respectively.

2. The Geometric Algebras G1,n and Gn,1 of Rn+1

A distinct pair of null vectors is positively or negatively correlated if their inner
product is positive or negative, respectively. The geometric algebras G1,n and
Gn,1 arise from null vector bases of Rn+1 by constructing positively, or nega-
tively correlated, null vectors in terms of the standard bases {e1, f1, · · · , fn}
of G1,n, or {f1, e1, · · · , en} of G1,n, respectively. Renewed interest in these
Clifford algebras is due in part to the pivotal Lecture Notes published by
Marcel Riesz in 1958, [16]. The geometric algebras G1,n and Gn,1 make up
the two fundamental sequences of successively larger algebras,

R ⊂ G1,1 ⊂ G1,2 ⊂ G1,3 ⊂ · · · ⊂ G1,n ⊂ · · · ⊂ N , (1)

and

R ⊂ G1,1 ⊂ G2,1 ⊂ G3,1 ⊂ · · · ⊂ Gn,1 ⊂ · · · ⊂ N , (2)

where N is the universal algebra generated by taking sums and products of
null vectors. See [21,22,26], and other references.
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Table 1. Multiplication Table

ai aj aiaj ajai

ai 0 aiaj 0 ai

aj ajai 0 aj 0
aiaj ai 0 aiaj 0
ajai 0 aj 0 ajai

Let {a1, . . . an+1} ⊂ R
n+1 be a set of positively, or negatively, correlated

null vectors satisfying a1 ∧ · · · ∧ an+1 �= 0, and the
(

n + 2
2

)
properties

ai · aj ≡ 1
2
(aiaj + ajai) := ±1 − δij

2
for 1 ≤ i, j ≤ n + 1, (3)

respectively, where δij is the usual delta function. In terms of these basis null
vectors,

R
n+1 := {x| x = x1a1 + · · · + xn+1an+1, xi ∈ R}. (4)

The multiplication tables for sets of positively (PC), or negatively (NC),
correlated null vectors ai, aj , for 1 ≤ i, j ≤ n + 1, follow directly from the
properties (3), and generate the positively, or negatively, correlated null vec-
tor algebras A+

1,n = G1,n, and A−
n,1 = Gn,1, respectively.

For a set of positively or negatively correlated null vectors {a1, . . . , an},
define

Ak :=
k∑

i=1

ai. (5)

The geometric algebra

G1,n := R(e1, f1, . . . , fn),

where {e1, f1, . . . , fn} is the standard basis of anticommuting orthonormal
vectors, with e2

1 = 1 and f2
1 = · · · = f2

n = −1. The 2n+1-canonical forms of
the standard multivector basis elements are{

1; e1, f1, · · · , fn; e1f1, · · · , e1fn,
[
1≤i<k≤n

fifk,
]
; . . . ; e1f1 · · · fn

}
. (6)

Alternatively, the geometric algebra G1,n can be defined by

G1,n := R(a1, . . . , an+1) =: A+
1,n,

where {a1, . . . , an+1} is a set of positively correlated null vectors satisfying
the Multiplication Table 1. In this case, the standard basis vectors of G1,n

can be defined by e1 = a1 + a2 = A2, f1 = a1 − a2 = A1 − a2, and for
2 ≤ k ≤ n

fk = αk

(
Ak − (k − 1)ak+1

)
, (7)
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Table 2. Multiplication Table

ai aj aiaj ajai

ai 0 aiaj 0 −ai

aj ajai 0 −aj 0
aiaj −ai 0 −aiaj 0
ajai 0 −aj 0 −ajai

where αk := −√
2√

k(k−1)
. The 2n+1-canonical forms of the standard multivector

basis elements of A+
n+1 are

{
1; a1, . . . , an+1;

[
1≤i<j≤n+1

aiaj ,
]
; . . . ; a1 · · · an+1

}
. (8)

The geometric algebra

Gn,1 := R(f1, e1, . . . , en),

where {f1, e1, . . . en} is the standard basis of anticommuting orthonormal vec-
tors, with f2

1 = −1 and e2
1 = · · · = e2

n = 1. Alternatively, the geometric
algebra Gn,1 can be defined by

Gn,1 := R(a1, . . . , an+1) =: A−
1,n,

where {a1, . . . , an+1} is a set of negatively correlated null vectors satisfying
the Multiplication Table 2. In this case, the standard basis vectors of Gn,1

can be defined by f1 = a1 + a2 = A2, e1 = a1 − a2 = A1 − a2, and for
2 ≤ k ≤ n

ek = αk

(
Ak − (k − 1)ak+1

)
, (9)

where αk := −√
2√

k(k−1)
. The 2n+1-canonical forms of the standard multivector

basis elements of A−
n+1 is the same as (8).

For the remainder of this paper, only properties of the positively corre-
lated null vector algebras A+

n+1 := A1,n of the geometric algebras G1,n are
considered. It should be recognized, however, that any of these properties can
be easily translated to the corresponding properties of the negatively corre-
lated null vector basis algebras A−

n+1 := An,1 of Gn,1. Indeed, much more
general algebras of correlated null vectors in N can be defined and studied,
but with correspondingly more complicated rules of multiplication. In addi-
tion to providing a new framework for the study of Linear Algebra on R

n+1,
the last section of the paper shows how the ideas can be applied to graph
theory.
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3. Linear Algebra of Rn+1 in A+
n+1

The position vector x ∈ R
n+1 in the standard basis of G1,n is

x := s1e1 +
n∑

i=1

si+1fi ∈ G
1
1,n. (10)

Alternatively, in the correlated null vector basis algebra A+
n+1 ≡ G1,n,

x =
n+1∑
i=1

xiai ∈ A+
n+1. (11)

