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Abstract. This paper shows how geometric algebra can be used to de-
rive a novel generalization of Heron’s classical formula for the area of a
triangle in the plane to higher dimensions. It begins by illustrating some
of the many ways in which the conformal model of three-dimensional
Euclidean space yields provocative insights into some of our most basic
intuitive notions of solid geometry. It then uses this conceptual frame-
work to elucidate the geometric meaning of Heron’s formula in the plane,
and explains in detail how it extends naturally to the volumes of tetra-
hedra in space. The paper closes by outlining a proof of a previously
conjectured extension of the formula to the hyper-volumes of simplices
in all dimensions.
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1. Background and Introduction

The intuitions which inspired Hermann Günther Grassmann to invent the in-
ner and outer products of vectors and points are seldom emphasized in mod-
ern presentations of geometric algebra (for relevant discussions, see Refs. [5,9–
11,15,17]). This is unfortunate because they still have something to offer,
both pedagogically and as a source of inspiration for its applications and fur-
ther developments. I recently had the rare pleasure of experiencing some of
Grassmann’s spirit in the course of discovering a natural extension of Heron’s
formula to the tetrahedron [14], and envisioning how those same geometric
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principles can be applied in higher dimensions. The algebra was tough going,
but the payoff was in the geometric insights it led to.

In order to emphasize the elementary nature of those results and render
them accessible to the widest possible audience, I eschewed the use of modern
geometric algebra in my earlier papers on the tetrahedron and confined myself
to the better-known vector algebra of Gibbs and Heaviside [14]. Nevertheless,
the full power of geometric algebra is needed to build upon the geometric
insights obtained in three dimensions in order to extend Heron’s formula to
yet higher dimensions. We shall see that the algebraic framework obtained
by applying geometric algebra to the conformal model of Euclidean geometry
unites and codifies Grassmann’s original geometric intuitions in an eminently
satisfactory fashion.1

Accordingly, the first three sections of this paper use conformal geo-
metric algebra to derive the relevant algebraic relations, which always boil
down to scalar equations, among the invariants that connect various covariant
multi-vector quantities of increasing grades in the conformal model. These al-
gebraic relations are then used to give a new derivation of Heron’s formula for
triangles, followed by its extension to tetrahedra. The paper closes by using
the geometric insights thereby obtained to outline a proof of my previously
conjectured [14, Part II] extension of the formula to higher dimensions.

2. Barycentric Sums in the Conformal Model

One curious feature of the conformal model in G4,1 is that, although it
contains the 4-dimensional homogeneous (projective) model as a subspace,
barycentric sums in that subspace do not correspond to weighted sums of the
corresponding conformal points.2 This is because a naive barycentric sum of
conformal points a = n0+a+n∞ a2/2, b = n0+b+n∞ b2/2 (n2

0 = n2
∞ = 0,

n0 ·n∞ = −1, a,b ∈ R
3) is not itself null vector:

(βa a + βb b)2 = 2βaβb a · b = −βaβb ‖a − b‖2
(
βa+βb = 1

)
(1)

Instead a non-linear correction term has to be added on, specifically:

βa a + βb b + βaβb a · b n∞ = n0 + βa a + βb b + 1
2 ‖βa a + βb b‖2 n∞

(2)
For a general indexed sum

∑N
i=1 βi ai of points with

∑N
i=1 βi = 1, the corre-

sponding formula is:
N∑

i=1

βi ai + n∞
N∑

j>i=1

βiβj ai ·aj = n0 +
N∑

i=1

βi ai +
1
2

∥
∥
∥
∥
∥

N∑

i=1

βi ai

∥
∥
∥
∥
∥

2

n∞

(3)
Far from being an encumbrance, this correction term contains valuable

metrical information. For example, if b is such a corrected barycentric sum
over a set of conformal points {ai}, we can easily derive Lagrange’s first

1 Gentler introductions to conformal geometric algebra may be found in Refs. [7,21,22].
2 Such sums can nonetheless be interpreted as a “pencil of coaxial spheres,” as described
in e.g. Refs. [1,20] as well as §15.2.4 of Ref. [7].
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identity [12] for the radius of gyration about the barycenter b :=
∑

i βi ai

thereof as follows:

0 = b2 = b ·
(∑

i βi ai + n∞
∑

j>i βiβj ai ·aj

)

=
∑

i βi ai · b − ∑
j>i βiβj ai ·aj

=⇒ ∑
i βi ‖ai − b‖2 =

∑
j>i βiβj ‖ai − aj‖2

(4)

We can also derive Lagrange’s second identity, which connects these distances
with those to an arbitrary third point c, namely:

c · b =
∑

i βi c ·ai + c ·n∞
∑

j>i βiβj ai ·aj

=⇒ ∑
i βi ‖ai − c‖2 = ‖b − c‖2 +

∑
j>i βiβj ‖ai − aj‖2

(5)

Lagrange’s identities in turn imply the Huygens-Leibniz identity which (given∑
i βi = 1 and letting c := aj for j = 1, . . . , N) allows the barycentric coord-

inates {βi} of b to be computed from the distances among the points {b,ai}:
∑

i βi ‖ai − c‖2 = ‖b − c‖2 +
∑

i βi ‖ai − b‖2 (6)

If we are given a second barycentric sum b′ =
∑

i β′
i ai, the squared

distance between the two is

‖b − b′‖2 = −2 b · b′ = −2 b ·∑j β′
j aj − 2 b ·n∞

∑
j>iβ

′
iβ

′
j ai ·aj , (7)

but since n∞ ·ak = −1 for all k and
∑

k β′
k = 1, we also have

b ·∑j β′
j aj =

∑
i,j βiβ

′
j ai ·aj +

(∑
j>i βiβj ai ·aj

)(∑
k β′

k n∞ ·ak

)

=
∑

i,j (βiβ
′
j − 1

2 βiβj)ai ·aj .
(8)

Together with Eq. (7), this yields:

‖b − b′‖2 =
∑

i,j (−2βiβ
′
j + βiβj + β′

iβ
′
j )ai ·aj =

∑
i,j(βi − β′

i)(βj − β′
j)ai ·aj = − 1

2

∑
i,j(βi − β′

i)(βj − β′
j) ‖ai − aj‖2 (9)

This last expression is known as Schönberg’s quadratic form [4]. It is well
known that it is non-negative for all values of the variables δi = βi − β′

i with∑
i δi = 0 if and only if the coefficients ‖ai − aj‖2 are indeed the squared

distances among a system of points in Euclidean space. Its geometric inter-
pretation as the squared Euclidean norm of an affine sum,3 which is itself
just a squared distance, shows very clearly why this is so.

A special class of particular interest occurs when the barycentric coef-
ficients βi, β′

j vanish except on subsets B, B′ ⊆ A:={1, . . . , N} of sizes |B|,
|B′|, and βi = |B|−1, β′

j = |B′|−1 for all i ∈ B, j ∈ B′ respectively. This results

3 The term “affine sum” is widely used as a synonym for what I’m calling a barycentric
sum; this defines an affine (sub)space 〈〈ai ∈ R

n | i = 1, . . . , N〉〉 :=
{ ∑

i βi ai | ∑
i βi = 1

}

known as the affine span of the points ai (where N is not necessarily n+1). Instead,
I’m using “affine sum” to mean a weighted sum

∑
i δi ai with

∑
i δi = 0, which is a free

vector in (or “point at infinity” of) that affine (sub)space. The points {ai} are affinely
independent if

∑
i δi ai = 0 implies δj = 0 for j = 1, . . . , N , in which case N ≤ n+1. A

“convex sum,” in contrast, is the convex polytope �ai ∈ R
n | i = 1, . . . , N � :=

{ ∑
i βi ai |∑

i βi = 1 and βj ≥ 0 for all j ∈ {1, . . . , N}}
, also known as the convex hull of the points

{ai}; this polytope is an n-simplex when N = n+1 and the points are affinely independent.
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in a formula for the squared distance between the centroids b = |B|−1
∑

i ai ,
b′ = |B′|−1

∑
j aj of the two (possibly overlapping) subsets, namely:

‖b − b′‖2 = |B|−1 |B′|−1 ∑
i∈B

∑
j∈B′ ‖ai − aj‖2

− 1
2 |B|−2 ∑

i,k∈B ‖ai − ak‖2 − 1
2 |B′|−2

∑
j,�∈B′ ‖aj − a�‖2

(10)

This formula shows easily that the squared length of the median of a triangle
�a,b, c� from vertex a to the midpoint of �b, c� is 1

2‖a − b‖2 + 1
2‖a − c‖2 −

1
4‖b−c‖2, that the squared length of the bimedian of a tetrahedron �a,b, c,d�

from the midpoint of �a,b� to that of �c,d� is 1
4

(‖a−c‖2 + ‖a−d‖2 +
‖b− c‖2 + ‖b−d‖2 −‖a−b‖2 −‖c−d‖2

)
, and that the squared distance of

the centroid b = |A|−1
∑

i ai of a set of points indexed by A = {1, . . . , N}
to each member i ∈ A thereof is [6]

‖ai − b‖2 = N−1 ∑
j∈A‖ai − aj‖2 − 1

2 N−2
∑

k,�∈A‖ak − a�‖2 . (11)

In the homogeneous model the difference between two points n0+a and
n0 + b yields a “free” vector v = b− a. It acts as a translation by addition,
producing in particular n0 + b = n0 + a + v. The difference between two
conformal points a and b, however, contains another term proportional to
n∞, namely

v := b − a = v + 1
2 (b2 − a2)n∞ . (12)

Even though b = a + v and v2 = ‖b − a‖2, the addition of v to an arbi-
trary conformal point does not yield the translated point in general. Instead,
multiplying it from the left by n∞/2 yields the bivector n∞v/2, which in
turn generates a rotor exp(n∞v/2) = 1 + n∞v/2 that translates a point
c = n0 + c + n∞c2/2 via the usual multiplicative two-sided action:

(1 − n∞v/2) c (1 + n∞v/2) = n0 + c + v + 1
2 n∞ (c + v)2 (13)

Half the difference of the two “flat” points n∞∧b−n∞∧a = n∞v generates
this same rotor exp(n∞v/2), and more generally any affine sum of flat points∑

i δi(n∞∧ai) = n∞
∑

i δi ai = n∞v with
∑

i δi = 0 also generates a transla-
tion. Alternatively, the difference between two flat points n∞∧(b−a) = n∞v
does translate flat points by simple addition, i.e. n∞ ∧c′ = n∞ ∧c + n∞v =
n∞ ∧ (n0 + c + v), from which the corresponding conformal point can be
extracted as c′ = (n∞ ∧ c′) ·n0 + n∞ ‖c + v‖2/2.