Since geometric algebras are fully compatible with matrix algebras, ma-
trix algebras over geometric algebras are well defined [21]. To relate the bases
(10) and (11), in matrix notation

x =
(
s1 . . . sn+1

)

⎛
⎜⎜⎜⎜⎜⎜⎝

e1

f1

·
·
·

fn

⎞
⎟⎟⎟⎟⎟⎟⎠

=
(
x1 . . . xn+1

)

⎛
⎜⎜⎜⎜⎜⎜⎝

a1

a2

·
·
·

an+1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (12)

or in abbreviated form, x = s(n+1)F(n+1) = x(n+1)A(n+1). The quadratic form
B of G1,n is specified by F−1

(n+1) := F t
(n+1)B, where

B := F(n+1) · F t
(n+1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

e1

f1

·
·
·

fn

⎞
⎟⎟⎟⎟⎟⎟⎠

· (
e1 f1 . . . fn

)
(13)

=

⎛
⎜⎜⎜⎜⎝

1 0 0 · · · 0
0 −1 0 · · · 0
· · · · ·
· · · · ·
0 0 · · · 0 −1

⎞
⎟⎟⎟⎟⎠ ,

where F t
(n+1) denotes the row transpose of the column F(n+1).

Let v, w ∈ G
1
1,n be vectors. Expressed in the standard basis of G1,n, the

geometric product

vw = v(n+1)F(n+1)F
t
(n+1)w

t
(n+1)

= v(n+1)F(n+1) · F t
(n+1)w

t
(n+1) + v(n+1)F(n+1) ∧ F t

(n+1)w
t
(n+1)
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= v(n+1)Bwt
(n+1) + v(n+1)

⎛
⎜⎜⎜⎜⎝

0 e1f1 e1f2 · · · e1fn

f1e1 0 f1f2 · · · f1fn

· · · · ·
· · · · ·

fne1 fnf1 fnf2 · · · 0

⎞
⎟⎟⎟⎟⎠ wt

(n+1). (14)

Dotting each side of the equation (12) on the right by the row matrix

F−1
(n+1) :=

(
e1 −f1 . . . −fn

)
,

and noting that ⎛
⎜⎜⎜⎜⎜⎜⎝

e1

f1

·
·
·

fn

⎞
⎟⎟⎟⎟⎟⎟⎠

· (
e1 −f1 . . . −fn

)

is an expression for the (n + 1) × (n + 1) identity matrix, immediately gives
s(n+1) = x(n+1)T , where the matrix of transition T is defined by the Gramian
matrix

T := A(n+1) · F−1
(n+1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

a1

a2

·
·
·

an+1

⎞
⎟⎟⎟⎟⎟⎟⎠

· (
e1 −f1 . . . −fn

)
(15)

in terms of the inner products ai · fj . These inner products are directly cal-
culated using (7). The transition matrix T8, and its inverse T−1

8 , for the
geometric algebra G1,7 is given in Appendix A.

Note, that whereas T is the transition matrix

TF(n+1) = T

⎛
⎜⎜⎜⎜⎝

e1

f1

·
·

fn

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎝

a1

·
·

an+1

⎞
⎟⎟⎠ = A(n+1), (16)

of the column basis vectors F(n+1) to the column basis vectors A(n+1), T−1

is the coordinate transition matrix

s(n+1)T
−1 =

(
s1 · · · sn+1

)
T−1 =

(
x1 · · · xn+1

)
= x(n+1), (17)

from the row vector coordinates of x to the row vector coordinates of x in
the basis A(n+1). Great care must be taken to avoid confusion.

Converting the calculation in (14) to a calculation for v, w ∈ A+
n+1,

vw = v(n+1)F(n+1)F
t
(n+1)w

t
(n+1)

= v(n+1)T
−1TF(n+1)F

t
(n+1)T

t(T t)−1wt
(n+1)

= va
(n+1)A(n+1)A

t
(n+1)(w

a
(n+1))

t,
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giving

vw = va
(n+1)A(n+1) · At

(n+1)(w
a
(n+1))

t + va
(n+1)A(n+1) ∧ At

(n+1)(w
a
(n+1))

t

= va
(n+1)

⎛
⎜⎜⎜⎜⎝

0 a1a2 a1a3 · · · a1an+1

a2a1 0 a2a3 · · · a2an+1

· · · · ·
· · · · ·

an+1a1 an+1a2 an+1a3 · · · 0

⎞
⎟⎟⎟⎟⎠ (wa

(n+1))
t. (18)

3.1. Bivector Endomorphisms in A+
n+1

The standard treatment of the relationship between Clifford’s geometric al-
gebras and Cayley’s matrix algebras is well-known, [22, p.74], [13, p.217].
Something that has always disturbed me is that this relationship is an iso-
morphism only for square matrix algebras of order 2n × 2n. This sorry state
of affairs is at least partially rectified in the algebras A+

n+1 = G1,n.
Recalling the definition of (5), it is easy to show, by induction, that for

k ≥ 2,

(Ak)2 =
(

k
2

)
. (19)

For k = 2, A2
2 = (a1 + a2)2 = a2

1 + 2a1 · a2 + a2
2 = 1 =

(
2
2

)
. Assuming true

for k = n, for k = n + 1,

A2
n+1 = A2

n + 2an+1 · An + a2
n+1 =

(
n
2

)
+ 2

n

2
=

(
n + 1

2

)
,

completing the proof.
Letting Âk :=

√
2√

k(k−1)
Ak, it follows that Â2

k = 1. For g ∈ A+
n+1, and

k ≥ 2, define the LPGG star k-conjugation of g ∈ A+
n+1 by

g� := ÂkgÂk. (20)

For g, h ∈ A+
n+1, (g�)� = g, (h�)� = h, and

(gh)� = ÂkgÂkÂkhÂk = g�h�. (21)

Defining the A-matrix of g ∈ A+
n+1 by

[g]a := Â(n+1)gÂt
(n+1) = [aigaj ]a, (22)

where Â(n+1) :=
√

2√
(n+1)n

A(n+1), it follows that

g� = Ân+1gÂn+1 = It
(n+1)[g]aI(n+1),
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where I(n+1) and It
(n+1) are the n + 1 column and row matrices

I(n+1) :=

⎛
⎜⎜⎜⎜⎝

1
·
·
·
1

⎞
⎟⎟⎟⎟⎠ , It

(n+1) :=
(
1 1 · · · 1

)
,

respectively.
The GA product of g, h ∈ A+

n+1, in terms of their (n + 1) × (n + 1)
A-matrices [g]a, [h]a, then takes the unusual form

gh = Ân+1It
(n+1)

(
[g]aI(n+1)It

(n+1)[h]a
)
I(n+1)Ân+1, (23)

mediated by the square singular (n + 1)-matrix I(n+1)It
(n+1). Equation (23)

is a generalization of the closely related formula (18) for the multiplication
of the vectors v, w ∈ A+

n+1.
It follows from (20) and (23) that a real or complex (n + 1) × (n + 1)-

matrix [gij ] is the matrix of a scalar plus a bivector g ∈ A+
n+1, that is

[g]a = Ân+1[g�]aÂn+1

=

⎛
⎜⎜⎜⎜⎝

0 g12a1a2 g13a1a3 · · · g1,n+1a1an+1

g21a2a1 0 g23a2a3 · · · g2,n+1a2an+1

· · · · ·
· · · · ·

g1,n+1an+1a1 g2,n+1an+1a2 gn,n+1an+1a3 · · · 0

⎞
⎟⎟⎟⎟⎠ . (24)

Comparing the matrix [g]a in (24) to the matrix in (14), seems to contradict
that the trace of a matrix is invariant under a change of basis. However this is
not the case since the terms gijaiaj of (24) consists of scalars and bivectors.
Plücker relations are important in understanding the structure of bivectors
[23], particularly bivectors in G1,n, and in study of conformal mappings [20].

3.2. The Gradient ∇
A crucial tool for carrying out calculations in the geometric algebra G1,n

is the gradient ∇. In the references [5,8,21], the gradient ∇, alongside the
geometric algebra Gn, has been developed as a basic tool for formulating
and proving basic theorems of linear algebra in R

n. Since the properties of
the gradient are independent of the quadratic form of the geometric algebra
used, instead of using the Euclidean geometric algebra Gn+1 of Rn+1, we can
equally well define it in terms of the geometric algebra G1,n. It follows that
all theorems of linear algebra developed in [5,8,21] are equally valid in G1,n

without modification. In the standard basis of G1,n,

∇ := e1
∂

∂s1
− f1

∂

∂s2
− · · · − fn

∂

∂sn+1
. (25)
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With the transition matrix (15) in hand, the expression for the gradient
in the null vector basis of A1,n,

∇ =
n+1∑
i=1

(∇xi)
∂

∂xi
, (26)

is nothing more than a simple expression of the chain rule in calculus. In
terms of the abbreviated notation for (12), it is not difficult to derive the
transformation rules relating the columns of basis vectors A(n+1) and F(n+1).

Using (15), and solving

x = s(n+1)F(n+1) = x(n+1)A(n+1), (27)

gives the important relations
• s(n+1) = x(n+1)T ⇐⇒ x(n+1) = s(n+1)T

−1

• x · F−1
(n+1) = s(n+1) = x(n+1)T ⇐⇒ F−1

(n+1) = ∇s(n+1) = ∇x(n+1)T

• x(n+1) = s(n+1)T
−1 ⇐⇒ A−1

(n+1) := ∇x(n+1) = F−1
(n+1)T

−1.
• A−1

(n+1) = F−1
(n+1)T

−1 ⇐⇒ A−1
(n+1)T = F−1

(n+1).
• ∇x = n + 1 = F−1

(n+1)F(n+1) = A−1
(n+1)A(n+1).

• F(n+1) = F(n+1) · ∇x = F(n+1) · ∇x(n+1)A(n+1)

= F(n+1) · ∇s(n+1)T
−1A(n+1) = T−1A(n+1).

Note, whereas F(n+1) and A(n+1) have been defined as column matrices
of vectors, F−1

(n+1) and A−1
(n+1) are row matrices of vectors. Taking the outer

product of basis vectors in the relation F(n+1) = T−1A(n+1), gives

∧F(n+1) = det T−1 ∧ A(n+1),

or equivalently, after calculating and simplifying,

e1f1 · · · fn = − (
√

2)n+1

√
n

a1 ∧ · · · ∧ an+1, (28)

relating the pseudoscalar elements of the geometric algebra G1,n expressed
in the standard basis and in the null vector basis of A+

n+1.