3. Line-Bound Vectors and Tetrahedra

The next step up from flat points are line-bound vectors, which have the form

n∞ ∧a∧b = n∞ ∧ (n0 + a + a2n∞/2)∧ (n0 + b + b2n∞/2)

= n∞ ∧ (n0 + a)∧ (n0 + b) = n∞ ∧(
n0 ∧ (b − a) + a∧b

)

= N ∧ (b − a) + n∞ ∧a∧b = N(b − a) + n∞ a∧b

(14)

with N :=n∞∧n0 . This can be constructed directly from the two flat points
in question as n∞ ∧a∧b = 1

2 n∞ ∧ (a + b) ∧ (
n0 · (n∞ ∧ (a − b))

)
.

The inner product of this with n0 gives a bivector (b−a)n0−a∧b that is
converted by inversion in an origin-centered unit sphere into (b− a)n∞/2 −
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Figure 1. A blade n∞∧a∧b ∈ G 3
4,1 formed from three null

vectors including the point-at-infinity n∞ can be interpreted
as a line-bound vector, which is an oriented segment of a fixed
line in space wherein the position of the segment on the line
is indeterminate. (All the figures in this paper were prepared
using the GeoGebra dynamic geometry software)

a ∧ b, which then generates a Euclidean “screw” motion (translation and
rotation about an axis thereof). The line-bound vector itself is determined by
an oriented segment �a,b� of the line 〈〈a,b〉〉, where the segment’s orientation
is (b − a) / ‖b − a‖ and the line’s (minimum) distance from the origin is
‖a∧b‖ / ‖b − a‖. The same line-bound vector is however obtained for any
other two points a′, b′ ∈ G 1

4,1 with b′ − a′ = b − a and a′ ∧ b′ = a ∧ b,
meaning that it only determines the equivalence class of all translates of the
original oriented segment �a,b� parallel to 〈〈a,b〉〉 (see Fig. 1). Today this
indeterminacy would be described as an Abelian gauge symmetry.

The squared length of the (defining) segment |�a,b�|2 may be obtained
by squaring the line-bound vector, which yields a simple example of what is
more generally known as a Cayley-Menger determinant [4,8,13]:

(n∞ ∧a∧b)2 = −(b∧a∧n∞) · (n∞ ∧a∧b) =: − ‖n∞ ∧a∧b ‖2 =

−det

⎡

⎣
n∞ ·n∞ n∞ ·a n∞ · b
n∞ ·a a ·a a · b
n∞ · b a · b b · b

⎤

⎦ = det

⎡

⎣
0 1 1
1 0 1

2‖a − b‖2

1 1
2‖a − b‖2 0

⎤

⎦

= 0 + 1
2 ‖a − b‖2 + 1

2 ‖a − b‖2 = ‖a − b‖2 = |�a,b�|2

(15)

A little more generally, the inner product of two line-bound vectors is the
inner product of the corresponding free vectors:

− (b∧a∧n∞) · (n∞ ∧c∧d) =

− 1
2

(‖a − c‖2 − ‖a − d‖2 − ‖b − c‖2 + ‖b − d‖2
)

= (b − a) · (d − c)
(16)
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In order to obtain the higher-grade parts of the geometric product of
two such line-bound vectors, we expand it via Eq. (14) to get:

(n∞ ∧a∧b)(n∞ ∧c∧d)

=
(
N(b − a) + n∞(a∧b)

)(
N(d − c) + n∞(c∧d)

)

= (b − a)(d − c) + (n∞ ·N)(a∧b)(d − c) − (N ·n∞)(b − a)(c∧d)

= (b − a)(d − c) + n∞(a∧b)(d − c) + n∞(b − a)(c∧d)

(17)

The two-vector part of this, which its anti-symmetry under reversion shows
to be the same as the commutator product “��” of the line-bound vectors, is:

〈
(n∞ ∧a∧b)(n∞ ∧c∧d)

〉
2

= (n∞ ∧a∧b) �� (n∞ ∧c∧d)

= (b − a)∧ (d − c) + n∞
(
(a∧b) · (d − c) + (b − a) · (c∧d)

) (18)

Finally, the four-vector part of this product of line-bound vectors is:
〈
(n∞ ∧a∧b)(n∞ ∧c∧d)

〉
4

= n∞
(
(a∧b)∧ (d − c) + (b − a)∧ (c∧d)

)

= n∞
(
a∧b∧d − a∧b∧c + b∧c∧d − a∧c∧d

)

= n∞
(
(b − a)∧ (c − a)∧ (d − a)

)

(19)

This is 3!n∞ times the oriented (w.r.t. the pseudo-scalar ι := e1e2e3 of R
3)

volume of the tetrahedron �a,b, c,d�. Since the line-bound vectors do not
change when �a,b� and �c,d� are translated along their respective lines, the
volume of the tetrahedron is also unchanged by such translations, as well as
by translations of its other edges along the lines they span.

If L := n∞∧a∧b and M := n∞∧c∧d, then Eq. (15) and the reversion
symmetry of the product of LM with its reverse shows that it is the scalar

LMM̃L̃ = LL̃MM̃ = ‖b − a‖2 ‖d − c‖2 . (20)

This product, however, can also be written as

LMM̃L̃ = 〈LM〉0〈LM〉∼
0 + 〈LM〉2〈LM〉∼

2 + 〈LM〉4〈LM〉∼
4

+ 2 〈LM〉0〈LM〉∼
4 (21)

(since both 〈LM〉0 〈LM〉∼
2 + 〈LM〉2 〈LM〉∼

0 = 0 and 〈LM〉2 〈LM〉∼
4 +

〈LM〉4 〈LM〉∼
2 = 0). Because 〈LM〉4 contains a factor of n∞ by Eq. (19),

we have 〈LM〉4 〈LM〉∼
4 = 0, while 〈LM〉0 = (b − a) · (d − c) by Eq. (16)

and the last term on the right-hand side of Eq. (21) contains no scalar part.
Thus the squared magnitude of 〈LM〉2, or scalar product “∗” with itself, is

∥
∥〈LM〉2

∥
∥2 = 〈LM〉2 ∗ 〈LM〉2 :=

〈〈LM〉2 〈LM〉∼
2

〉
0

= ‖b − a‖2 ‖d − c‖2 − (
(b − a) · (d − c)

)2 = ‖(b − a)∧ (d − c)‖2 .
(22)
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Geometrically, this quantity is four times the squared area of the medial
parallelogram �(a+ c)/2, (c+ b)/2, (b+ d)/2, (d+ a)/2 � of the tetrahedron
�a,b, c,d�. To see that this is indeed a parallelogram, we need only note that
the geometric products of the vectors along its two pairs of opposite sides are

(
1
2 (a+c) − 1

2 (c+b)
)(

1
2 (d+a) − 1

2 (b+d)
)

= 1
4 ‖a−b‖2 ,

(
1
2 (c+b) − 1

2 (b+d)
)(

1
2 (a+c) − 1

2 (d+a)
)

= 1
4 ‖c−d‖2 .

(23)

The vanishing bivector parts of these equations show those pairs are parallel,
while their scalar parts show their lengths are ‖a−b‖/2 and ‖c−d‖/2, resp.
Furthermore, the outer product of the vectors along any two consecutive
sides, say from (a + c)/2 to (c + b)/2 and (d + a)/2, is simply

1
4

(
(c+b) − (a+c)

)∧(
(d+a) − (a+c)

)
= 1

4 (b−a)∧ (d−c) , (24)

thereby proving this paragraph’s first assertion.
In striking analogy to the volume of a tetrahedron being 1/3 the height

of any vertex over its opposite face times the area of that face, that volume is
also equal to 2/3 the area of the medial parallelogram times the perpendicular
distance between the corresponding pair of lines. Up to sign, this distance is

hab; cd = (c − a) · (b − a) × (d − c)
‖(b − a)×(d − c)‖ = ι̃

(c − a)∧(b − a)∧(d − a)
‖(b − a)∧ (d − c)‖ , (25)

where the duality of the inner, outer and cross products “×” with respect to
the pseudo-scalar ι = −ι̃ of R

3 was utilized together with (c− a)∧(d− c) =
(c− a)∧(d− a+ a− c) = (c− a)∧(d− a). Since ‖(b− a)∧(d− c)‖/4 is the
medial parallelogram’s area and ι̃ (c − a)∧ (b − a)∧ (d − a)/6 is the volume
|�a,b, c,d�| (or its negative if the orientation of (c− a)∧(b− a)∧(d− a) is
opposite that of ι), our claim follows.

In general, the sum of line-bound vectors is not itself a line-bound vector,
but a composite entity which can be interpreted in various ways. Classical
interpretations include the result of a system of forces acting at various points
on a rigid body, and the result of a system of infinitesimal motions applied to
a rigid body. We will not develop these theories here, but refer the interested
reader to the extensive literature on the subject [16]. Instead we shall seek to
interpret the graded components of the product of such an entity with itself
in the context of the conformal model, as above.

Hence consider an arbitrary composite line-bound vector of the form:

L + M = n∞ ∧a∧b + n∞ ∧c∧d = n∞ ∧ (a∧b + c∧d) (26)

By Eq. (16), the inner square of this expands to:
(
n∞ ∧ (a∧b + c∧d)

) · (n∞ ∧ (a∧b + c∧d)
)

= (b − a)2+2(b−a) · (d − c)+(d − c)2 = 4‖(b+d)/2−(a + c)/2‖2
(27)

Thus the length of this diagonal of the medial parallelogram (which is also
a bimedian of the tetrahedron) remains unchanged as �a,b� and �c,d� are
translated along their respective lines. The lengths of its sides ‖b−a‖/2 and
‖d−c‖/2 are of course also invariant under such translations. Finally, Eq. (18)
shows that the bivector of the medial parallelogram is likewise invariant.
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Figure 2. Illustrations of the medial parallelogram spanned
by the midpoints the segments �a, c�, �c,b�, �b,d�, �d,a�
between two skew line-bound vectors n∞ ∧a∧b, n∞ ∧c∧d
in space, showing that translating the either or both of these
segments along their respective lines merely translates the
parallelogram in the mid-plane of the lines without chang-
ing its shape or aspect. Because the volume of a tetrahedron
(with vertices labeled here as A,B,C,D) is 2/3 of the prod-
uct of the perpendicular distance between the lines 〈〈a,b〉〉,
〈〈c,d〉〉 and the area of the medial parallelogram (see text),
this shows that any two skew line-bound vectors determine
an equivalence class of tetrahedra all with the same volume

It follows that translations of �a,b� and �c,d� along their respective lines
merely translate the corresponding medial parallelogram in the mid-plane of
the lines without changing its shape or aspect (as illustrated in Fig. 2), and
in accord with the above volume formula, cf. Eq. (25).

The anti-symmetry of Eq. (18) under the (a,b) ↔ (c,d) swap shows
that the 2-vector part of the square of a composite line-bound vector vanishes.
The 4-vector part, however, is:

〈(
n∞ ∧ (a ∧ b + c ∧ d)

)2
〉

4
= 2n∞

(
(b − a) ∧ (c∧ d) + (a∧ b) ∧ (d − c)

)

(28)
This clearly does vanish if b− a = d− c or a∧b = c∧d, i.e. the line-bound
vector in question is simple (non-composite). On taking its dual with respect
to ι, we obtain:

ι
〈(

n∞ ∧ (a∧b + c∧d)
)2

〉

4

= 2n∞
(
(b − a) · (ι̃ c∧d) + (ι̃ a∧b) · (d − c)

)

= 2n∞
(
(b − a) · (c × d) + (a × b) · (d − c)

)
(29)
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The vanishing of the scalar coefficient of 2n∞ on the right is a well-known
condition for the lines 〈〈a,b〉〉 and 〈〈c,d〉〉 to either intersect or be parallel
[16]. In fact for 〈〈a,b〉〉 = 〈〈c,d〉〉 it is just a way of writing the famous Plücker
identity for the six Plücker coordinates of a line in projective three-space.

It is seldom noted, nevertheless, that this same expression is equal to
±3! times the volume |�a,b, c,d�| of the tetrahedron. This follows from the
fact that the 4 vector parts of 2LM and (L + M)2 are obviously the same
(cf. Eq. (19)). A thorough study of the representation of the more gen-
eral Grassmann-Plücker relations in geometric algebra was recently given
by Sobczyk [27].

Finally, we have the relation (first noted in the homogeneous model by
Grassmann) between the sum of the line-bound vectors around any triangle
�a,b, c� and (twice) the free bivector of that triangle, namely

n∞ ∧ (a∧b + b∧c + c∧a)

= n∞ ∧ (b − a)∧ (c − a) = n∞ (b − a)∧ (c − a) ,
(30)

because the free vector coefficients of N from Eq. (14) cancel. This can be
regarded as a discrete version of Green’s theorem. A similar relation can also
be obtained by considering the sum of the line-bound vectors around any one
of the three Hamiltonian cycles of a tetrahedron �a,b, c,d�, e.g.

n∞ ∧ (a ∧c + c ∧b + b ∧d + d ∧a)

= n∞ ∧ (b − a)∧ (d − c) = n∞ (b − a)∧ (d − c) ,
(31)

which is n∞ times the free bivector of the medial parallelogram separating
the line 〈〈a,b〉〉 from 〈〈c,d〉〉 (as in Fig. 2).

4. Plane-Bound Bivectors and Tetrahedra

We now consider the relations between two plane-bound bivectors, along with
the space-bound trivector (oriented volume) which a plane-bound bivector
and a flat point mutually define. In the conformal model, a plane-bound
bivector has the form:

n∞ ∧b∧c∧d = n∞ ∧ (n0 + b)∧ (n0 + c)∧ (n0 + d)

= N (c∧d − b∧d + b∧c) + n∞ b∧c∧d

= N (c − b)∧ (d − b) + n∞ b∧c∧d
(32)

The free bivector (c − b)∧ (d − b) has a squared magnitude of

‖(c − b)∧ (d − b)‖2 = ‖c − b‖2‖d − b‖2 − (
(c − b) · (d − b)

)2 (33)

which is of course four times the squared area |�b, c,d�|2. Its normal vector
parallel to (c−b)× (d−b) = −ι (c−b)∧(d−b) determines the orientation
of the plane containing the triangle �b, c,d� ⊂ R

3, while the distance of the
plane from the origin is ‖b∧c∧d‖ / ‖(c−b)∧(d−b)‖. The same plane-bound
bivector, however, is obtained for any other triple of conformal points b′, c′,
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Figure 3. A plane-bound bivector n∞ ∧ b ∧ c ∧ d can be
viewed as an equivalence class of triangles �b, c,d� (label-
ed in the drawing as B, C, D) in a fixed plane having an
area equal to half its norm. Any other triangle �b′, c′,d′�
(similarly labeled) in the class is related to the first by an
oriented-area-preserving affine transform of its plane. Thus
the plane-bound bivector together with a flat point n∞ ∧a
(labeled A) at a fixed distance above the plane determines
an equivalence class of tetrahedra all with the same volume

d′ that lie in the same plane and span a triangle �b′, c′,d′� with the same
oriented area4 (as depicted in Fig. 3).

The three-point Cayley-Menger determinant, obtained by multiplying
the plane-bound bivector with the negative of its reverse, is:

−(d∧c∧b∧n∞)(n∞ ∧b∧c∧d)
= 2

(
(b · c)(b ·d) + (b · c)(c ·d) + (b ·d)(c ·d)

)
(34)

− (
(b · c)2 + (b ·d)2 + (c ·d)2

)

= 1
4

(‖b− c‖ + ‖b−d‖ + ‖c−d‖)(‖b− c‖ + ‖b−d‖ − ‖c−d‖)
(‖b− c‖ − ‖b−d‖ + ‖c−d‖)(−‖b− c‖ + ‖b−d‖ + ‖c−d‖)

In this following, this determinant will often be written as ~n∞∧b∧c∧d~2 =
−‖n∞ ∧ b ∧ c ∧ d ‖2 ≥ 0 where ~X~ :=

√|‖X‖2| is the magnitude of any
X ∈ G4,1. By expanding the squared dot product in Eq. (33) via the law of
cosines x ·y = (‖x‖2 + ‖y‖2 − ‖x − y‖2)/2, it can readily be shown that
this Cayley-Menger determinant is also that free bivector’s squared norm.
The factorized expression on the right-hand side of this equation is of course
Heron’s formula for the squared area (times 4) of the triangle �b, c,d�, which
will be studied in much greater detail in the next section. At this point it need
only be noted that, as a polynomial in three variables variables dbc, dbd, dcd
≥ 0 representing the corresponding distances, this formula is non-negative if
and only if those variables satisfy all three triangle inequalities among them.

4 As an exercise, the reader may wish to show that 4 times the plane-bound bivector of
the medial parallelogram with (b−a)∧ (d−c) / 4 as its free bivector is (up to an arbitrary
sign) N (b − a) ∧ (d − c) + n∞ g ∧ (b − a) ∧ (d − c), where g is any point in the plane

spanned by the midpoints of the edges �a, c�, �a,d�, �b, c�, �b,d�, most parsimoniously
the centroid g = (a+b+c+d)/4.
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The negative inner product of different plane-bound bivectors gives a
non-symmetric Cayley–Menger determinant (one of which will be reversed
for consistency even though it’s reverse symmetric). Providing their planes
intersect, we may assume without loss of generality that the point triples
a, b, c and a, b,d have a pair a, b in common, so that:

(c∧b∧a∧n∞) · (n∞ ∧a∧b∧d)
=

(
N(b−a)∧ (c−a) + n∞ a∧b∧c)

) · (N(b−a)∧ (d−a) + n∞ a∧b∧d)
)

=
(
(b − a)∧ (c − a)

) · ((b − a)∧ (d − a)
)

(35)

Geometrically, this inner product is −‖(b − a)∧ (d − a)‖‖(b − a)∧ (c − a)‖
cos(ϕab), where ϕab is the internal dihedral angle between the planes 〈〈a,b, c〉〉
and 〈〈a,b,d〉〉. We also have the trivial identity among free bivectors,

(b − a)∧ (d − c) = (b − a)∧ (d − a) − (b − a)∧ (c − a) (36)

which, upon taking the squared norms of both sides, becomes

‖(b − a)∧ (d − c)‖2 = ‖(b − a)∧ (d − a)‖2 + ‖(b − a)∧ (c − a)‖2

− 2 ‖(b − a)∧ (d − a)‖ ‖(b − a)∧ (c − a)‖ cos(ϕab) .
(37)

Together with Eqs. (18), (22), (35) and (37), this leads to the little-known
areal law of cosines,

−(c∧b∧a∧n∞) · (n∞ ∧a∧b∧d )
= ‖(b − a)∧ (c − a)‖ ‖(b − a)∧ (d − a)‖ cos(ϕab)
= 1

2

(‖(b−a)∧ (c − a)‖2+‖(b − a)∧ (d − a)‖2 − ‖(b−a)∧ (d − c)‖2
)

= 1
2

(
~n∞∧a∧b∧c~2 + ~n∞∧a∧b∧d~2 − ∥

∥L �� M
∥
∥2

)
, (38)

where L �� M =
〈
LM

〉
2

is the commutator product of the line bound
vectors as they were defined in Eq. (20).