3.3. Decomposition Formulas for ∇
Usually the concept of duality is defined between two distinct vector spaces,
or in terms of the operation of multiplication in an algebraic structure such
as the geometric algebra Gn of Euclidean space. The geometric algebras G1,n

and Gn,1, defined in terms of the null vector basis algebras A+
1,n and A−

n,1,
whose rules of multiplication have been given in the Multiplication Tables 1
and 2, suggests a new concept of duality. The dual n-sum ∨ai of ai ∈ A+

n+1 is
the n-sum

∨ai := a1 + · · · + ∨i + · · · an+1 = An+1 − ai, (29)

formed leaving out the ith term of the basis null vectors {a1, . . . , an+1} ⊂
A+

n+1. Another related notation which we will use is the wedge-dual,

∧ ∨a(i) := a1 ∧ · · · ∧ ∨i ∧ · · · ∧ an+1, (30)

formed leaving out wedge the ith-term.
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Calculations with the gradient ∇ in A+
n+1 can often be simplified using

the following decompostion formulas. Defining the dual sum and null gradi-
ents

∨∇ :=
n+1∑
i=1

∨ai∂i and ∇̂ :=
n+1∑
i=1

ai∂i, (31)

respectively, the gradient ∇ defined by (26),
∨∇ and ∇̂ defined in (31), satisfy

the following decomposition formulas:

• ∇ = 2
n

(
An+1∂(n+1) − n∇̂

)
= 2

n

(
∨∇ − (n − 1)∇̂

)
, where ∂(n+1) :=∑n+1

i=1 ∂i.
• An+1 · ∇ = (n + 1)∂(n+1) − 2An+1 · ∇̂
• ∨∇ + ∇̂ = An+1∂(n+1) ⇐⇒ An+1 · ∨∇ + An+1 · ∇̂ = (n+1)n

2 ∂(n+1)

• ∇̂2 =
∑n+1

i<j ∂i∂j ,
∨∇2

= (n−1)n
2

∑n+1
i=1 ∂2

i + (n2 − n + 1)
∑n+1

i<j ∂i∂j

• ∇2 = 4
n2

(
∨∇ − (n − 1)∇̂

)2

=
∨∇2 − 2(n − 1)

∨∇ · ∇̂ + ∇̂2,

where
∨∇ · ∇̂ = n

2

∑n+1
i=1 ∂2

i + (n − 1)
∑

i<j ∂i∂j .

Verifications of the above formulas are omitted. They depend heavily on the
combinatorial-like identities

A2
n+1 =

(n + 1)n
2

, ai · An+1 = An+1 · ai =
n

2
, (32)

and the additive duality formula for distinct i, j, 1 ≤ i, j ≤ n + 1,

∨ai · ∨aj =
n2 − n + 1

2
, (33)

as easily follow from (19) and (29).1

4. Lower Dimensional Geometric Algebras

This section characterizes geometric sub-algebras of A+
3 ≡ G1,2 in R

3.
The pseudoscalar

i := e1f1f2 = −2a1 ∧ a2 ∧ a3, (34)

is in the center of the algebra, commuting with all elements. The algebra

G3 := R(e1, e2, e3),

is obtained from the algebra G1,2, simply by defining e2 = if1 = e1f2 ∈
G

2
1,2 and e3 = −if2 = e1f1 ∈ G

2
1,2, and reinterpreting these anticommuting

elements to be vectors in G
1
3.

The matrix coordinates [e1], [e2], [e3] of e1, e2, e3, known as the famous
Pauli matrices, opened the door to the study of quantum mechanics [22,
p.108]. It has found many recent applications in computer science and robot-
ics, [9]. The geometric algebra G3 is isomorphic to the even subalgebra of the

1A more comprehensive treatment of these formulas is found in my preprint “Calculus of
Compatible Nilpotents”, https://hal.science/hal-04108375 (May 2023).

https://hal.science/hal-04108375


Vol. 34 (2024) Geometric Algebras of Light Cone Projective Graph Geometries Page 11 of 22 7

spacetime algebra G1,3 = A+
4 of R4. Its matrix version is known as the Dirac

algebra.
The null vector basis algebra A+

3 = G1,2 is defined by 3 null vectors
{a1, a2, a3} with the property that ∧A(3) �= 0, ai · aj = (1−δij)

2 , and the
Multiplication Table 1. The relations between the standard basis of G1,2,
and the basis of A+

3 , are summarized by the 3 × 3 transition matrix T3, and
its inverse,

T3 :=

⎛
⎝

1
2

1
2 0

1
2 − 1

2 0
1 0 1

⎞
⎠ , T−1

3 :=

⎛
⎝ 1 1 0

1 −1 0
−1 −1 1

⎞
⎠ . (35)

Using the relations given after (27),⎛
⎝e1

f1

f2

⎞
⎠ = T−1

3

⎛
⎝a1

a2

a3

⎞
⎠ =

⎛
⎝ a1 + a2

a1 − a2

−a1 − a2 + a3

⎞
⎠ (36)

and ⎛
⎝a1

a2

a3

⎞
⎠ = T3

⎛
⎝e1

f1

f2

⎞
⎠ =

⎛
⎝

1
2 (e1 + f1)
1
2 (e1 − f1)
e1 + f2

⎞
⎠ . (37)

The canonical forms relating the vectors, bivectors and trivectors are:

• e1 = a1 + a2, f1 = a1 − a2, f2 = −a1 − a2 + a3

• e1f1 = (a1 + a2)(a1 − a2) = a2a1 − a1a2 = 1 − 2a1a2

• e1f2 = (a1 + a2)(−a1 − a2 + a3) = −1 + a1a3 + a2a3

• f1f2 = (1 − 2a1a2 + a1a3 − a2a3)
• e1f1f2 = (a1 + a2)(1 − 2a1a2 + a1a3 − a2a3) = a1 − a2 + a3 − 2a1a2a3

One of the simplest endomorphisms, f : R2 → R
2, defined by v1, v2 ∈

R
2, is

f(x) := 2(v1 ∧ v2)x = 2
(
(x · v2)v1 − (x · v1)v2

)
, (38)

where vi = vi1a1 + vi2a2 for i ∈ {1, 2}. The endomorphism f(x) has the

eigenvectors a1 and a2, with the eigenvalues ±det
(

v11 v12

v12 v22

)
,

f(a1) = 2(v1 ∧ v2)a1 = det
(

v11 v12

v12 v22

)
a1, (39)

f(a2) = 2(v1 ∧ v2)a2 = −det
(

v11 v12

v12 v22

)
a2, (40)

respectively, as is easily verified.
Now calculate,

(v1 ∧ v2)(v1 ∧ v2 ∧ x) = (v1 ∧ v2) · (v1 ∧ v2 ∧ x)
= (v1 ∧ v2)2x + (v1 ∧ v2) · (v2 ∧ x)v1 + (v1 ∧ v2) · (x ∧ v1)v2 = 0.
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Dividing both sides of this last equation by (v1 ∧ v2)2, gives

(v1 ∧ v2 ∧ x)
(v1 ∧ v2)

= x − (x ∧ v2)
(v1 ∧ v2)

v1 +
(x ∧ v1)
(v1 ∧ v2)

v2 = 0, (41)

expressing the position vector x ∈ R
2 uniquely in terms of its LPGG projec-

tive coordinates. Of course, the trivector v1 ∧ v2 ∧ x = 0, because we are in
the geometric algebra G1,1 of R2. Multiplying equation (41) by 4(v1 ∧ v2)2

immediately gives what I call the Cayley–Grassmann identity,

4(v1 ∧ v2)(v1 ∧ v2 ∧ x) = f2(x) − 4(v1 ∧ v2)(x ∧ v2)v1 + 4(v1 ∧ v2)(x ∧ v1)v2

= f2(x) − 2f(x) · v2v1 + 2f(x) · v1v2 = 0. (42)

The matrix of [f(x)] of f(x) is given by

[f(x)] = [2(v1 ∧ v2)x] = 2[(v1 ∧ v2)][x], (43)

which is the product of the matrix

[v1 ∧ v2] =
1
2

(
[v1v2 − v2v1]

)
=

1
2

(
[v1][v2] − [v2][v1]

)
, (44)

where [v1 ∧ v2], [v1], [v2] are the matrices of v1 ∧ v2, v1, v2, respectively, and
[x] is the matrix of x. These matrices are given below. With (36) and (37) in
hand, the matrix [x] of the position vector x ∈ R

3

[x] = x1[a1] + x2[a2] + x3[a3] =
(

x3i x2 − x3

x1 − x3 −x3i

)

with respect to the basis A+
3 , and

[x] = s1[e1] + s2[f1] + s3[f2] =
(

s3i s1 − s2

s1 + s2 −s3i

)

with respect to the standard basis of G1,2.
The 2 × 2 matrices are defined with respect to the spectral basis(

a2a1 a2

a1 a1a2

)

of G1,1, as detailed in [22] and [21, p.78]. The matrices of [a1] and [a2] of a1

and a2, are

[a1] =
(

0 0
1 0

)
, [a2] =

(
0 1
0 0

)
,

respectively, and

[x] =
(

0 x2

x1 0

)
, [v1] =

(
0 v12

v11 0

)
, [v2] =

(
0 v22

v21 0

)
,

which are used with (44) to calculate

[v1 ∧ v2] =
1
2

(
[v1][v2] − [v2][v1]

)
=

1
2

(
v12v21 − v11v22 0

0 v11v22 − v12v21

)
,
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and

[f(x)] = 2[(v1 ∧ v2)][x] =
(

0 (v12v21 − v11v22)x2

−(v12v21 − v11v22)x1 0

)
.

Usually an endomorphism f(x) on R
2 is represented by a 2 × 2 matrix

[f ] acting on a column matrix [x] =
(

x1

x2

)
. Alternatively, the matrix [x] of

x can be represented by the matrix endomorphism [x] :=
(

x1 0
x2 0

)
, [13, p.52].

The matrix of the endomorphism f(x) in the LPGG of V+
2 (v1, v2) comes as

the single real matrix [f(x)], which can be broken into the product of two
2 × 2 matrices. By (43),

[f(x)] = 2[(v1 ∧ v2)][x] =
(

v12v21 − v11v22 0
0 −(v12v21 − v11v22)

) (
0 x2

x1 0

)
.

For k ∈ {1, 2, 3}, let

vk := vk1a1 + vk2a2 + vk3a3 ∈ R
3.

Consider the endomorphism

f : R3 → A+
3 , (45)

defined by

f(x) := 2(v1 ∧ v2 ∧ v3)x = 2det[vij ](a1 ∧ a2 ∧ a3)x

= det[vij ]
(
(x1 + x2)a1 ∧ a2 + (x2 + x3)a2 ∧ a3 + (x1 + x3)a3 ∧ a1

)
.

It is interesting to note that each of the bivectors in the above expression
are anticommutative and square to 1

4 . In view of (34), this is not surprising.
Indeed, the mapping (45) can simply be expressed as the duality relation
f(x) = −ix. It follows that over the complex numbers, every vector x ∈ A+

3

is an eigenvector.
Let g : R3 → A+

3 , be defined by

g(x) :=
(
1 1 1

)
⎛
⎝ 0 g12a1a2 g13a1a3

g21a2a1 0 g23a2a3

g31a3a1 g32a3a2 0

⎞
⎠

⎛
⎝1

1
1

⎞
⎠ x = Gx, (46)

where

G =
1
2
tr(G) + g1a2 ∧ a3 + g2a3 ∧ a1 + g3a1 ∧ a2, (47)

for g1 := (g23 − g32), g2 := (g31 − g13), g3 := (g12 − g21), and

tr(G) := g12 + g13 + g21 + g23 + g31 + g32.