There is also a corresponding areal law of sines, obtained from a simple
case of the dual (Grassmann’s regressive) outer product “∨” corresponding
to the meet of the associated subspaces [18,22]. Letting X be an arbitrary
blade (here of grade 1 in G3 or 3 in G4,1, though the definition is general) and
y, z be vectors with ‖X∧y∧z‖2 �= 0, this is given by

(X∧y) ∨ (X∧z) := X (X∧y∧z)∗ = ±X~X∧y∧z~ , (39)

where (X∧y∧z)∗ is the dual w.r.t. the unit pseudo-scalar of the subspaces’
join. Upon taking squared norms and recalling (see e.g. Ref. [7, §5.6]) that
the magnitude of such a dual outer product is ~X∧y~~X∧z~ sin(ϕ) where
ϕ is the internal angle between the subspaces of X∧y and X∧z, this implies:

~(n∞ ∧a∧b∧c) ∨ (n∞ ∧a∧b∧d )~
=

∥
∥(

(b − a)∧ (c − a)
) ∨ (

(b − a)∧ (d − a)
)∥∥

= ‖(b − a)∧ (c − a)‖ ‖(b − a)∧ (d − a)‖ sin(ϕab)
= ‖b − a‖ ‖(b − a)∧ (c − a)∧ (d − a)‖
= ~n∞ ∧a∧b~~n∞ ∧a∧b∧c∧d~ (40)
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where ϕab is the dihedral angle as defined above.
Now consider the product of a flat point with a plane-bound bivector:

(n∞ ∧a)(n∞ ∧b∧c∧d)
= (N + n∞ a)

(
N (c − b)∧ (d − b) + n∞ b∧c∧d

)

= (1 + n∞ a) (c − b)∧ (d − b) − n∞ b∧c∧d

= (c − b)∧ (d − b) + n∞ a · ((c − b)∧ (d − b)
)

+ n∞ (a − b)∧ (c − b)∧ (d − b) (41)

The n∞ a · ((c−b)∧(d−b)
)

term is unfortunately not translation invariant,
but the rest of its 2-vector part (c − b)∧ (d − b) is, as is its 4-vector part
n∞ (a− b)∧(c− b)∧(d− b). The latter is also the commutator product of
the flat point and plane-bound bivector, which may be expanded using the
general relation (x∧y) �� Z = x∧ (y ·Z) − y∧ (x ·Z) [18, Eq. (1.60b)] as:

(n∞ ∧a) �� (n∞ ∧b∧c∧d) = −n∞ ∧b∧c∧d +
n∞ ∧a∧c∧d + n∞ ∧b∧a∧d + n∞ ∧b∧c∧a (42)

Its translation invariance shows that the volume |�a,b′, c′,d′�| of the tetra-
hedron is the same for all b′, c′, d′ in the same plane 〈〈b, c,d〉〉 and spanning
a triangle of the same oriented area (cf. Fig. 3). It is also the same, of course,
for any translate of a in the plane through a parallel to 〈〈b, c,d〉〉.

We can put a at the origin by translating all the points with the rotor
T a := 1 − an∞/2, obtaining:

T̃ a (n∞ ∧a)T a T̃ a (n∞ ∧b∧c∧d)T a

= (c − b)∧ (d − b) − n∞ b∧c∧d (43)

Thus our remarks following Eq. (33) show that the height of n∞ ∧a above
the plane of n∞ ∧b∧c∧d is

ha; bcd =
‖(b − a)∧ (c − a)∧ (d − a)‖

‖(c − b)∧ (d − b)‖ =
~n∞ ∧a∧b∧c∧d~
~n∞ ∧b∧c∧d~ , (44)

which is the same as the ratio of the norms of the corresponding translation-
independent terms in Eq. (41).

Last but not least, we have the following discrete version of Stoke’s
theorem among the plane-bound bivectors of the four faces of the tetrahedron,
which follows from Eq. (42):

n∞ ∧ (b ∧ c ∧ d − a ∧ c ∧ d + a ∧ b ∧ d − a ∧ b ∧ c)
= n∞ ∧ (b − a) ∧ (c − a) ∧ (d − a) = n∞ (b − a) ∧ (c − a) ∧ (d − a)

(45)

Together with Eq. (30), this implies that the sum (times N , as in
Eq. (32)) of the free bivector parts of these plane-bound bivectors vanishes,
or

(c−b)∧(d−b) = (c−a)∧(d−a) − (b−a)∧(d−a) + (b−a)∧(c−a) , (46)

a result usually attributed to Hermann Minkowski although it must have been
known to Grassmann. An alternative derivation of this formula, based upon
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Figure 4. The line-bound vectors (black arrows) around
any exterior face of a tetrahedron are equal to the free bivec-
tor part of the plane-bound bivector of that face. The sum of
those free bivectors, oriented as indicated in the drawing so
that their duals are outwards-pointing vectors (if vertex A is
above in plane of B,C,D), vanishes by Minkowski’s identity.
Thus this identity simply reflects the fact that the corre-
sponding line-bound vectors occur in equal but oppositely
oriented pairs along each edge

the relation among the line-bound vectors around any face of the tetrahedron
from Eq. (30), is sketched in Fig. 4 and its caption.

Note that the bivectors of the four faces determine those of the medial
parallelogram (b − a)∧ (d − c) via Eq. (36) and its analogues for the other
two medial parallelogram bivectors (c − a)∧ (d − b) and (c − b)∧ (d − a).
This system of linear relations among these bivectors can be inverted to
express the bivector of each face as a signed sum of those of the three medial
parallelograms (cf. [14, Part I]), namely:

−2 (b − a)∧ (c − a) =
(b − a)∧ (d − c) − (c − a)∧ (d − b) − (d − a)∧ (c − b)

2 (b − a)∧ (d − a) =
(b − a)∧ (d − c) + (c − a)∧ (d − b) + (d − a)∧ (c − b) (47)

−2 (c − a)∧ (d − a) =
−(b − a)∧ (d − c) − (c − a)∧ (d − b) + (d − a)∧ (c − b)

2 (c − b)∧ (d − b) =
−(b − a)∧ (d − c) + (c − a)∧ (d − b) − (d − a)∧ (c − b)

These analogues of Minkowski’s identity (together with Eq. (25)) justify the
heterodox point-of-view that the tetrahedron actually has seven faces, where
its three medial parallelograms qualify as interior faces. Further justification
derives from the fact (first noted in unpublished work by B. D. S. McConnell
circa 2012; see also Theorem 11 in Ref. [14, Part I]) that the areas of these
seven faces mutually determine a non-degenerate tetrahedron up to isometry.
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Figure 5. Diagram showing how the in-circle of a trian-
gle with vertices a,b, c ∈ R

2 labeled as A,B,C, respec-
tively, determines its Heron parameters u, v, w. The in-circle
“touches” the triangle’s edges at its in-touch points J,K, L,
which are all the same distance r (the in-radius) from the
in-center I where its angle bisectors (dotted) meet. The in-
touch points span a second triangle, called the in-touch tri-
angle (light brown), whose circum-circle coincides with the
in-circle of the first. This section shows that r =

√
uvw/s,

where s = u+v+w is half the triangle’s perimeter, and that
its area t = rs. These relations lead immediately to Heron’s
formula:

t2 = s uvw = 1
2 (u+v+w) det

⎡

⎣
0 u v
u 0 w
v w 0

⎤

⎦

5. Heron’s Formula, the In-Circle, and the In-Touch Triangle

The geometric essence of Heron’s formula is that it is a relation between
the radius of the in-circle of a triangle �a,b, c� ⊂ R

2 and the lengths of the
segments into which its edges are divided by the points at which the in-circle
“touches” those edges.5 As may be seen in Fig. 5, these segments come in pairs
of equal lengths each with a vertex in common. Those lengths u, v, w have
been called the “Heron parameters” of the triangle [3], and clearly determine
the lengths of its edges a := |�b, c�|, b := |�a, c�|, c := |�a,b�| as a = v + w,
b = u + w, c = u + v. Conversely, one can solve this non-singular system
of linear equations to obtain the Heron parameters from the edge lengths as
u = (−a + b + c)/2, v = (a − b + c)/2, w = (a + b − c)/2.

It follows that the Heron parameters specify the triangle up to isometry
in a manifestly coordinate-free fashion. The same, of course, is true for the
edge lengths a, b, c themselves, but the Heron parameters have the distinct
advantage over the edge lengths of not being constrained by the triangle

5 As observed by Heron (aka Hero) of Alexandria himself in the 1st century AD [26].
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inequality, because the edge lengths obtained as above from any u, v, w ≥ 0
necessarily obey the triangle inequality. This means the Heron parameters can
be varied wholly independently of one another, and that makes them truly
the natural parameters for the venerable discipline of triangle geometry.

If i ∈ R
2 is the in-center of the triangle �a,b, c�, r is the in-radius

thereof and t := |�a,b, c�| is the triangle’s area, we see easily from Fig. 5 that

t = |� i,b, c�| + |�a, i, c�| + |�a,b, i�|
= 1

2 r a + 1
2 r b + 1

2 r c = r s ,
(48)

where s := (a + b + c)/2 = u + v + w is the triangle’s semi-perimeter. This
shows that a formula for r is pretty much the same as a formula for t. Because
the barycentric coordinates of i are the ratios of these signed areas to the
total signed area and the signs of the areas of �i,b, c�, �a, i, c� and �a,b, i�
agree with that of �a,b, c�, the in-center i is given by

i =
a

2s
a +

b

2s
b +

c

2s
c =

(v+w)a + (u+w)b + (u+v) c
2 (u + v + w)

. (49)

Letting a, b, c, i ∈ G 1
3,1 ⊂ G 1

4,1 be the corresponding conformal points
including the correction terms from Eq. (3), a neat proof of these claims
can be obtained via Eq. (42) simply by noting that the commutator product
(n∞ ∧a∧b∧c) �� (n∞ ∧ i) = n∞ (a − i)∧ (b − i)∧ (c − i) vanishes because
i ∈ �a,b, c�. This also shows that the dual representation [7, §14.1] of the
in-circle itself can be written as

r := i − 1
2 r2 n∞ =

(
aa + b b + c c

)
/(2s) +

n∞
(
aba · b + aca · c + bc b · c − 2 s2 r2

)
/(2s)2

= n0 + i + n∞
(
(a a2 + bb2 + c c2 − abc) s − 2 t2

)
/(2s)2 ,

(50)

wherein ‖ i‖2 = −2 i ·n0 = (a a2 + bb2 + c c2 − abc)/(2 s). As is well known,
abc = 4 tR where R is the triangle’s circum-radius, so taking i as the origin
shows that (a‖a− i‖2+b‖b− i‖2+c‖c− i‖2)/(2 s) = 2 rR = R2−d2 by Euler’s
theorem, where d is the distance of the in-center from the circum-center.

The Heron parameters can also be interpreted as the barycentric coor-
dinates of the in-touch points j ∈ �b, c�, k ∈ �a, c�, l ∈ �a,b�, at which the
in-circle touches the triangle’s edges, times their lengths:

j =
w

a
b +

v

a
c , k =

w

b
a +

u

b
c , l =

v

c
a +

u

c
b (51)

The corresponding conformal points are

j = (wb + vc)/a + n∞ vw b · c/a2 = (wb + vc)/a − n∞ vw/2 ,

k = (wa + uc)/b + n∞ uw a · c/b2 = (wa + uc)/b − n∞ uw/2 ,

l = (va + ub)/c + n∞ uv a · b/c2 = (va + ub)/c − n∞ uv/2 .