The same mapping (46) can equally well be considered over C,

g : C3 → A+
3 (C). (48)

The minimal polynomial of G is easily calculated. Starting with (47),
(
G − 1

2
tr(G)

)2 =
(
g1a2 ∧ a3 + g2a3 ∧ a1 + g3a1 ∧ a2

)2
.
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Since every bivector in the geometric algebras G1,2=̃G3 is a simple bivector,
or blade, it follows that the right-hand side of this equation is a complex
scalar. Thus,
(
g1a2 ∧ a3 + g2a3 ∧ a1 + g3a1 ∧ a2

)2 =
1
4
(g2

1 + g2
2 + g2

3) − 1
2
(g1g2 + g1g3 + g2g3)

Putting these two equations together, and simplifying, gives the minimal
polynomial of the Cayley-Hamilton Theorem,

ϕ(G) =
(
G − 1

2
tr(G)

)2 − 1
4

(
g1 + g2 + g3

)2

+ g1g2 + g1g3 + g2g3 ≡ 0.

Setting ϕ(r) = 0 and solving for r, gives the two roots r− and r+,

r∓ :=
1
2

(
tr(G) ∓

√
tr(G)2 − 4H

)
,

for

H =
1
4

(
tr(G)2 − (g1 + g2 + g3)2

)
+ g1g2 + g1g3 + g2g3.

In the spectral basis, see [19,21,22], G takes the form

G = r−p1(G) + r+p2(G), (49)

where

p1(t) :=
−2t + tr(G) +

√
tr(G)2 − 4H

2
√

tr(G)2 − 4H

and

p2(t) :=
2t − tr(G) +

√
tr(G)2 − 4H

2
√

tr(G)2 − 4H
.

There are whole classes of endomorphisms f : Rn+1 → R
n+1 defined in

terms of double coverings with respect to group elements of the Lipchitz Group
Γ1,n contained in the geometric algebra G1,n, [13, p.220]. For an invertible
element h ∈ Γ1,n, the endomorphism f is defined by f(x) := hxh−1 ∈ R

n+1.
In [27], I begin the study of endomorphisms generated by elements in the
Lorentz group O1,n ⊂ Γ1,n acting on representations of the symmetric group
of permutations, useful in quantum computation [11, p.60].

5. Simplices in A+
n+1

It has been shown in previous sections how the development of linear algebra
can be carried out in R

n+1, using the tools of G1,n ≡ A+
n+1. Restricting to

barycentric coordinates, gives new tools for application in graph theory. In
Simplicial Calculus with Geometric Algebra, many ideas of simplicial geome-
try were set down in the context of geometric algebra [18], in spite of pesky
problems with the Schwarz paradox [14,17]. The present work is in many
ways a continuation of this earlier work.
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Let A+
n+1 be the null vector algebra of the geometric algebra G1,n,

defined by the Multiplication Table 1, and where the null vectors ai satisfy
for 1 ≤ i, j ≤ n + 1,

ai · aj =
(1 − δij)

2
. (50)

For x ∈ R
n+1 the position vector (11), the convex null n-simplex in R

n+1 is
defined by

S+
n := S+

n (a1, . . . , an+1) = {x ∈ R
n+1| x1 + · · · + xn+1 = 1, xi ≥ 0}, (51)

by the requirement that the coordinates x(s) of x ∈ R
n+1, are homogeneous

barycentric coordinates, [28].
By the content of S+

n , we mean

a�n
:=

1
n!

∧(n+1)
i=2 (ai − a1) =

1
n!

(a2 − a1) ∧ (a3 − a1) ∧ · · · ∧ (an+1 − a1)

=
1
n!

(
∧ ∨a(1) − ∧∨a(2) + · · · + (−1)n ∧ ∨a(n+1)

)
, (52)

in terms of the wedge dual notation introduced in (30). Wedging (54) on the
left by x ∈ S+

n , gives

x ∧ a�n
=

1
n!

( n+1∑
i=1

xi

)
∧ A(n+1) =

1
n!

∧ A(n+1). (53)

Similarly, dotting (54) on the left by x gives

x · a�n
=

1
n!

x ·
(

∧ ∨a(1) − ∧∨a(2) + · · · + (−1)n ∧ ∨a(n+1)

)
. (54)

Let v1, . . . , vk+1 ∈ R
k+1 be a set of k + 1 vertices of a k-simplex V+

k in
A+

k+1. That is

vi :=
k+1∑
j=1

vijaj = [vij ]A(k+1), (55)

where [V ]k+1 := [vij ] is the matrix of V+
k . The rows of the simplicial matrix

[V ]k+1 are the barycentric coordinates of the vertices vi ∈ V+
k+1. It follows

that [V ]k+1 is a non-negative matrix with the property that the sum of the
coordinates in each row is equal to 1. Alternatively, since v1 ∧ · · · ∧ vk+1 �=
0, and not requiring the coordinates to be barycentric, the matrix [V ]k+1

becomes the transition matrix from the basis of null vectors Ak+1 to the
basis vectors vi ∈ V+

k+1, for which all the relations found after (27) remain
valid.