(52)

From this, we find easily that the plane-bound bivector of � j,k, l � is
n∞ ∧j ∧k∧ l

= n∞ ∧ (wb + vc)∧ (wa + uc)∧ (va + ub) / (abc)

= 2uvw n∞ ∧a∧b∧c / (abc) ,

(53)
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and hence

~n∞ ∧j ∧k∧ l~
~n∞ ∧a∧b∧c~ =

2uvw

abc
=

Ω(u, v, w)
(u+v)(u+w)(v+w)

, (54)

where Ω(u, v, w) := 2uvw and X :=
√|‖X‖2| for X ∈ G3,1 as before.

It follows that if we can find the area of � j,k, l � as a function of the
Heron parameters we will also get the area of �a,b, c�, again as a function of
u, v, w. The triangle � j,k, l � is variously known as the Gergonne, contact or
in-touch triangle [1,20,25], and we shall use the latter nomenclature. As may
be seen in Fig. 5, the circum-circle of the in-touch triangle coincides with
the in-circle of the original and, as a result, the perpendicular bisectors of
the in-touch triangle’s edges also coincide with the internal angle bisectors of
the original. It is also apparent that the edge lengths of the in-touch triangle
j := ‖k − l‖, k := ‖j − l‖, � := ‖j − k‖ are twice the heights of j, k, l over
the hypotenuses of the congruent pairs of right triangles � i,k,a� ≈ � i, l,a�,
� i, j,b� ≈ � i, l,b� and � i, j, c� ≈ � i,k, c�, respectively.

This latter fact can readily be used to show that the in-touch triangle’s
edge lengths j, k, � are given by

j2 =
4u2r2

u2 + r2
, k2 =

4 v2r2

v2 + r2
, �2 =

4w2r2

w2 + r2
. (55)

Because they depend on the quantity we seek, namely r2, in a non-linear
fashion, these simple expressions are not well-suited to our immediate pur-
poses (although their three-dimensional analogs play an essential role in the
next section). Hence we will instead derive three equivalent but quite different
formulae for these distances, one of which is:

�2 = ‖ j − i − k + i ‖2 = ‖ j − i ‖2 + ‖ k − i ‖2 − 2 (j − i) · (k − i)
= 2 r2 (1 + cos(ϑc)) = 2 r2 (ab + (a2 + b2 − c2)/2) / (ab) (56)
= r2 ((a+b)2 − c2)/(ab) = r2 (a+b+c)(a+b−c)/(ab) = 4 r2sw/(ab)

On the second line, we have used the definitions of the in-touch points and
in-radius r = ‖ j − i ‖ = ‖k − i ‖, the fact that the angle between j − i and
k− i is supplementary to the original triangle’s angle ϑc at the vertex labeled
C in Fig. 5, and finally the law of cosines for this latter angle. On the third
line, we used the definition s = (a+b+c)/2 and formula w = (a+b−c)/2
from this section’s first paragraph. In a similar fashion one can also show
that k2 = 4 r2 sv/(ac) and j2 = 4 r2 su/(bc).

We can utilize these formulae to calculate the squared area of the in-
touch triangle (times 4) by expanding its three-point Cayley-Menger deter-
minant −‖n∞ ∧j ∧k∧ l ‖2 via Eq. (34), but the algebra is a bit messy. The
determinant can however be simplified considerably by defining the rescaled
vectors j′ := a j/q, k′ := bk/q, l′ := c l/q with q :=

√
4 r2 s, so that

(l ∧ k ∧ j ∧ n∞)(n∞ ∧ j ∧ k ∧ l)

=
q6

a2 b2 c2
(l′ ∧k′ ∧j′ ∧n∞)(n∞ ∧j′ ∧k′ ∧ l′) .(57)



Vol. 34 (2024) Heron’s Formula in Higher Dimensions Page 17 of 30 9

It follows from Eq. (56) and its analogs for the remaining edges of the in-touch
triangle that the inner products among these rescaled vectors are

j′ ·k′ = −w/2 , j′ · l′ = −v/2 , k′ · l′ = −u/2 ,
n∞ · j′ = −a/q , n∞ ·k′ = −b/q , n∞ · l′ = −c/q .

(58)

The determinant of the resulting matrix of inner products therefore assumes
the relatively simple form:

− (l′ ∧k′ ∧j′ ∧n∞)(n∞ ∧j′ ∧k′ ∧ l′)

=
−1
q2

det

⎡

⎢
⎢
⎣

0 v+w u+w u+v
v+w 0 − w/2 − v/2
u+w − w/2 0 − u/2
u+v − v/2 − u/2 0

⎤

⎥
⎥
⎦

=
−1
q2

det

⎡

⎢
⎢
⎣

4(u+v+ w) 0 0 0
0 0 − w/2 − v/2
0 − w/2 0 − u/2
0 − v/2 − u/2 0

⎤

⎥
⎥
⎦

=
u + v + w

2 q2
det

⎡

⎣
0 u v
u 0 w
v w 0

⎤

⎦ = Ω(u, v, w)/(8 r2) (59)

(where the last equality follows from the definitions of q and s, and Ω is as
defined following Eq. (54)). Together with Eq. (57), this gives us

− ‖n∞ ∧j ∧k∧ l‖2 =
(4 r2s)2 s Ω(u, v, w)

2 a2 b2 c2
. (60)

Finally, on squaring both sides of Eq. (54), multiplying through by ~n∞∧a∧
b∧c~2, and substituting for ~n∞ ∧j ∧k∧ l~2 using Eq. (60) together with
r = t/s, we obtain

4 t2 := − ‖n∞ ∧a∧b∧c‖2 = −‖n∞ ∧j ∧k∧ l‖2 a2 b2 c2

Ω(u, v, w)2

=
(4 r2s)2 (s/2)

Ω(u, v, w)
=

8 t4/s

Ω(u, v, w)
=⇒ t2 = sΩ(u, v, w)/2 ⇐⇒ r2 = Ω(u, v, w)/(2 s) .

(61)

This derivation of Heron’s formula is, of course, quite painful as com-
pared to, for example, just factorizing the three-point Cayley-Menger deter-
minant −‖n∞ ∧ a ∧ b ∧ c‖2 as in Eq. (34). Its advantage is that it can be
generalized to higher dimensions, as will now be shown for tetrahedra.

6. A Natural Extension of Heron’s Formula to Tetrahedra

One well-known extension of Heron’s formula to tetrahedra may be found in
the four-point Cayley-Menger determinant −‖n∞∧a∧b∧c∧d ‖2, which gives
the squared volume as a homogeneous cubic polynomial in the squared inter-
vertex distances. Unfortunately, this four-point determinant is an irreducible
polynomial (in the language of commutative algebra), meaning it cannot be
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Figure 6. Two views of a tetrahedron �a,b, c,d� ⊂ R
3

with vertices labeled as A,B,C,D, respectively, showing how
its in-sphere (green) with in-center I determines its natural
parameters. These are defined as (twice) the areas of the
congruent pairs of triangles into which its facets are parti-
tioned by their in-touch points: J (on the facet) opposite to
A, K opposite to B, L opposite to C and M opposite to D, in
perfect analogy with how the Heron parameters of a triangle
are determined by its in-circle (cf. Fig. 5). The equal dis-
tances from each vertex to its three adjacent in-touch points
are drawn in the same color as the vertex, and the medial
parallelogram separating �a,b� from �c,d� has been shaded
in light brown

factorized like the three-point determinant was in Eq. (34). Consequently,
this algebraic expression does not provide much insight into the geometric
structure of its locus (set of zeros), any more than it did when Nicolo Tartaglia
discovered a rational version of it in the sixteenth century.6

In contrast, the extension given here (which was first derived by the
author in Part II of Ref. [14]) expresses the fourth power of the volume as a
polynomial in the tetrahedral analogs of the Heron parameters of a triangle,
which in turn are simple rational functions of the areas of the tetrahedron’s
four exterior and three interior (medial parallelogram) faces. Unlike Heron’s
and Tartaglia’s formulae, moreover, its locus turns out to be a new kind of
four-point configuration which is, in some sense, another boundary for the set
of all full-dimensional Euclidean tetrahedra that differs greatly from the usual
boundary (planar quadrilaterals). These configurations exhibit infinite inter-
vertex distances and so cannot be realized in physical space, even though they
are perfectly well defined mathematically by the (finite) values of their areas.
This will be further discussed at the end of this section (and was studied in
depth in Part III of Ref. [14]).

Triangles and tetrahedra nevertheless do have a great deal in common.
In particular, the in-radius r of the in-sphere of a tetrahedron �a,b, c,d� ⊂
6 Rumored to have also been known to Piero della Francesca in the 15th century.
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R
3 satisfies r = t/s where t is now six (3!) times its volume and s is twice its

(exterior) surface area.7 Also, as can be seen in Fig. 6, the in-sphere “touches”
the tetrahedron’s four facets (or exterior faces) at points j ∈ �b, c,d�, k ∈
�a, c,d�, l ∈ �a,b,d�, m ∈ �a,b, c� which divide those facets into three
triangles each. Finally, just as with triangles, the Pythagorean theorem shows
that the distances from each vertex to its three adjacent in-touch points are all
equal, and this in turn implies the pairs of such “contact triangles” sharing
a common edge of the tetrahedron are congruent, giving rise to only six
independent areas. Accordingly, the natural parameters of the tetrahedron
will be defined as twice these areas’ values [14, Part II], specifically

u := 2 �a,b, l � = 2 �a,b,m� , z := 2 �c,d, j� = 2 �c,d,k� ,

v := 2 �a, c,k� = 2 �a, c,m� , y := 2 �b,d, j� = 2 �b,d, l � ,

w := 2 �a,d,k� = 2 � a,d, l � , x := 2 �b, c, j� = 2 �b, c,m� .

(62)

If we denote twice the areas of the facets opposite to the vertices a,b, c,d
by a, b, c, d respectively, then in analogy to Eq. (49) the in-center of the
tetrahedron is the barycentric sum of its vertices given by

i =
a

s
a +

b

s
b +

c

s
c +

d

s
d . (63)

In analogy to Eq. (51), moreover, the in-touch points are given by the barycen-
tric sums

j =
z

a
b +

y

a
c +

x

a
d , k =

z

b
a +

w

b
c +

v

b
d ,

l =
y

c
a +

w

c
b +

u

c
d , m =

x

d
a +

v

d
b +

u

d
c ,

(64)

wherein the natural parameters satisfy the linear equations

a = x+y+z, b = v+w+z, c = u+w+y, d = u+v+x . (65)

The main obstacle to extending Heron’s formula to tetrahedra stems from
the fact that these four equations do not uniquely determine the six natural
parameters, as the corresponding relations (a = v+w, b = u+w, c = u+v)
between the edge lengths and the Heron parameters of a triangle did.

Like the in-circle of a triangle (Eq. (50)), the dual representation of the
in-sphere of a tetrahedron in G4,1 can be written as

r = i − n∞ r2/2 (66)
:= (aa + b b + c c + d d)/s + n∞((aba · b + · · · + cd c ·d − t2/2)/s2

but now a, b, c, d are areas not distances while a · b etc. are still (negative
one half times the) squared inter-vertex distances. This makes the geometric
interpretation of the correction term n∞(aba · b + · · · + cd c ·d) relatively
challenging. Fortunately, because the outer product with n∞ wipes out this

7 This practice of “normalizing” (hyper-)volumes by including the factorial in their defini-

tion simplifies their inter-relationships in higher dimensions, and is widely used for example

in studying the combinatorics of lattice polytopes, see e.g. Ref. [2].
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term, Eqs. (64) still allow us to express the conformal oriented volume of the
in-touch tetrahedron as

n∞ ∧j ∧k∧ l∧m

=
(
n∞ ∧ (z b + y c + xd)∧ (z a + w c + v d)∧· · ·

· · · (y a + w b + u d)∧ (xa + v b + u c)
)
/ (abcd) ,

(67)

which in a fashion similar to Eq. (54) works out to just

n∞ ∧j ∧k∧ l∧m = −Ω(u, v, w, x, y, z)
abcd

n∞ ∧a∧b∧c∧d , (68)

where Ω(u, v, w, x, y, z) := 2 (uvyz+uwxz+vwxy)−(uz)2−(vy)2−(wx)2. (The
minus sign in front means that the orientation of the in-touch tetrahedron
�j,k, l,m� is opposite to that of the original.)

Thus we arrive, much we did above with triangles, at the problem finding
the volume of the “in-touch tetrahedron,” or of evaluating the Cayley-Menger
determinant −‖n∞ ∧j ∧k∧ l∧m ‖2 of the in-touch points. This requires us
to find expressions for its squared inter-vertex distances ‖j − k‖2 = −2 j ·k,
etc. Note, however, that this time the formula we seek is a polynomial in
the natural parameters of a tetrahedron, which are areal magnitudes that
cannot be expressed as rational functions of the squared distances in either
the in-touch tetrahedron or the original (square roots must be extracted to do
that). The squared distances among the vertices of the in-touch tetrahedron
can nevertheless be obtained by an approach that is quite similar to that
taken for the in-touch triangle in the previous section, but using the areal
law of cosines (38) instead of the usual one as in Eq. (56), e.g.

‖ j − k ‖2 = ‖ j − i ‖2 + ‖ k − i ‖2 − 2 (j − i) · (k − i)
= 2 r2 (1 + cos(ϕcd)) = 2 r2 (ab + (a2 + b2 − e2)/2)/(ab)
= r2 ((a+b)2 − e2)/(ab) = r2 (a+b+e)(a+b−e)/(ab) = 2 r2sZ/(ab)

(69)

where ϕcd is now the (internal) dihedral angle between the planes 〈〈a, c,d〉〉
and 〈〈b, c,d〉〉, e := ‖(b − a) ∧ (d − c)‖ is four times the area of the medial
parallelogram as defined after Eq. (22), and Z := (a+b+e)(a+b−e)/(2 s). All
that is required to make the analogy between this equation and the corre-
sponding equation (56) for triangles complete is Z = z, where z is the natural
parameter of the tetrahedron defined above as 2 |�c,d, j�| = 2 |�c,d,k�|.

A direct derivation of these algebraic incarnations of the natural param-
eters as rational functions of the seven areas a, b, c, d, e, f :=‖(c−a)∧(d−b)‖
and g := ‖(d − a)∧ (c − b)‖ may be found in the Part II of the original ref-
erence [14]. It utilized classical three-dimensional vector algebra and basic
trigonometry together with the areal laws of sines and cosines, which after
several long pages of algebra yielded the results:

u = (c+d+e)(c+d−e)/(2 s) , z = (a+b+e)(a+b−e)/(2 s) ,

v = (b+d+f)(b+d−f)/(2 s) , y = (a+c+f)(a+c−f)/(2 s) ,

w = (b+c+g)(b+c−g)/(2 s) , x = (a+d+g)(a+d−g)/(2 s) .

(70)
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The non-negativity of the numerators in these expressions follows from the
triangle inequality for Euclidean bivectors, namely A = B + C =⇒ ‖A‖ ≤
‖B‖+‖C‖, applied to Eq. (36) and its analogs with the other facets and inte-
rior faces; this constitutes a heretofore unremarked extension of the triangle
inequality from line-bound vectors in the plane to plane-bound bivectors in
space.8

Instead of reformulating that derivation in G4,1, here we give a concep-
tually simpler and rather more geometric (although unfortunately not much
more compact) derivation of these formulae. This new derivation is based
upon the consistency of two different expressions for the squared inter-vertex
distances in the in-touch tetrahedron, where an example of the first may be
found in Eq. (69) and the second are the three-dimensional analogs of the
expressions given in Eq. (55) for those squared distances in the in-touch tri-
angle. These analogs are based upon the congruence of the pairs of contact
triangles meeting in a common edge as in Eq. (62) (see also Fig. 6), which
implies the congruence of the six pairs of sub-tetrahedra given by

�a,b, i, l � ≈ �a,b, i,m� , �c,d, i, j � ≈ �c,d, i,k� ,

�a, c, i,k� ≈ �a, c, i,m� , �b,d, i, j � ≈ �b,d, i, l � ,

�a,d, i,k � ≈ �a,d, i, l � , �b, c, i, j � ≈ �b, c, i,m�

(71)

(whose disjoint union is �a,b, c,d�). The orthogonality of the lines spanned
by the in-center and each in-touch point (cf. Fig 7) to the facet containing
the latter ensures that these are all “right tetrahedra” at their respective
in-touch points.

Taking �c,d, i, j � as an example, Minkowsi’s identity (46) implies that

(c− i)∧ (d− i) = (c− j)∧ (d− j) − (i− j)∧ (d− j) + (i− j)∧ (c− j) (72)

or, upon taking the inner-squares of both sides and noticing that the inner
products of (c−j)∧(d−j) with the other two terms on the right vanish as a
consequence of �c,d, i, j � being a right tetrahedron at j, that

‖(c − i)∧ (d − i)‖2

= ‖(c − j)∧ (d − j)‖2 + ‖(i − j)∧ (d − j)‖2 + |(i − j)∧ (c − j)‖2 (73)
+ 2

(
(i − j)∧ (c − j)

)·((i − j)∧ (d − j)
)
.

By the areal law of cosines (38), however, the sum of the last three terms
on the right is just ‖(i − j) ∧ (c − d)‖2, which in turn is ‖i − j‖2‖c − d‖2

by the orthogonality of 〈〈i, j〉〉 to 〈〈b, c,d〉〉. Recalling that r = ‖i − j‖ and
z := ‖(c−j)∧(d−j)‖, this leads to the following areal analog of the Pythagorean
theorem (cf. Fig. 7),

‖(c − i)∧ (d − i)‖2 = z2 + r2 ‖c − d‖2 , (74)

with similar equations for all the remaining pairs of congruent right tetrahe-
dra listed in Eq. (71).

Next, note that again as a consequence of �c,d, i, j � being a right tetra-
hedron at j, its volume |�c,d, i, j �| is simply |� i, j�| |�c,d, j�| / 3 = r z / 6.

8 All in all, there are 18 such tetrahedron inequalities consisting of six triples, an example
of which is e ≤ a + b, a ≤ b + e, b ≤ a + e [14, Part I].
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Figure 7. Drawing of the right-tetrahedron �c,d, i, j �, with
vertices labeled C,D, I, J resp. The medial parallelogram of
n∞∧c∧d and n∞∧i∧j, with vertices labeled E,F,G,H and
an area of ‖i − j‖ ‖c − d‖ / 4, is drawn in red, while an en-
veloping right-parallelopiped, wherein I′, J′ are obtained by
π-rotations of I, J about the perpendicular line through the
midpoint P of �c,d�, is in green

Much as we saw for a triangle in Fig. 5, however, the plane 〈〈c,d, i〉〉 bisects
the dihedral angle at �c,d� and is also the perpendicular bisector of the edge
�j,k� of the in-touch tetrahedron, so that the height hj;cdi of j over �c,d, i �
is ‖j − k‖/2. From this together with Eq. (74), we obtain

hj;cdi =
6 |�c,d, i, j �|
2 |�c,d, i �| ⇔ ‖j − k‖2 =

4 r2 z2

z2 + r2 ‖c − d‖2
. (75)

The other five analogs of the formulae (56) for a triangle now follow from the
permutational symmetry of the equations. Upon equating this new expression
for ‖j − k‖2 with the one in Eq. (69), we find that

Zs

ab
=

‖j − k‖2

2 r2
=

2 z2

z2 + r2 ‖c − d‖2
⇔ z2 =

Z s r2 ‖c − d‖2

2 ab − Z s
, (76)

where Z := (a+b+e)(a+b−e)/(2s) as above. Our next task is to show that
this implies the natural parameter z = Z.