The content of V+
k+1 is

v�k
= ∧k+1

i=2 (vi − v1) = (v2 − v1) ∧ · · · ∧ (vk+1 − v1) �= 0, (56)

in the geometric algebra A+
k+1 of Rk+1. Similar to (53) and (52), we have

xv�k
= x · v�k

+ x ∧ v�k
,

but there is no obvious simplification as found for null simplices in (53).
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5.1. LPGG Calculus of S+
n ⊂ R

n+1

I will now give a brief introduction to the general theory of LPGG Calculus.
Standard geometric calculus has been in continual development over the last
half Century [8,9,13,21]. Every signed graph V±

n of n-vertices can be studied
in terms of any of the geometric algebras determined by the sequences of
signs (60), (62), found in Appendix B. I will limit my discussion here to
signed positive 1

2 -graphs V+
m in R

n+1, using the barycentric coordinates of the
convex null symplex

S+
n := S+

n (a1, . . . , an+1) ⊂ N ,

and the geometric algebra A+
n+1 ≡ G1,n for n ≥ 1. For the special case n = 0,

we choose a single non-trivial null vector a ∈ N /∈ G1,0, and define

S+
0 := {a} ⊂ N

to represent a graph with single vertex.
For m ≤ n, let v1, . . . vm+1 ∈ R

n+1 denote the vertices of a signed
simplex

V+
m := V+

m(v1, . . . , vm+1) ⊂ S+
n ,

where v1 ∧ · · · ∧ vm+1 �= 0. Define a(n+1) ≡ {a}(n+1) by

{a}(n+1) := {a1, . . . , an+1},

and by {∨ai}(n), the set of n correlated null vectors obtained by leaving out
ai,

{∨ai}(n) := {a1, . . .
∨ai . . . , an+1}.

When no confusion can arise, we shorten {a}(n) to a(n). For n = 3,

{∨a1}(3) = {a2, a3}, {∨a2}(3) = {a1, a3}, and {∨a3}(3) = {a1, a2}.

Since the set of vectors {v}(m+1) are linearly independent,

∧v(m+1) := v1 ∧ · · · ∧ vm+1 �= 0,

V+
m defines an m-simplex with m + 1 =

(
m + 1

m

)
-faces. Each (m + 1)-face is

geometrically represented by the oriented m-vector

∧∨v(i) := v1 ∧ · · ·∨i · · · ∧ vm+1.

Also, define the (m + 1)-sum and the m-sum, by∑
v(m+1) := v1 + · · · + vm+1, and

∑
v(∨i) := v1 + · · ·∨i · · · + vm+1.

The signed complete graph V+
m is said to be closed if

∑
i v(∨i) = 0, and

of order k, if k is the largest number of linearly independent vertices of
V+

m. Naturally, we use the barycentric coordinates associated with S+
n , and,

without loss of generality, assume that the position vector x ∈ V+
m+1, is given

by

x = (x1, · · · , xm+1) :=
m+1∑
i=1

xiai ∈ R
m+1 ⊂ R

n+1,
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although other coordinate systems can be used.
I now restrict attention to studying the graph V+

m+1 of a particular
m-dimensional polytope. For x ∈ V+

m+1, calculate

x2 =
( m+1∑

i=1

xiai

)2

=
∑

0≤i<j≤m+1

xixj ,

for all i, j, 0 < i �= j ≤ m + 1, and where the vertices of the m-polytope
satisfy

v1 ∧ · · · ∧ vm+1 �= 0.

Since V+
m ⊂ S+

n , the barycentric coordinates xi of x will all be positive,
so that

|x|2 = x2 =
∑

0≤i<j≤m+1

xixj ≥ 0. (57)

For x ∈ V+
m, define

|x| =
√ ∑

0≤i<j≤m+1

xixj ≥ 0.

The points x ∈ V+
m ⊂ S+

n , for which |x| = 0, are exactly those points x of the
graph on the light cone. For all interior points of V+

m, where |x| > 0, define
the unit vector

x̂ :=
x

|x| . (58)

Since x ∈ S+
n is barycentric, its coordinates satisfy

∑
xi = 1. Taking

the partial derivative ∂i of this equation, gives ∂i

∑n+1
j=1 xj = 0. By employing

higher order barycentric coordinates, based upon Hermite interpolation, this
constraint can be satisfied. Without going into details, for x ∈ S+

n , I want to
preserve the property that ∂ix = ai for each 0 < i ≤ n+1, [12,19]. The same
effect can be achieved by assuming, when differentiating x, we have relaxed
the condition that the coordinates of x ∈ R

n+1 are barycentric.
Recalling (26) and (31)

∇ =
2
n

(
An+1∂(n+1) − n∇̂

)
=

2
n

(∨∇ − (n − 1)∇̂
)
. (59)

For x ∈ R
n+1,∇x2 = 2x, ∇|x| = x̂, ∇|x| = x̂, and ∇x̂ = n

|x| . These formulas
remain valid at all points x ∈ S+

n , [21, p.66].

5.2. Platonic Solids

Applying the decomposition formula (59),

∨∇x =
∑

i

∨ai
∂x

∂i
=

∑
i

∨aiai =
(

n
2

)
=

n(n − 1)
2

,

which is the number of linear independent edges of S+
n .
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The Laplacian
∨∇2 for the light cone projective geometry of S+

n is

∨∇2 =
n∑

i=1

∂2
i +

(
n
2

) ∑
1≤i≤j≤n

∂i∂j .

Just as in Euclidean and pseudo-Euclidean geometry, the Laplacian
∨∇2 in

S+
n , is scalar valued.

For the signed simplex S+
3 ,

∨∇2 =
(
∂2
1 + ∂2

2 + ∂2
3 + ∂2∂3 + ∂1∂3 + ∂1∂2

)
.

For x ∈ S+
n , we calculate

∨∇2x2 =
n∑

i=1

∂2
i x2 +

(
n
2

) ∑
1≤i≤j≤n

∂i∂jx
2 =

(
n
2

)2

.

I conclude with a Conjecture for n-Platonic Solids in (n+1)-dimensional
space R

n+1.
Conjecture: The number of n-Platonic Solids in any dimension n is equal

to the number of distinct n-Platonic Solids found in the n-simplex S+
n ⊂ R

n+1

with its vertices located at the null vectors a1, . . . , an+1 ∈ S+
n .