To do so we employ the areal law of sines for free bivectors, first by
taking squared norms on both sides of Eq. (39) with X = c − d, y = b − d,
z = a−d, and then using the second equality of Eq. (40) followed by the areal
law of cosines (38) to substitute for the squared sine in the result, obtaining

t2 ‖c − d‖2 = a2 b2
(
1 − cos(ϕcd)2

)
= a2 b2 − (

a2 + b2 − e2
)2

/ 4

= (a+b+e)(a+b−e)(a−b+e)(−a+b+e) / 4 ,
(77)
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where t, a, b and e are all defined as above. The obvious resemblance of the
right-hand side to Heron’s formula means it is equal, as a polynomial, to a
Cayley-Menger determinant in the areas a, b, e rather than the distances.9

Finally, we use Eq. (77) plus r = t/s to eliminate r2 ‖c − d‖2 from the
numerator on the right-hand side of Eq. (76), and we use the definition of Z
to eliminate it from the denominator, which gives us

z2 = Z
(a+b+e)(a+b−e)(a−b+e)(−a+b+e) / 4

s (a−b+e)(−a+b+e) / 2
= Z2 . (78)

The result now follows on taking positive square roots of both sides; similar
derivations can of course also be given for all of the formulae in Eq. (70).10

Now that we have validated these explicit formulae for the natural pa-
rameters in terms of the areas of the seven faces of the tetrahedron, we can
use Eq. (69) together with its obvious analogs for the other squared dis-
tances among the in-touch points to compute the volume of the in-touch
tetrahedron much as was done for the area of the in-touch triangle in the
previous section. Utilizing rescaled versions of the conformal in-touch points
just like we did with the in-touch triangle (cf. Eqs. (58) and (59)) together
with s/2 = u+v+w+x+y+z (cf. Eq. (65)), one can readily show that

− ‖n∞ ∧j ∧k∧ l∧m‖2 =
(−2 r2s)3

a2 b2 c2 d2
· · ·

det

⎡

⎢
⎢
⎢
⎢
⎣

0 x+y+z v+w+z u+w+y u+v+x
x+y+z 0 − z/2 − y/2 − x/2
v+w+z − z/2 0 − w/2 − v/2
u+w+y − y/2 − w/2 0 − u/2
u+v+x − x/2 − v/2 − u/2 0

⎤

⎥
⎥
⎥
⎥
⎦

(79)

=
(r2s)3 sΩ(u, v, w, x, y, z)

a2 b2 c2 d2

Then, on substituting this result into the equation obtained by taking the
squared norms of both sides of Eq. (68), we arrive at long last at our extension
of Heron’s formula to tetrahedra (cf. Eq. (61)):

t2 := −‖n∞∧a∧b∧c∧d‖2 = −‖n∞∧j∧k∧l∧m‖2 a2 b2 c2 d2

Ω(u, v, w, x, y, z)2

=
(r2s)3 s

Ω(u, v, w, x, y, z)
=

t6 / s2

Ω(u, v, w, x, y, z)

=⇒ t4 = s2 Ω(u, v, w, x, y, z) ⇐⇒ r4 = Ω(u, v, w, x, y, z)/s2 (80)

In a fashion that closely resembles how Ptolemy’s inequalities among
the distances can be derived by factorizing −‖a∧b∧c∧d‖2 as a polynomial

9 Adventurous readers are invited to find a blade in the conformal geometric algebra with
a negative inner square that equals such a Cayley-Menger determinant.
10 The denominator in Eq. (78), divided by s2, is a geometric parameter z̃ that is “inverse”
(or complementary) to z in the sense that zz̃ = r2 ‖c−d‖2. All in all, there are a total of
six such inverse natural parameters ũ, . . . , z̃, which can be shown to be rational functions

of the natural parameters [14, Part II]. Since they do not seem to determine the volume
in any simple way by themselves, they play no essential role in the present saga.
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in the squared inter-vertex distances [4], the polynomial Ω(u, v, w, x, y, z) can
be written as a product of four factors each of which is linear in the products
of the square roots û :=

√
u, . . . , ẑ :=

√
z of “opposite” pairs of natural para-

meters [14, Part II, Remark 4]), specifically:

Ω(û2, v̂2, ŵ2, x̂2, ŷ2, ẑ2) (81)
= (ûẑ + v̂ŷ + ŵx̂)(ûẑ + v̂ŷ − ŵx̂)(ûẑ − v̂ŷ + ŵx̂)(−ûẑ + v̂ŷ + ŵx̂)

At least one of the last three factors must vanish whenever Ω = 0, and
the similarity between those expressions and the Plücker identity among the
Plücker coordinates (as in Eq. (29)), which defines the famous Klein quadric
K := {p ∈ R

6 | p1p6 − p2p5 + p3p4 = 0}, is more than a coincidence. In
fact the zeros of Ω are canonically homeomorphic to a quotient of the Klein
quadric by the action of a discrete group of reflections isomorphic to Z

4
2 on

the Plücker coordinates. Moreover, within that five-parameter manifold lives
a three-parameter sub-manifold homeomorphic to the set of all quadruples
of points in the special (area invariant) affine plane [14, Part III].

The most astounding thing, though, is that the points of this manifold
are the limits of a sequence of affine transformations with diagonal matrices
Diag( εi, 1/εi, 1/εi), applied to any “generic” (random) tetrahedron in R

3,
with εi → +∞ as i → ∞. Such a sequence acts asymptotically on the (ex-
terior and interior) faces as an area-preserving affine squeeze Diag(ε, 1/ε)
in the plane of each face, so that the areas in such a sequence of tetrahedra
converge to well-defined finite values. In the process, however, the tetrahe-
dra volumes go to zero while their inter-vertex distances approach infinity.
The ratios of these distances nevertheless remain well defined, and any finite
distances with those same ratios correspond to four points on the Euclidean
line R

1 ≈ R. Non-generic tetrahedra with one or more edges perpendicular
to the first coordinate axis generate sequences that also converge to zeros of
Ω wherein the corresponding distances are zero, and when the initial tetra-
hedron lies in any plane not perpendicular to that axis, the resulting zero
corresponds to a quadruple in the special affine plane as above.

The generic zeros clearly correspond to limiting cases of the equi-volume
sets of tetrahedra defined by skew pairs of line-bound vectors or to those
defined by a plane-bound bivector together with an out-of-plane flat point, as
described in Secs. 3 and 4, respectively. The difference is that, while the inter-
vertex distances in those sets can also approach infinity, when the volume of
the tetrahedra is non-zero this is accompanied by all but one of the seven
areas also becoming infinite. In Appendix B of [14, Part IV], I conjectured
that there is a canonical one-to-one mapping between the zeros of Ω and
planar Euclidean quadrilaterals, where the former are the limits of sequences
of affine transformations as above and the latter are orthogonal projections
of the tetrahedra onto the plane perpendicular to the first coordinate axis.
Otherwise, the very existence of such “areally degenerate” tetrahedra begs
the question: Is Flatland a bigger place than A. Square ever knew [29]?11

11 Despite considerable effort, I have found only one rather dated paper that even considers
a similar phenomenon, which proved that the set of n-simplices all having facets with the
same hyper-areas contains members with arbitrarily small hyper-volumes [19].
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7. Heron’s Formula for n-Dimensional Simplices

Based upon the above insights into the geometric interpretation of Heron’s
formula and its extension to three dimensions, it is not hard to see how it gen-
eralizes to higher dimensions. Given an n-simplex �a0, a1, a2, . . . , an� ⊂ R

n,
let ak := |�a0, . . . , ǎk, . . . , an�| be the “hyper-area” of the facet opposite
to ak for k = 0, . . . , n,12 sn := (n − 1)!

∑
k ak be its normalized sur-

face hyper-area, and tn := n! |�a0 , . . . , an�| be its normalized hyper-volume.
Via considerations analogous to those for triangles and tetrahedra above,
it is easily seen that the in-radius of the n-simplex is again rn = tn/sn.
Also let i = (n − 1)!

∑
k ak ak/sn be the in-center of the n-simplex and

jk ∈ �a0, . . . , ǎk, . . . , an� be the “in-touch points” at which its in-sphere in-
tersects its facets. In perfect analogy to triangles and tetrahedra, each facet of
the n-simplex is divided into n sub-simplices �a0, . . . , ǎk, . . . , ǎ�, . . . , an, jk�
(0 ≤ � �= k ≤ n) by its in-touch point and, because ‖ i − jk‖ = rn for
all k, the Pythagorean theorem shows that the distances ‖ jk − a�‖ (k �=
�) from each vertex to its n adjacent in-touch points are once more all
equal. This in turn implies that these “contact (n−1)-simplices” are again
congruent whenever they intersect in a common (n − 2)-dimensional face
�a0, . . . , ǎk, . . . , ǎ�, . . . , an�. The n-dimensional natural parameters may now
be defined as the hyper-areas of these pairs of contact (n−1)-simplices, now
times (n−1)! to normalize them. Since there are n(n+1) such (n−1)-simplices,
there are n(n+1)/2 natural parameters {uk� =u�k, ukk =0 | k, � = 0, . . . , n }
in all. Finally, because these natural parameters are the normalized hyper-
areas of the members of a partition of each facet, they satisfy (n−1)! ak =∑

� uk� for k = 0, . . . , n and sn = 2
∑

k<� uk� .
Given that for n = 2 and 3 the polynomials Ωn :=Ω as above are (−1)n

times the determinant of the matrix of natural parameters, the imputed ex-
tension of Heron’s formula to higher dimensions is simply

t2(n−1)
n = sn−1

n Ωn ⇐⇒ r2(n−1)
n = Ωn / sn−1

n , (82)

where Ωn :=(−1)n det(Un) ≥ 0 with Un := [uk�]
n,n
k,�=0 as the matrix of natural

parameters [14, Part II, Conjecture 11]. This extension is almost too elegant
to doubt, but the question of how best to prove it in full generality remains.
In this section we will simply outline the essential formulae needed to derive
this extension by an approach which directly generalizes that taken above
for n = 2 and 3 dimensions, without taking up the (considerable) space that
would be needed for a complete and formal proof.13

The determinant multiplication formula shows that the oriented hyper-
volume of any n-simplex � b0,b1, . . . , bn� with vertices given by the barycen-
tric sums bk =

∑
� βk� a� (

∑
� βk� = 1, k = 0, . . . , n) of another’s will be

related to that of the other by the determinant of the matrix of coefficients
det[βk�]. Thus in analogy to Eq. (68) the conformal oriented hyper-volume of

12As is common practice, “a0, . . . , ǎk, . . . , an” means that the k-th vertex is omitted from
the sequence a0, . . . ,an.
13 A formal proof will be published separately once the author is convinced he has found
the most concise exposition possible, based on much the same approach.
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the in-touch n-simplex � j0, j1, . . . , jn� with jk =
∑

� uk� a�/((n− 1)! ak) for
all k is related to that of the original as

n∞ ∧j0 ∧· · ·∧jn =
(−1)n Ωn∏

k

(
(n−1)! ak

) n∞ ∧a0 ∧· · ·∧an , (83)

where j0, . . . , jn,a0, . . . ,an ∈ Gn+1,1 are the corresponding conformal points
as usual. Accordingly, we wish to express the squared volume of the in-touch
n-simplex as a Cayley-Menger determinant, which requires us to find the
squared distances between the in-touch points via the higher-dimensional
analogs of Eq. (69). This in turn requires a hyper-areal generalization of the
areal law of cosines (38), which may be obtained from the (n−1)-vector analog
of the relation among bivectors in Eq. (36), as exemplified by

(a1 − a0)∧ · · ·∧ (an−2 − a0)∧ (an − an−1)
= (a1 − a0)∧· · ·∧ (an−2 − a0)∧ (an − a0) (84)

− (a1 − a0)∧· · ·∧ (an−2 − a0)∧ (an−1 − a0) .