The number is known to be given by the sequence

{1, 1,∞, 5, 6, 3, 3, 3, . . .},

[1,6,7,10,25].
I want to welcome the reader to this beautiful new, but not really so

new, theory. Be careful—the calculations can be treacherous.
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Appendix A: Geometric Algebra Identities in A+
1,n

Some basis identities of the geometric algebra

G1,n ≡ A+
1,n = R

n+1 := R(a1, . . . , an+1),

where ai · aj = 1−δij
2 .

1. x2 = x1x2, x · v1 = 1
2 (x1v12 + x2v11), x · v2 = 1

2 (x2v22 + x2v21)

2. v1 · v2 = 1
2 (v11v22 + v12v21), v1 ∧ v2 = det

(
v11 v12

v21 v22

)
a1 ∧ a2

3. (a1 ∧ a2) = 1
2 (a1 − a1) ∧ (a1 + a2) = 1

2f1e1, (a1 ∧ a2)2 = 1
4 ,

4. For y = y1a1 + y2a2, x ∧ y = det
(

x1 x2

y1 y2

)
a1 ∧ a2

5. (x ∧ y)2 = det
(

y · x y2

x2 x · y

)

Change of Basis Formulas for n + 1 = 8

T8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

1
2 0 0 0 0 0 0

1
2 − 1

2 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 1

2

√
3

2 0 0 0 0

1 0 1
2

1
2
√

3

√
2
3 0 0 0

1 0 1
2

1
2
√

3
1

2
√

6

√
5

2
√

2
0 0

1 0 1
2

1
2
√

3
1

2
√

6
1

2
√

10

√
3
5 0

1 0 1
2

1
2
√

3
1

2
√

6
1

2
√

10
1

2
√

15

√
7

2
√

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T−1
8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0

−1 −1 1 0 0 0 0 0
− 1√

3
− 1√

3
− 1√

3
2√
3

0 0 0 0

− 1√
6

− 1√
6

− 1√
6

− 1√
6

√
3
2 0 0 0

− 1√
10

− 1√
10

− 1√
10

− 1√
10

− 1√
10

2
√

2
5 0 0

− 1√
15

− 1√
15

− 1√
15

− 1√
15

− 1√
15

− 1√
15

√
5
3 0

− 1√
21

− 1√
21

− 1√
21

− 1√
21

− 1√
21

− 1√
21

− 1√
21

2
√

3
7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Appendix B: Classification of Geometric Algebras

There is an extremely interesting relationship between plus and minus signs of
the squares of the standard basis elements of Gp,q, and the 8-fold periodicity
structure of Clifford geometric algebras. Consider the following:

1. {+}, {−}, e1 ∈ G1,0, f1 ∈ G0,1

∏
signs −

2. {++}, {+−}, {−−}, Gp,q, p + q = 2
∏

signs −
3. {+ + +}, {+ + −}, {+ − −}, {− − −} p + q = 3, etc.

∏
signs +

4. {+ + ++}, {+ + +−}, {+ + −−}, {+ − −−}, {− − −−} ∏
signs +
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5.
(

n + 1
2

)
=

(
6
2

)
= 15

∏
(15) −

6.
(

n + 1
2

)
=

(
7
2

)
= 21

∏
(21) −

This obviously gives the infinite sequence

− −,++,−−,++,−−,+ + . . . . (60)

Real geometric algebras Gp,q are constructed by extending the real number
system R by n = p + q anti-commuting vectors ei, fj which have squares ±1,
respectively

Gp,q := R[e1, · · · , ep, f1, · · · fq], (61)

[8,21]. A more concise treatment of this construction, and its relationship to
real and complex square matrices is [22].

Geometric algebras enjoy a very special 8-fold periodicity relationship
[24]. A basic understanding of this important periodicity relationship can be
obtained by studying the signs of the squares of the pseudoscalar elements
for the geometric algebra Gp,q of successively higher dimensions. The ± signs
over pseudoscalar elements indicate the sign of the square of that element.

0. {a ∈ N| a2 = 0}. The null vector a �= 0 has the property that a2 = 0.

1. {+
e1}, {

−
f 1} : G1,0, G0,1;

2. { −
e1e2} {

+

e1f1}, {
−

f1f2} : G2,0, G1,1, G0,2;

3. { −
e1e2e3}, {

+

e1e2f1}, {
−

e1f1f2}, {
+

f1f2f3} : G3,0, G2,1, G1,2, G0,3;

4. { +
e1e2e3e4}, {

−
e1e2e3f1}, {

+

e1e2f1f2}, {
−

e1f1f2f3}, {
+

f1f2f3f4}
5. { +

e1e2e3e4e5}, {
−

e1e2e3e4f1}, {
+

e1e2e3f1f2}, {
−

e1e2f1f2f3},

{
+

e1f1f2f3f4}, {
−

f1f2f3f4f5}.

6. { −
e1e2e3e4e5e6}, {

+

e1e2e3e4e5f1}, {
−

e1e2e3e4f1f2}, {
+

e1e2e3f1f2f3},

{
−

e1e2f1f2f3f4}, {
+

e1f1f2f3f4f5, {
−

f1f1f2f3f4f5}.

This obviously gives the sequence,

+,−,− + −,− + −+,+ − + − +,− + − + −+, · · · (62)

The sequences (60) and (62) follow directly from the well known period-
icity laws of all real and complex geometric algebras [13]. The two sequences
beautifully reflect how any geometric algebra Gp,q, for n = p+q can be repre-
sented either as a real or complex matrix algebra of dimension 2n. In the case
of the complex matrix algebra, the imaginary number i can be interpreted as
the pseudoscalar element e1f1 · · · enfnfn+1 in the center of the real geometric
algebra Gn,n+1.
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