In analogy with Eq. (23), the norm of the left-hand side of this equation can be
shown to be (n−2)! 2n−1 times the hyper-area of the (n−1)-dimensional con-
vex polytope �b0, . . . , bn−2,b′

0, . . . , b′
n−2� spanned by the midpoints bk :=(ak

+an−1)/2 and b′
k :=(ak+an)/2 of the line segments connecting {a0, . . . , an−2}

with {an−1, an} for k = 0, . . . , n−2. Because they are also equal to the inter-
section of the hyper-plane through those midpoints with the n-simplex itself,
such polytopes are known as the (n−1, 2)-medial sections of the n-simplex.
A general formula for these hyper-areas in terms of the edge lengths of the
original simplex is available [30].14

Just as we found with tetrahedra, we obtain an instance of the hyper -
areal law of cosines by taking squared norms of both sides of Eq. (84) and
rearranging. More generally, letting ck := ak − a0 for k = 1, . . . , n, Ck := c1∧
· · ·∧ čk ∧· · ·∧cn and C0 := (a2 − a1)∧· · ·∧(an − a1), this hyper-areal law of
cosines may be written as

Ck ·C� = ‖Ck‖‖C�‖ cos(ϕk�) = 1
2

(‖Ck‖2 + ‖C�‖2 − ‖Dk�‖2
)

, (85)

where ϕk� is the (smaller) angle between the hyper-planes represented by
Ck, C� and Dk� :=Ck −C� is an (n−1)-vector representing the hyper-plane
containing an (n−1, 2)-medial section of the n-simplex (0 ≤ k < � ≤ n).
Noting that the barycentric sum for the in-center is i =

∑
k ck ak / sn with

ck := ‖Ck‖ = (n− 1)! ak and sn :=
∑

k ck as above, the higher-dimensional
analog of Eq. (69) for the squared distances between in-touch points is

‖ jk − j�‖2 = ‖ jk − i ‖2 + ‖ j� − i ‖2 − 2 (jk − i) · (j� − i)
= 2 r2

n (1 + cos(ϕk�)) = 2 r2
n (ck c� + (c2

k + c2
� − d2

k�)/2))/(ckc�)
= r2

n ((ck + c�)2 − d2
k�)/(ckc�) = 2 r2

n sn Uk�/(ckc�) , (86)

14 That formula involves an (n+3)-by-(n+3) analog of Cayley-Menger determinants, which
obviously cannot be represented as the inner square of any blade in Gn+1,1. Conformal
geometric algebra does however provide a nice representation of these hyper-areas which
generalizes that given for n = 3 in Eq. (22), namely ‖Dk�‖2 = ‖〈Lk�M̃ k�〉n−1‖2 =
‖Lk�M k� + (−1)nM k�Lk�‖2/ 4, where Lk� and M k� are the blades of grade 3 and n

respectively given by Lk� :=n∞∧ak ∧a� and M k� :=n∞∧a0∧· · ·∧ǎk ∧· · ·∧ǎ�∧· · ·∧an.
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where dk� := ‖Dk�‖, ϕk� is the angle between the subspaces of Ck, C�, and
Uk� :=(ck + c� +dk�)(ck + c� −dk�)/(2 sn). What remains to be shown, just as
with the tetrahedron, is that Uk� = uk�, the natural parameter given by the
common normalized hyper-area of the two contact (n−1)-simplices adjacent
to the (n−2)-face �a0, . . . , ǎk, . . . , ǎ�, . . . , an� of the original simplex.

This may be done using the n-dimensional generalization of Eq. (75),

‖ jk − j�‖2 =
4 r2

n u2
k�

u2
k� − r2

n ‖n∞ ∧a0 ∧· · ·∧ ǎk ∧· · ·∧ ǎ� ∧· · ·∧an‖2
, (87)

which can be obtained via geometric considerations entirely analogous to
those used in the n = 2 and n = 3 cases above, together with the generaliza-
tion of Eq. (77) given by:

− ‖n∞ ∧a0 ∧· · ·∧ ǎk ∧· · ·∧ ǎ� ∧· · ·∧an‖2 t2n (88)
= (ck + c� + dk�)(ck + c� − dk�)(ck − c� + dk�)(−ck + c� + dk�) / 4

The rest of the proof is equally straightforward and likewise perfectly anal-
ogous to those given above for the triangle and the tetrahedron: Since ck =∑

� uk� for k = 0, . . . , n, the volume of the in-touch n-simplex is given (in the
n-dimensional conformal algebra Gn+1,1) by

− ‖n∞ ∧j0 ∧· · ·∧jn‖2 =
(r2

n sn)n
sn Ωn∏

k c2
k

, (89)

which generalizes Eq. (79). From that together with Eq. (83), we find that
the volume of the original n-simplex satisfies the generalization of Eq. (80),

t2n =
(r2

n sn)n
sn

Ωn
=

t2n
n /sn−1

n

Ωn
, (90)

which in turn is equivalent to our extension (82) of Heron’s formula to n-
dimensional simplices for all n > 2.

It will be interesting to see if the zeros of Ωn with n > 3 also exhibit
infinite edge lengths and/or other divergent facial contents, and what the
dimension of the subspace of R

n that such degenerate n-simplices live in
may be. In four dimensions, for example, there are ten natural parameters
uk� = u�k (0 ≤ k �= � ≤ 4), the sums of which will determine the volumes
(hyper-areas) of the five tetrahedral facets ck =

∑
� uk� as above.15 A 4-

simplex also has ten (3, 2)-medial sections, which are not parallelopipeds
but rather triangular prisms with parallel sides of equal length and parallel
congruent triangles at their two ends (which are not necessarily perpendicular
to the prism’s axis) [30].16 Denoting their volumes (times 16) by dk� as above,
we see that d2

k� = (ck + c�)2 − 2 s4 uk� with s4 = 2
∑

k<� uk�. It follows that
the (normalized) volumes uk� of the contact tetrahedra determine those of
the exterior and interior faces ck and dk� together, and vice versa. In addition
to these volumes there are also ten areas for the 2-faces of the 4-simplex, as

15 An explicit numerical example on a random 4-simplex is worked out in full in the Jupyter

notebook included in this paper’s Supplementary Materials, which uses the SageMath com-
puter algebra system.
16 A parallelopiped with twice the volume may nonetheless be obtained by reflecting a
copy of the prism in the mid-point of any one of its parallelogram faces.
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well as ten inter-vertex distances. Knowledge of any ten of those quantities
must, in the generic case, reduce the possible values of any others to at most
a (small) finite number of values, but these relations involve polynomials of
much higher degrees and divergences are expected, presumably even in cases
for which the hyper-volume of the 4-simplex is non-zero.17

Despite the many similarities between the tetrahedron and higher di-
mensional n-simplices, one property that does not seem to generalize is the
factorization of Ω3 as a polynomial in the square roots of the natural pa-
rameters noted in Eq. (81); this is likely related to the fact that in n = 3
dimensions there are only three (n − 1, 2)-medial sections (parallelograms)
and not n(n + 1)/2 (i.e. six for n = 3) of them as in higher dimensions. As a
result, the structure of the locus of the equation Ωn = 0, which was analyzed
in depth for n = 3 in Ref. [14, Part III] making essential use of this factoriza-
tion, appears to be much more complicated in higher dimensions. Indeed it
is likely that the sophisticated machinery of algebraic geometry in projective
spaces will be needed for such a study, although that machinery generally
presumes that one is working over the field of complex numbers — with-
out any of the geometric interpretations geometric algebra can provide; see
e.g. Refs. [23,24,28]. It seems likely, however, that geometric algebra could
significantly enhance that branch of mathematics as well.
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[27] Sobczyk, G.: Notes on Plücker’s relations in geometric algebra. Adv. Math.
363, 106959 (2020). https://doi.org/10.1016/j.aim.2019.106959

[28] Sottile, F.: Real Solutions to Equations from Geometry. Am. Math. Soc., Prov-
idence (2011). https://doi.org/10.1090/ulect/057

[29] Stewart, I.: The Annotated Flatland, A Romance of Many Dimensions by Ed-
win A. Abbott. Perseus Book Group, Philadelphia (2002). (Paperback version
published 2008)

[30] Talata, I.: A volume formula for medial sections of simplices. Discrete Comput.
Geom. 30, 343–353 (2003). https://doi.org/10.1007/s00454-003-0015-6

Timothy F. Havel
Massachusetts Institute of Technology
c/o 100 Rockview St. #3
Boston MA 02130
USA
e-mail: tfhavel@gmail.com

Received: January 20, 2023.

Accepted: September 4, 2023.

https://doi.org/10.1007/978-1-84996-108-0_1
https://doi.org/10.1007/978-3-0346-0405-5_22
https://doi.org/10.1007/978-94-009-6292-7
https://doi.org/10.1007/bf03045489
https://doi.org/10.1016/j.gmod.2021.101100
https://doi.org/10.1016/j.gmod.2021.101100
https://doi.org/10.1007/b138602
https://doi.org/10.2307/2975188
https://doi.org/10.1007/978-3-0348-0898-9
https://doi.org/10.1016/j.aim.2019.106959
https://doi.org/10.1090/ulect/057
https://doi.org/10.1007/s00454-003-0015-6

	Heron's Formula in Higher Dimensions
	Abstract
	1. Background and Introduction
	2. Barycentric Sums in the Conformal Model
	3. Line-Bound Vectors and Tetrahedra
	4. Plane-Bound Bivectors and Tetrahedra
	5. Heron's Formula, the In-Circle, and the In-Touch Triangle
	6. A Natural Extension of Heron's Formula to Tetrahedra
	7. Heron's Formula for n-Dimensional Simplices
	References




